[en] Space plasmas are often observed to contain more particles in the high-energy tail than the usual Maxwellian distributions, and are well modeled by kappa distributions. The hybrid kappa-Maxwellian distribution and associated generalized plasma dispersion function Z(kappa M) were recently introduced to model magnetized space plasmas. The susceptibility tensor for a kappa-Maxwellian plasma component is derived, making use of Z(kappa M). This enables one to make general studies of obliquely propagating electromagnetic waves in a magnetoplasma. The susceptibility and dielectric tensors reduce to the Maxwellian expressions in the limit kappa ->infinity. As an illustration, the formalism is applied to the lower branch of the R mode and its off-parallel variant. For low kappa values, low-wavenumber, low-frequency parallel whistler waves are shown to be stable, unlike the Maxwellian case, which is unstable if the perpendicular temperature exceeds the parallel temperature. A numerical study is made of the effects of the value of kappa, the propagation angle, and the temperature anisotropy ratio on dispersion and damping. The kappa-Maxwellian distribution with very low kappa is found to be unstable in an overdense plasma near the electron-cyclotron frequency even when the parallel and perpendicular temperatures are equal, because of the anisotropy of the contours in velocity space. (C) 2007 American Institute of Physics.
Disciplines :
Physics
Author, co-author :
Cattaert, Tom ; Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Bioinformatique
Hellberg, M. A.
Mace, R. L.
Language :
English
Title :
Oblique propagation of electromagnetic waves in a kappa-Maxwellian plasma
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
V. M. Vasyliunas, J. Geophys. Res. 73, 2839 (1968).
W. C. Feldman, R. C. Anderson, J. R. Asbridge, S. J. Bame, J. T. Gosling, and R. D. Zwickl, J. Geophys. Res. 87, 632 (1982).
W. C. Feldman, R. C. Anderson, S. J. Bame, S. P. Gary, J. T. Gosling, D. J. McComas, M. F. Thomsen, G. Paschmann, and M. M. Hoppe, J. Geophys. Res. 88, 96 (1983).
S. P. Christon, D. G. Mitchell, D. J. Williams, L. A. Frank, C. Y. Huang, and T. E. Eastman, J. Geophys. Res. 93, 2562 (1988).
S. P. Christon, D. J. Williams, D. G. Mitchell, C. Y. Huang, and L. A. Frank, J. Geophys. Res. 96, 1 (1991).
V. Pierrard and J. F. Lemaire, J. Geophys. Res. 101, 7923 (1996).
M. Maksimovic, V. Pierrard, and J. F. Lemaire, Astron. Astrophys. 324, 725 (1997).
V. Pierrard, M. Maksimovic, and J. F. Lemaire, J. Geophys. Res. 104, 17021, DOI: 10.1029/1999JA900169 (1999).
R. A. Treumann, Astrophys. Space Sci. 277, 81 (2001).
R. A. Treumann, C. H. Jaroschek, and M. Scholer, Phys. Plasmas 11, 1317 (2004).
M. P. Leubner, Phys. Plasmas 11, 1308 (2004).
C. Tsallis, J. Stat. Phys. 52, 479 (1988).
D. Summers and R. M. Thorne, J. Geophys. Res. 95, 1133 (1990).
R. L. Mace and M. A. Hellberg, Phys. Plasmas 2, 2098 (1995).
B. D. Fried and S. D. Conte, The Plasma Dispersion Function (Academic, New York, 1961).
D. Summers and R. M. Thorne, Phys. Fluids B 3, 1835 (1991).
D. Summers and R. M. Thorne, Phys. Fluids B 3, 2117 (1991).
R. M. Thorne and D. Summers, J. Geophys. Res. 96, 217 (1991).
D. Summers and R. M. Thorne, J. Geophys. Res. 97, 16827 (1992).
S. Xue, R. M. Thorne, and D. Summers, J. Geophys. Res. 98, 17475 (1993).
R. L. Mace, J. Geophys. Res. 103, 14643, DOI: 10.1029/98JA00616 (1998).
R. L. Mace, M. A. Hellberg, and R. A. Treumann, J. Plasma Phys. 59, 393 (1998).
R. L. Mace, G. Amery, and M. A. Hellberg, Phys. Plasmas 6, 44 (1999).
R. L. Mace, Phys. Plasmas 10, 2181 (2003).
R. L. Mace, Phys. Plasmas 11, 507 (2004).
M. A. Hellberg, R. L. Mace, and F. Verheest, in Waves in Dusty, Solar, and Space Plasmas, AIP Conf. Proc. No. 537, edited by, F. Verheest, M. Goossens, M. A. Hellberg, and, R. Bharuthram, (AIP, Melville, NY, 2000), p. 348.
M. A. Hellberg, R. L. Mace, R. J. Armstrong, and G. Karlstad, J. Plasma Phys. 64, 433 (2000).
A. F. Vias, R. L. Mace, and R. F. Benson, J. Geophys. Res. 110, A06202, DOI: 10.1029/2004JA010967 (2005).
R. L. Mace, J. Plasma Phys. 55, 415 (1996).
M. A. Hellberg and R. L. Mace, Phys. Plasmas 9, 1495 (2002).
E. Marsch, in Physics of the Inner Heliosphere, edited by, R. Schwenn, and, E. Marsch, (Springer, Berlin, 1991), Vol. 2, p. 45.
R. L. Mace and M. A. Hellberg, Phys. Plasmas 10, 21 (2003).
M. A. Hellberg, R. L. Mace, and T. Cattaert, Space Sci. Rev. 121, 127 (2005).
R. P. Singhal and A. K. Tripathi, Phys. Plasmas 13, 012102 (2006).
T. H. Stix, Waves in Plasmas (Springer, New York, 1992).
M. Abramowitz and I. Stegun, Handbook of Mathematical Functions (National Bureau of Standards, Washington, DC, 1964), pp. 375-376.
D. G. Swanson, Plasma Waves, 2nd ed. (IOP, Bristol, 2003).
D. Summers, R. M. Thorne, and H. Matsumoto, Phys. Plasmas 3, 2497 (1996).
N. A. Krall and A. W. Trivelpiece, Principles of Plasma Physics (McGraw-Hill, New York, 1973), p. 186.
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.