Challenges in comparing land subsidence measurements by PS-InSAR with simulations from coupled hydro-geomechanical modelling: a case study in Antwerp Harbour - 2025
Challenges in comparing land subsidence measurements by PS-InSAR with simulations from coupled hydro-geomechanical modelling: a case study in Antwerp Harbour
Choopani, Atefe; Orban, Philippe; Declercq, P. Y.et al.
[en] Land subsidence is a serious problem in rapidly urbanizing areas like Antwerp, Belgium, where one known driver is the consolidation of Holocene sediments beneath the harbour’s backfill. However, the potential contribution of groundwater abstraction to subsidence remains poorly understood, as deformation measurements from interferometric synthetic aperture radar (InSAR) alone cannot pinpoint subsurface processes. This study addresses this gap by investigating whether groundwater-induced consolidation also plays a role in subsidence in Antwerp Harbour. In this work, deformation estimates derived from persistent scatterer InSAR (PS-InSAR) and a 3D-MODFLOW groundwater flow model, sequentially coupled to a 1D-geomechanical model implemented in Python. The model captures delayed consolidation in low-permeability units.
For modelling, a region outside the harbour’s backfill was selected to exclude the influence of harbour sediment consolidation and isolate the potential role of groundwater abstraction, comparing observed and simulated deformations. Results show groundwater-induced consolidation contributes to subsidence rates of 1.78 mm/year (2009–2016), closely matching PS-InSAR estimates of –2.67, –2.39 and –2.43 mm/year from SkyGeo (2017–2022), EGMS (2019–2023), and TerraSAR-X (2019–2022), respectively. Validation of the PS-InSAR datasets was performed using GNSS station BEZA, with the EGMS showing the best fit. Results reveal groundwater level changes contribute to subsidence beyond natural sediment
consolidation, although challenges such as data scarcity complicate direct comparisons. The insights point to groundwater as a likely additional factor in regional subsidence and emphasize the importance of improved data integration for refining hydro-geomechanical models to enhance subsidence predictions.
Research Center/Unit :
UEE - Urban and Environmental Engineering - ULiège
Disciplines :
Geological, petroleum & mining engineering
Author, co-author :
Choopani, Atefe ; Université de Liège - ULiège > Urban and Environmental Engineering ; IRSNB - Royal Belgian Institute of Natural Sciences > Geological Survey of Belgium ; KU Leuven - Catholic University of Leuven > Nature and Landscape > Division of Forest
Orban, Philippe ; Université de Liège - ULiège > Urban and Environmental Engineering
Declercq, P. Y. ; IRSNB - Royal Belgian Institute of Natural Sciences > Geological Survey of Belgium
Devleeschouwer, X. ; IRSNB - Royal Belgian Institute of Natural Sciences > Geological Survey of Belgium
Challenges in comparing land subsidence measurements by PS-InSAR with simulations from coupled hydro-geomechanical modelling: a case study in Antwerp Harbour
BRAIN-Belspo project LASUGEO, Monitoring LAnd SUbsidence caused by Groundwater exploitation through gEOdetic measurements
Funders :
BELSPO - Belgian Federal Science Policy Office
Funding number :
BRAIN B2/191/P1/LASUGEO
Funding text :
Thanks also to the European Space Agency (ESA) for providing the satellite images and to the DOV Databank Ondergrond Vlaanderen for the hydrogeological data. We also thank EGMS and SkyGeo for providing complementary data for comparison with our PS-InSAR data.
H.Z. Abidin H. Andreas I. Gumilar Y. Fukuda Y.E. Pohan T. Deguchi Land subsidence of Jakarta (Indonesia) and its relation with urban development Nat Hazards J 59 3 1753 1771 10.1007/s11069-011-9866-9
J.J. Allen The effects of stress history on the resilient response of soils Champaign, IL Army Construction Engineering Research Laboratory
A.N. Baghbani T. Choudhury S. Costa J. Reiner Application of artificial intelligence in geotechnical engineering: a state-of-the-art review Earth-Sci Rev J 228 10.1016/j.earscirev.2022.103991 103991
M.M. Bejani M. Ghatee A systematic review on overfitting control in shallow and deep neural networks Artif Intell Rev J 54 8 6391 6438 10.1007/s10462-021-09975-1
P. Berardino G. Fornaro R. Lanari E. Sansosti A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms IEEE Trans Geosci Remote Sens J 40 11 2375 2383 10.1109/TGRS.2002.803792
M.A. Biot General theory of three-dimensional consolidation Appl Physics J 12 2 155 164 10.1063/1.1712886
R.B. Brinkgreve P.A. Vermeer Plaxis: finite element code for soil and rock analyses, version 7: [user’s guide] Rotterdam, The Netherlands Balkema
T.J. Burbey The influence of faults in basin-fill deposits on land subsidence, Las Vegas Valley, Nevada, USA Hydrogeol J 10 5 525 538 10.1007/s10040-002-0215-7
BGR (Geosciences and Natural Resources) UNESCO (United Nations Educational, Scientific and Cultural Organization) (2013): International hydrogeological map of Europe 1:1,500,000, 25 sheets and 18 explanatory notes. BGR, Hanover, Germany. https://www.bgr.bund.de/EN/Themen/Wasser/Projekte/laufend/Beratung/Ihme1500/ihme1500_projektbeschr_en.html?nn=1557832. Accessed 26 June 2024
A.I. Calderhead R. Therrien A. Rivera R. Martel J. Garfias Simulating pumping-induced regional land subsidence with the use of InSAR and field data in the Toluca Valley, Mexico Adv Water Resour J 34 1 83 97 10.1016/j.advwatres.2010.09.017
Chaussard E, Bürgmann R, Shirzaei M, Fielding EJ, Baker B (2014) Predictability of hydraulic head changes and characterization of aquifer‐system and fault properties from InSAR‐derived ground deformation Abstract Key Points Journal of Geophysical Research: Solid Earth 119(8):6572–6590. https://doi.org/10.1002/2014JB011266
X. Chen G. Tessari M. Fabris V. Achilli M. Floris N. Casagli V. Tofani K. Sassa P.T. Bobrowsky K. Takara Comparison between PS and SBAS InSAR techniques in monitoring shallow landslides Understanding and reducing landslide disaster risk. WLF 2020. ICL Contribution to Landslide Disaster Risk Reduction Cham, Switzerland Springer 155 161
Y. Chen Y. Luo M. Feng Analysis of a discontinuous Galerkin method for the Biot’s consolidation problem Appl Math Comput J 219 17 9043 9056 10.1016/j.amc.2013.03.104
Y. Chen Q. Tao A. Hou L. Ding G. Liu K. Wang Accuracy verification and evaluation of Sentinel-1A repeat track differential interferometric synthetic aperture radar in monitoring mining subsidence Appl Remote Sens J 14 1 014501 014501 10.1117/1.JRS.14.014501
Choopani A, Declercq PY, Orban P, Devleeschouwer X, Dassargues A (2021) Land subsidence as revealed by PS-InSAR observations in the Antwerp area (Belgium): first steps towards the understanding and modeling. In: IAH2021 48th IAH Congress ‘Inspiring Groundwater’, Brussels, September 2021. https://doi.org/10.13140/RG.2.2.28064.46088
A. Choopani M. Dehghani M.R. Nikoo Determining hydrogeological parameters of an aquifer in Sirjan basin using Envisat ASAR interferometry and groundwater modeling Remote Sens J 41 2 655 682 10.1080/01431161.2019.1646938
A. Dassargues F.B.J. Barends F.J.J. Brouwer F.H. Schroder On the necessity to consider varying parameters in land subsidence computations Proceeding of the 5th International Symposium on Land Subsidence, The Hague, The Netherlands, 16–20 October 1995 Wallingford, UK IAHS 258 269
A. Dassargues Prise en compte des variations de la permeabilite et du coefficient d’emmagasinement specifique dans les simulations hydrogeologiques de la consolidation en milieux argileux satures (Taking the variations of hydraulic conductivity and storage coefficient into account for modeling hydrogeological processes and consolidation in saturated clays) Bull Soc Geol Fr 169 5 665 673
A. Dassargues Hydrogeology: groundwater science and engineering Boca Raton, FL CRC 10.1201/9780429470660
A. Dassargues C. Schroeder X.L. Li Applying the Lagamine model to compute land subsidence in Shanghai Bulletin of the International Association of Engineering Geology 47 13 26 10.1007/BF02639591
A. Dassargues J.P. Radu R. Charlier X.L. Li Q.F. Li Computed subsidence of the central area of Shanghai Bull Eng Geol Environ 47 65 88 10.1007/BF02639592
Databank Ondergrond Vlaanderen 9(DOV) (2024) Geological 3D model (v3.1). Available from the Databank Ondergrond Vlaanderen (DOV). https://www.dov.vlaanderen.be. Accessed 27 June 2024
E.H. Davis G.P. Raymond A non-linear theory of consolidation Géotechn J 15 2 161 173 10.1680/geot.1965.15.2.161
P.Y. Declercq P. Gérard E. Pirard J. Walstra X. Devleeschouwer Long-term subsidence monitoring of the alluvial plain of the Scheldt River in Antwerp (Belgium) using radar interferometry Remote Sens J 13 6 1160 1180 10.3390/rs13061160
Y.F. Deng A.M. Tang Y.J. Cui X.P. Nguyen X.L. Li L. Wouters Laboratory hydro-mechanical characterization of Boom Clay at Essen and Mol Phys Chem Earth J 36 17–18 1878 1890 10.1016/j.pce.2011.10.002
E. Detournay A.H.D. Cheng C. Fairhurst Fundamentals of poroelasticity Analysis and design methods Oxford Pergamon 113 171 10.1016/B978-0-08-040615-2.50011-3
P.A. Domenico F.W. Schwartz Physical and chemical hydrogeology New York Wiley
S. Dong S. Samsonov H. Yin S. Ye Y. Cao Time-series analysis of subsidence associated with rapid urbanization in Shanghai, China measured with SBAS InSAR method Environ Earth Sci J 72 3 677 691 10.1007/s12665-013-2990-y
J.M. Duncan C.Y. Chang Nonlinear analysis of stress and strain in soils Soil Mech Found Div J 96 5 1629 1653 10.1061/JSFEAQ.0001458
H. Ebrahimy B. Feizizadeh S. Salmani H. Azadi A comparative study of land subsidence susceptibility mapping of Tasuj Plain, Iran, using boosted regression tree, random forest and classification and regression tree methods Environ Earth Sci J 79 1 12 10.1007/s12665-020-08953-0
Z. Eghrari M.R. Delavar M. Zare A. Beitollahi B. Nazari Land subsidence susceptibility mapping using machine learning algorithms ISPRS Int Arch Photogramm Remote Sens Spat Inf Sci 10 129 136 10.5194/isprs-annals-X-4-W1-2022-129-2023
M. Faryabi A fuzzy logic approach for land subsidence susceptibility mapping: the use of hydrogeological data Environ Earth Sci J 82 9 10.1007/s12665-023-10909-z 209
A. Ferretti Satellite InSAR Data: reservoir monitoring from space (EET 9) New York Earthdoc
A. Ferretti C. Prati F. Rocca Nonlinear subsidence rate estimation using permanent scatterers in differential SAR interferometry IEEE Trans Geosci Remote Sens 38 5 2202 2212 10.1109/36.868878
A. Ferretti C. Prati F. Rocca Permanent scatterers in SAR interferometry IEEE Trans Geosci Remote Sens J 39 1 8 20 10.1109/36.898661
A. Ferretti A. Monti-Guarnieri C. Prati F. Rocca D. Massonet InSAR principles: guidelines for SAR interferometry processing and interpretation Noordwijk, The Netherlands ESA
W.N. Findley J.S. Lai K. Onaran Creep and relaxation of nonlinear viscoelastic materials New York Dove
N. Fiorentini M. Maboudi P. Leandri M. Losa M. Gerke Surface motion prediction and mapping for road infrastructures management by PS-in SAR measurements and machine learning algorithms Remote Sens J 12 23 3976 3976 10.3390/rs12233976
A. Forster Environmental geology: principles and practice Q J Eng Geol Hydrogeol 33 4 350 351 10.1144/qjegh.33.4.350-b
R.K. Gabrysch C.W. Bonnet Land-surface subsidence in the Houston-Galveston region Austin, TX Texas Water Development Board
D.L. Galloway T.J. Burbey Review: regional land subsidence accompanying groundwater extraction Hydrogeol J 19 8 459 1486 10.1007/s10040-011-0775-5
D. Galloway F.S. Riley San Joaquin Valley, California: largest human alteration of the Earth’s surface US Geol Surv Circ 1182 23 34
Galloway DL, Jones DR, Ingebritsen SE (1999) Land subsidence in the United States. US Geol Survey. https://doi.org/10.3133/cir1182
G. Gambolati R.A. Freeze Mathematical simulation of the subsidence of Venice, 1 Theory Water Resour Res J 9 3 721 733 10.1029/WR009i003p00721
G. Gambolati P. Teatini Geomechanics of subsurface water withdrawal and injection Water Resources Res J 51 6 3922 3955 10.1002/2014WR016841
G. Gambolati P. Gatto R.A. Freeze Predictive simulation of the subsidence of Venice Science 183 4127 849 851 1:STN:280:DC%2BC3cvgslOrug%3D%3D 10.1126/science.183.4127.849
M. Gedeon I. Wemaere J. Marivoet Regional groundwater model of north-east Belgium Hydrol J 335 1 133 139 10.1016/j.jhydrol.2006.11.006
J. Geertsma Land subsidence above compacting oil and gas reservoirs Petrol Technol J 25 06 734 744 10.2118/3730-PA
Geotechnics Department in Flanders (1999) Report on the results of the drillings with associated laboratory research carried out in connection with the construction of a buffer dike phase in the Waasland Haven in Beveren. Report numbers GEO-00-103/GEO-73-364B/GEO-83-111. Geotechnics Department, Flanders, Belgium
Z. Ghorbani A. Khosravi Y. Maghsoudi F.F. Mojtahedi E. Javadnia A. Nazari Use of InSAR data for measuring land subsidence induced by groundwater withdrawal and climate change in Ardabil Plain, Iran Sci Rep J 12 1 13998 14020 1:CAS:528:DC%2BB38XitF2jtbbN 10.1038/s41598-022-17438-y
A. Gualandi Z. Liu Variational Bayesian independent component analysis for InSAR displacement time-series with application to central California, USA Journal of Geophysical Research: Solid Earth 10.1029/2020JB020845
A. Guzy A.A. Malinowska State-of-the-art and recent advancements in the modeling of land subsidence induced by groundwater withdrawal Water J 12 7 2051 2092 10.3390/w12072051
G. Heiken R. Funiciello D.D. Rita The seven hills of Rome: a geological tour of the eternal city in the seven hills of Rome Princeton, NJ Princeton University Press 10.1515/9781400849376
D.C. Helm One-dimensional simulation of aquifer system compaction near Pixley, California Water Resour Res J 11 3 465 478 10.1029/WR011i003p00465
D.C. Helm COMPAC: a field-tested model to simulate and predict subsidence due to fluid withdrawal Austral Geomech Comput Newslett 10 18 20
J. Hoffmann The application of satellite radar interferometry to the study of land subsidence over developed aquifer systems Stanford, CA Stanford University
Hoffmann J, Galloway DL and Zebker HA (2003) Inverse modeling of interbed storage parameters using land subsidence observations. Antelope Valley, California. Water Resour Res 39(2). https://doi.org/10.1029/2001WR001252
T.L. Holzer R.L. Bluntzer Land subsidence near oil and gas fields, Houston, Texas Groundw J 22 4 450 459 10.1111/j.1745-6584.1984.tb01416.x
Holzer TL, Galloway DL (2005) Impacts of land subsidence caused by withdrawal of underground fluids in the United States. In: J Ehlen, WC Haneberg, RA Larson (eds) Humans as geologic agents. Geological Society of America, Boulder, CO. https://doi.org/10.1130/2005.4016(08)
A. Hooper A multi-temporal InSAR method incorporating both persistent scatterer and small baseline approaches Geophys Res Lett J 35 16 302 307 10.1029/2008GL034654
A. Hooper P. Segall H. Zebker Persistent scatterer interferometric synthetic aperture radar for crustal deformation analysis, with application to Volcán Alcedo, Galápagos Geophys Res: Solid Earth J 112 B7 407 428 10.1029/2006JB004763
M.K. Hubbert Darcy’s law and the field equations of the flow of underground fluids Int Assoc Sci Hydrol Bull 2 1 23 59 10.1080/02626665709493062
Hu L, Wu H, Wen QB (2013) Electro-osmotic consolidation: laboratory tests and numerical simulation. In: The 18th International Conference on Soil Mechanics and Geotechnical Engineering, Paris, September 2013, pp 231–234
J.C. Jaeger N.G.W. Cook R. Zimmerman Fundamentals of rock mechanics Oxford, UK Wiley
F. Jafari S. Javadi G. Golmohammadi N. Karimi K. Mohammadi Numerical simulation of groundwater flow and aquifer-system compaction using simulation and InSAR techniques: Saveh basin, Iran Environ Earth Sci 75 1 10 10.1007/s12665-016-5654-x
J.S.R. Jang ANFIS: adaptive-network-based fuzzy inference system IEEE Trans Syst Man Cybern J 23 3 665 685 10.1109/21.256541
L. Jiang L. Bai Y. Zhao G. Cao H. Wang Q. Sun Combining InSAR and hydraulic head measurements to estimate aquifer parameters and storage variations of the confined aquifer system in Cangzhou, North China Plain Water Resour Res J 54 10 8234 8252 10.1029/2017WR022126
D.G. Jorgensen Relationships between basic soils-engineering equations and basic ground-water flow equations Washington, DC US Government Printing Office
A. Khoshghalb N. Khalili A stable meshfree method for fully coupled flow-deformation analysis of saturated porous media Comput Geotechn 37 6 789 795 10.1016/j.compgeo.2010.06.005
P. Kim Y.G. Kim C.H. Paek J. Ma Lattice boltzmann method for consolidation analysis of saturated clay Ocean Eng Sci J 4 3 193 202 10.1016/j.joes.2019.04.004
Labat S (2011) Overview and analysis of 30 years piezometric observations in North-East Belgium (SCK CEN External Report No. SCK*CEN-ER-163). Belgian Nuclear Research Centre (SCK CEN)
Lambe TW (1951) Soil Testing for Engineers. New York: John Wiley and Sons
Leake SA and Galloway DL (2010) Use of the SUB-WT Package for MODFLOW to simulate aquifer-system compaction in Antelope Valley, California, USA. In Land Subsidence, associated hazards and the role of natural resources development: In Proceedings of the eighth international symposium on land subsidence: Queretaro, Mexico, International Association of Hydraulic Sciences (pp 61–67)
Leake S A, Galloway DL (2007) MODFLOW ground-water model: user guide to the subsidence and aquifer-system compaction package (SUB-WT) for water-table aquifers. In: Techniques and Methods (6-A23). US Geological Survey. https://doi.org/10.3133/tm6A23
S. Lee S.M. Hong H.S. Jung GIS-based groundwater potential mapping using artificial neural network and support vector machine models: the case of Boryeong city in Korea Geocarto Int J 33 8 847 861 10.1080/10106049.2017.1303091
Lewis RW, Schrefler BA (1987) The finite element method in the deformation and consolidation of porous media, 2nd edn. Wiley, Chichester, UK
F. Li G. Liu H. Gong B. Chen C. Zhou Assessing land subsidence-inducing factors in the Shandong province, China, by using PS-InSAR measurements Remote Sens J 14 12 2875 2896 10.3390/rs14122875
J. Li L. Zhu H. Gong J. Zhou Z. Dai X. Li P. Teatini Unraveling elastic and inelastic storage of aquifer systems by integrating fast independent component analysis and a variable pre-consolidation head decomposition method Hydrol J 606 10.1016/j.jhydrol.2021.127420 127420
M. Mahmoudpour M. Khamehchiyan M.R. Nikudel M.R. Ghassemi Numerical simulation and prediction of regional land subsidence caused by groundwater exploitation in the southwest plain of Tehran, Iran Eng Geol J 201 6 28 10.1016/j.enggeo.2015.12.004
D. Massonnet K.L. Feigl Radar interferometry and its application to changes in the Earth’s surface Rev Geophys 36 4 441 500 10.1029/97RG03139
S. Mehrnoor M. Robati M.M. Kheirkhah Zarkesh F. Farsad S. Baikpour Land subsidence hazard assessment based on novel hybrid approach: BWM, weighted overlay index (WOI), and support vector machine (SVM) Nat Hazards J 115 3 1997 2030 10.1007/s11069-022-05624-0
M. Miller M. Shirzaei Spatiotemporal characterization of land subsidence and uplift in Phoenix using InSAR time series and wavelet transforms Geophys Res: Solid Earth J 120 8 5822 5842 10.1002/2015JB012017
M. Miller M. Shirzaei D. Argus Aquifer mechanical properties and decelerated compaction in Tucson, Arizona Geophys Res: Solid Earth J 122 10 8402 8416 10.1002/2017JB014531
Ministerie van de Vlaamse Gemeenschap (2004) Departement Leefmilieu en Infrastructuur, Administratie Milieu-, Natuur-, Land- en Waterbeheer, Afdeling Water Ontwikkelen van regionale modellen ten behoeve van het Vlaams Grondwater Model (VGM) in GMS/MODFLOW (Development of regional models for the Flemish Groundwater Model (VGM) in GMS/MODFLOW). Perceel nr. 3: Brulandkrijtmodel (Plot no. 3: Bruland chalk model. Ministerie van de Vlaamse Gemeenschap, Brussels, Belgium
S.E. Mirsalari M. Fatehi Marji J. Gholamnejad M. Najafi A boundary element/finite difference analysis of subsidence phenomenon due to underground structures Minerva Environ Res 8 2 237 253 10.22044/jme.2016.759
J.K. Mitchell K. Soga Fundamentals of soil behavior, vol 3 New York Wiley
M. Motagh Y. Djamour T.R. Walter H.U. Wetzel J. Zschau S. Arabi Land subsidence in Mashhad Valley, northeast Iran: results from InSAR, leveling and GPS Geophys J 168 2 518 526 10.1111/j.1365-246X.2006.03246.x
M. Motagh R. Shamshiri M. Haghshenas Haghighi H.U. Wetzel B. Akbari H. Nahavandchi S. Roessner S. Arabi Quantifying groundwater exploitation induced subsidence in the Rafsanjan Plain, southeastern Iran, using InSAR time-series and in situ measurements Eng Geol J 218 134 151 10.1016/j.enggeo.2017.01.011
X.P. Nguyen Y.J. Cui A.M. Tang X.L. Li L. Wouters Physical and microstructural impacts on the hydro-mechanical behavior of Ypresian clays Appl Clay Sci J 102 172 185 1:CAS:528:DC%2BC2cXhslahtLzN 10.1016/j.clay.2014.09.038
I. Park J. Choi M. Jin Lee S. Lee Application of an adaptive neuro-fuzzy inference system to ground subsidence hazard mapping Comput Geosci J 48 228 238 10.1016/j.cageo.2012.01.005
M. Peng Z. Lu C. Zhao M. Motagh L. Bai B.D. Conway H. Chen Mapping land subsidence and aquifer system properties of the Willcox Basin, Arizona, from InSAR observations and independent component analysis Remote Sens Environ J 271 112894 112909 10.1016/j.rse.2022.112894
Perissin D, Wang Z, Wang T (2011) The SARPROZ InSAR tool for urban subsidence/manmade structure stability monitoring in China, In: Proceedings of the 34th International Symposium on Remote Sensing of the Environment, Sidney, April 2011, 1015 pp
H.T. Pham W. Rühaak V. Schuster I. Sass Fully hydro-mechanical coupled plug-in (SUB+) in FEFLOW for analysis of land subsidence due to groundwater extraction Software Man 9 15 19 10.1016/j.softx.2018.11.004
H.T. Pham W. Rühaak D.H. Ngo O.C. Nguyen I. Sass Fully coupled analysis of consolidation by prefabricated vertical drains with applications of constant strain rate tests: case studies and an open-source program Geotext Geomembr J 48 3 380 391 10.1016/j.geotexmem.2019.12.009
N. Phien-wej P.H. Giao P. Nutalaya Land subsidence in Bangkok, Thailand Eng Geol J 82 4 187 201 10.1016/j.enggeo.2005.10.004
J.F. Poland G.H. Davis Land subsidence due to the withdrawal of fluids Rev Eng Geol J 2 1969 187 270 10.1130/REG2-p187
H.G. Poulos J.P. Carter J.C. Small Foundations and retaining structures: research and practice Proceedings of the International Conference on Soil Mechanics and Geotechnical Engineering vol 4 Rotterdam, The Netherlands Balkema 2527 2606
D.E. Prudic Documentation of a computer program to simulate stream-aquifer relations using a modular, finite-difference, ground-water flow model Department of the Interior Reston, VA US Geological Survey
Ray S (2019) A quick review of machine learning algorithms, In: 2019 International Conference on Machine Learning, Big Data, Cloud and Parallel Computing (COMITCon), pp 35–39. https://doi.org/10.1109/COMITCon.2019.8862451
B.P. Radhika A. Krishnamoorthy A.U. Rao A review on consolidation theories and its application Geotech Eng J 14 1 9 15 1:CAS:528:DC%2BC2sXhslyrsbfN 10.1080/19386362.2017.1390899
Rajabi A M, Abolghasemi Y, Edalat A (2023) Application of support vector machine in modeling land subsidence in parts of Aliabad plain of Qom, Iran. J Eng Geol J 16(1)
M. Rafiee R. Ajalloeian M. Dehghani M. Mahmoudpour Artificial neural network modeling of the subsidence induced by overexploitation of groundwater in Isfahan-Borkhar Plain, Iran Bull Eng Geol Environ J 81 5 10.1007/s10064-022-02646-7 170
D.J. Reddish B.N. Whittaker Subsidence: occurrence, prediction, and control Amsterdam Elsevier
K.H. Roscoe J. Burland On the generalized stress-strain behavior of wet clays Road Research Laboratory Cambridge, UK Cambridge University Press
C. Sato M. Haga J. Nishino Land subsidence and groundwater management in Tokyo Int Rev Environ Strat J 6 2 403 424
T. Schanz P.A. Vermeer P.G. Bonnier The hardening soil model: formulation and verification Beyond 2000 Comput Geotech J 1 281 296
Strozzi T, Wegmuller U (1999) Land subsidence in Mexico City mapped by ERS differential SAR interferometry, In: IEEE 1999 International Geoscience and Remote Sensing Symposium (Cat. no.99CH36293). IGARSS’99 4(4):1940–1942. https://doi.org/10.1109/IGARSS.1999.774993
R.L. Schiffman J.R. Stein One-dimensional consolidation of layered systems Soil Mech Found Div J 96 4 1499 1504 10.1061/JSFEAQ.0001453
Schanz T (1998) Zur modellierung des mechanischen verhaltens von reibungsmaterialien (On modeling the mechanical behavior of friction materials). Habilitationsschrift, Mitteilung 45 des Instituts für Geotechnik, Ruhr-Universität, Bochum, Germany
A. Schofield P. Wroth The critical state soil mechanics London McGraw Hill
H.B. Seed Settlement analysis: a review of theory and testing procedures Soil Mech Found Div J 91 2 39 48 10.1061/JSFEAQ.0000721
S.L. Shen Y.S. Xu Numerical evaluation of land subsidence induced by groundwater pumping in Shanghai Can Geotech J 48 9 1378 1392 10.1139/t11-049
Sukirman YB, Lewis RW (1994) Three-dimensional fully coupled flow: consolidation modeling using finite element method. In: SPE Asia Pacific Oil and Gas Conference. https://doi.org/10.2118/28755-MS
A. Tavakkoli Estahbanati M. Dehghani A phase unwrapping approach based on extended Kalman filter for subsidence monitoring using persistent scatterer time series interferometry IEEE J Sel Top Appl Earth Observ Remote Sens 11 8 2814 2820 10.1109/JSTARS.2018.2837020
K. Terzaghi Principles of soil mechanics Eng News-Rec J 95 19 742 746
K. Terzaghi Theoretical soil mechanics Hoboken, NJ Wiley 10.1002/9780470172766
D. Tien Bui H. Shahabi A. Shirzadi K. Chapi B. Pradhan W. Chen K. Khosravi M. Panahi B. Bin Ahmad L. Saro Land subsidence susceptibility mapping in South Korea using machine learning algorithms Sensors 18 8 10.3390/s18082464 2464
L. Tosi P. Teatini L. Carbognin G. Brancolini Using high-resolution data to reveal depth-dependent mechanisms that drive land subsidence: the Venice coast, Italy Tectonophys J 474 1 271 284 10.1016/j.tecto.2009.02.026
K. van Thienen-Visser J.P. Pruiksma Breunese JN (2015) Compaction and subsidence of the Groningen gas field in the Netherlands Proc Int Assoc Hydrol Sci 372 372 367 373 10.5194/piahs-372-367-2015
Vandersteen K, Gedeon M, Leterme B (2012) Hydrogeology of North-East Belgium. External report. SCK• CEN-ER-236, SCK•CEN, Belgium
Verbeiren B, Batelaan O, De Smedt F (2006) Ontwikkeling van Regionale Modellen ten behoeve van het Vlaams Grondwater Model (VGM) in GMS/MODFLOW. Perceel 1: Centraal Kempisch Systeem. Deelrapport 2: Opbouw van het grondwatermodel, gevoeligheidsanalyse en kalibratie (Development of regional models for the Flemish groundwater model (VGM) in GMS/MODFLOW. Work package 1: Central Campine system. Sub-report 2: Groundwater model construction, sensitivity analysis, and calibration). Vakgroep Hydrologie en Waterbouwkunde (HYDR) - Vrije Universiteit Brussel, Brussels
Vlaamse Milieumaatschappij (2016) Stroomgebiedbeheerplan voor de Schelde 2016-2021: Grondwatersysteemspecifiek deel Centraal Vlaams Systeem, depotnummer, Aalst D/2016/6871/019 (River Basin Management Plan for the Scheldt 2016–2021: groundwater system–specific section, Central Flemish System, deposit number Aalst D/2016/6871/019). Vlaamse Milieumaatschappij, Brussels
Y.Q. Wang Z.F. Wang W.C. Cheng A review on land subsidence caused by groundwater withdrawal in Xi’an, China Bull Eng Geol Environ 78 4 2851 2863 10.1007/s10064-018-1278-6
T. Wen W. Tiewang A. Arabameri O. Asadi Nalivan S.C. Pal A. Saha R. Costache Land-subsidence susceptibility mapping: assessment of an adaptive neuro-fuzzy inference system–genetic algorithm hybrid model Geocarto Int 37 26 12194 12218 10.1080/10106049.2022.2066198
D.M. Wood Soil behavior and critical state soil mechanics Cambridge, UK Cambridge University Press
H. Xu F. Chen W. Zhou A comparative case study of MTInSAR approaches for deformation monitoring of the cultural landscape of the Shanhaiguan section of the Great Wall Herit Sci J 9 1 1 15 1:CAS:528:DC%2BB3MXitVCrtLnL 10.1186/s40494-021-00543-y
Y.S. Xu S.L. Shen Z.Y. Cai G.Y. Zhou The state of land subsidence and prediction approaches due to groundwater withdrawal in China Nat Hazards J 45 1 123 135 10.1007/s11069-007-9168-4
Yasuhara K, Yamanouchi T, Ue S (1986) Secondary compression of clay in consolidation and undrained shear tests. In: International Symposium on recent developments in laboratory and field tests and analysis of geotechnical problems, Bangkok, December 1983, pp 361–374
W. Yang X. Xia Prediction of mining subsidence under thin bedrocks and thick unconsolidated layers based on field measurement and artificial neural networks Comput Geosci 52 199 203 10.1016/j.cageo.2012.10.017
Z. Yun One-dimensional model for land subsidence and its solution Eng Geol J 10 4 434 437
D. Zanchettin S. Bruni F. Raicich P. Lionello F. Adloff A. Androsov V. Artale E. Carminati C. Ferrarin V. Fofonova R.J. Nicholls S. Rubinetti A. Rubino G. Sannino G. Spada R. Thiéblemont M. Tsimplis G. Umgiesser S. Vignudelli G. Wöppelmann S. Zerbini Sea-level rise in Venice: historic and future trends Nat Hazards Earth Syst Sci 21 8 2643 2678 10.5194/nhess-21-2643-2021
W. Zhang X. Gu L. Hong L. Han L. Wang Comprehensive review of machine learning in geotechnical reliability analysis: algorithms, applications, and further challenges Appl Soft Comput J 136 10.1016/j.asoc.2023.110066 110066
K. Zhao S. Chen Study on artificial neural network method for ground subsidence prediction of metal mine Proc Earth Planet Sci J 2 177 182 1:CAS:528:DC%2BC38Xks1eksrc%3D 10.1016/j.proeps.2011.09.029
C. Zhou H. Gong B. Chen X. Li J. Li X. Wang M. Gao Y. Si L. Guo M. Shi G. Duan Quantifying the contribution of multiple factors to land subsidence in the Beijing Plain China with machine learning technology Geomorphol J 335 48 61 10.1016/j.geomorph.2019.03.017
C. Zhuang Z. Zhou W.A. Illman A joint analytic method for estimating aquitard hydraulic parameters Ground Water J 55 4 565 576 1:CAS:528:DC%2BC2sXmslCmtA%3D%3D 10.1111/gwat.12494
O.C. Zienkiewicz R.L. Taylor The finite element method: solid mechanics London Butterworth