Assessing the impact of hatching system and body weight on the growth performance, caecal short-chain fatty acids, and microbiota composition and functionality in broilers. - 2024
Assessing the impact of hatching system and body weight on the growth performance, caecal short-chain fatty acids, and microbiota composition and functionality in broilers.
Akram, Muhammad Zeeshan; Sureda, Ester Arévalo; Comer, Lukeet al.
Flock uniformity; Growth performance; Gut health; Microbiome; Poultry; Veterinary (miscellaneous); Agricultural and Biological Sciences (miscellaneous); Animal Science and Zoology; Microbiology (medical)
Abstract :
[en] [en] BACKGROUND: Variations in body weight (BW) remain a significant challenge within broiler flocks, despite uniform management practices. Chicken growth traits are influenced by gut microbiota, which are in turn shaped by early-life events like different hatching environments and timing of first feeding. Chicks hatched in hatcheries (HH) experience prolonged feed deprivation, which could adversely impact early microbiota colonization. Conversely, hatching on-farm (HOF) allows early feeding, potentially fostering a more favorable gut environment for beneficial microbial establishment. This study investigates whether BW differences among broilers are linked to the disparities in gut microbiota characteristics and whether hatching systems (HS) impact the initial microbial colonization of broilers differing in BW, which in turn affects their growth patterns. Male Ross-308 chicks, either hatched in a hatchery or on-farm, were categorized into low (LBW) and high (HBW) BW groups on day 7, making a two-factorial design (HS × BW). Production parameters were recorded periodically. On days 7, 14, and 38, cecal volatile fatty acid (VFA) and microbiota composition and function (using 16 S rRNA gene sequencing and PICRUSt2) were examined.
RESULTS: HOF chicks had higher day 1 BW, but HH chicks caught up within first week, with no further HS-related performance differences. The HBW chicks remained heavier attributed to higher feed intake rather than improved feed efficiency. HBW group had higher acetate concentration on day 14, while LBW group exhibited higher isocaproate on day 7 and isobutyrate on days 14 and 38. Microbiota analyses revealed diversity and composition were primarily influenced by BW than by HS, with HS having minimal impact on BW-related microbiota. The HBW group on various growth stages was enriched in VFA-producing bacteria like unclassified Lachnospiraceae, Alistipes and Faecalibacterium, while the LBW group had higher abundances of Lactobacillus, Akkermansia and Escherichia-Shigella. HBW microbiota presented higher predicted functional potential compared to the LBW group, with early colonizers exhibiting greater metabolic activity than late colonizers.
CONCLUSIONS: Despite differences in hatching conditions, the effects of HS on broiler performance were transient, and barely impacting BW-related microbiota. BW variations among broilers are likely linked to differences in feed intake, VFA profiles, and distinct microbiota compositions and functions.
Disciplines :
Animal production & animal husbandry
Author, co-author :
Akram, Muhammad Zeeshan ; Université de Liège - ULiège > TERRA Research Centre ; Nutrition and Animal-Microbiota Ecosystems Laboratory, Department of Biosystems, KU Leuven, Heverlee, 3000, Belgium
Sureda, Ester Arévalo; Nutrition and Animal-Microbiota Ecosystems Laboratory, Department of Biosystems, KU Leuven, Heverlee, 3000, Belgium
Comer, Luke; Nutrition and Animal-Microbiota Ecosystems Laboratory, Department of Biosystems, KU Leuven, Heverlee, 3000, Belgium
Corion, Matthias; Nutrition and Animal-Microbiota Ecosystems Laboratory, Department of Biosystems, KU Leuven, Heverlee, 3000, Belgium
Everaert, Nadia; Nutrition and Animal-Microbiota Ecosystems Laboratory, Department of Biosystems, KU Leuven, Heverlee, 3000, Belgium. nadia.everaert@kuleuven.be
Language :
English
Title :
Assessing the impact of hatching system and body weight on the growth performance, caecal short-chain fatty acids, and microbiota composition and functionality in broilers.
H2020 - 955374 - MonoGutHealth - TRAINING AND RESEARCH FOR SUSTAINABLE SOLUTIONS TO SUPPORT AND SUSTAIN GUT HEALTH AND REDUCE LOSSES IN MONOGASTRIC LIVESTOCK
Funders :
EU - European Union
Funding text :
The funding for this research study was provided by the MONOGUTHEALTH project, which is supported by the Marie Sk\u0142odowska-Curie Innovative Training Networks grant (agreement no. 955374) from the European Union\u2019s Horizon 2020 research program.
L.M. Dixon Slow and steady wins the race: the behaviour and welfare of commercial faster growing broiler breeds compared to a commercial slower growing breed PLoS ONE 2020 15 e0231006 1:CAS:528:DC%2BB3cXnvVGmtbw%3D 32251460 7135253
B. Azadinia H. Khosravinia B. Masouri B.P. Kavan Effects of early growth rate and fat soluble vitamins on glucose tolerance, feed transit time, certain liver and pancreas-related parameters, and their share in intra-flock variation in performance indices in broiler chicken Poult Sci 2022 101 101783 35339932 8957045
R.M. Gous Nutritional and environmental effects on broiler uniformity Worlds Poult Sci J 2017 74 21 34
G. Vasdal E.G. Granquist E. Skjerve I.C. De Jong C. Berg V. Michel et al. Associations between carcass weight uniformity and production measures on farm and at slaughter in commercial broiler flocks Poult Sci 2019 98 4261 8 31134272 6748757
Jacobs L. Road to better welfare - Welfare of broiler chickens during transportation, Doctoral thesis, Ghent University; 2016.
Y. Chen M. Akhtar Z. Ma T. Hu Q. Liu H. Pan et al. Chicken cecal microbiota reduces abdominal fat deposition by regulating fat metabolism Npj Biofilms Microbiomes 2023 9 1 16 1:CAS:528:DC%2BB3sXnslKquro%3D 36596826 9810666
A. Biddle L. Stewart J. Blanchard S. Leschine Untangling the genetic basis of fibrolytic specialization by lachnospiraceae and ruminococcaceae in diverse gut communities Diversity 2013 5 627 40
J. Liu Y. Tan H. Cheng D. Zhang W. Feng C. Peng Functions of gut microbiota metabolites, current status and future perspectives Aging Dis 2022 13 1106 26 35855347 9286904
G.G. Han E.B. Kim J. Lee J.Y. Lee G. Jin J. Park et al. Relationship between the microbiota in different sections of the gastrointestinal tract, and the body weight of broiler chickens Springerplus 2016 5 911 27386355 4927549
E.S.M. Abdel-Kafy S.F. Youssef M. Magdy S.S. Ghoneim H.A. Abdelatif R.A. Deif-Allah et al. Gut microbiota, intestinal morphometric characteristics, and Gene expression in relation to the growth performance of chickens Animals 2022 12 3474 36552394 9774407
M. Zheng P. Mao X. Tian Q. Guo L. Meng Effects of dietary supplementation of alfalfa meal on growth performance, carcass characteristics, meat and egg quality, and intestinal microbiota in Beijing-you chicken Poult Sci 2019 98 2250 9 1:CAS:528:DC%2BB3cXmvFCju70%3D 30496504
T.J. Johnson B.P. Youmans S. Noll C. Cardona N.P. Evans T. Peter Karnezos et al. A consistent and predictable commercial broiler chicken bacterial microbiota in antibiotic-free production displays strong correlations with performance Appl Environ Microbiol 2018 84 e00362 18 1:CAS:528:DC%2BC1cXhvVKls7fO 29625981 5981067
L.A. Rubio Possibilities of early life programming in broiler chickens via intestinal microbiota modulation Poult Sci 2019 98 695 706 1:CAS:528:DC%2BB3cXktVOksbw%3D 30247675
R. Lundberg C. Scharch D. Sandvang The link between broiler flock heterogeneity and cecal microbiome composition Anim Microbiome 2021 3 54 1:CAS:528:DC%2BB38XhtlCqtL%2FL 34332648 8325257
K.C. Lee D.Y. Kil W.J. Sul Cecal microbiome divergence of broiler chickens by sex and body weight J Microbiol 2017 55 939 45 1:CAS:528:DC%2BC2sXhvFOqtbfI 29214491
Deng Y, Kokou F, Eding EH, Verdegem MCJ. Impact of early-life rearing history on gut microbiome succession and performance of Nile tilapia. Anim Microbiome. 2021;3.
I.C. De Jong H. Gunnink T. Van Hattum J.W. Van Riel M.M.P. Raaijmakers E.S. Zoet et al. Comparison of performance, health and welfare aspects between commercially housed hatchery-hatched and on-farm hatched broiler flocks Animal 2019 13 1269 77 30370892
Wishna-Kadawarage RN, Połtowicz K, Dankowiakowska A, Hickey RM, Siwek M. Prophybiotics for in-ovo stimulation; validation of effects on gut health and production of broiler chickens. Poult Sci. 2024;103.
Rychlik I. Composition and function of chicken gut microbiota. Animals. 2020;10.
E. Olson A. Micciche J.L. Sevigny S.C. Ricke A. Ghosh Draft genome sequences of 11 bacterial strains isolated from commercial corn-based poultry feed Microbiol Resour Announc 2020 9 19 21
A. Gaweł J.P. Madej B. Kozak K. Bobrek Early Post-hatch Nutrition influences performance and muscle growth in broiler chickens Animals 2022 12 3281 36496802 9740399
Boyner M. A flying start: adapted hatching and post-hatch feeding in broiler chickens. Acta Univ Agric Sueciae. 2023;2023(38). https://doi.org/10.54612/a.35707n9nbs.
H.R. Juul-Madsen G. Su P. Sørensen Influence of early or late start of first feeding on growth and immune phenotype of broilers Br Poult Sci 2004 45 210 22 1:CAS:528:DC%2BD2cXksVKmtrs%3D 15222418
de Jong IC, Schokker D, Gunnink H, van Wijhe M, Rebel JMJ. Early life environment affects behavior, welfare, gut microbiome composition, and diversity in broiler chickens. Front Vet Sci. 2022;9.
Kristina S. Effects of early life conditions on immunity in broilers and layers. Doctoral Thesis, Wageningen University and Research; 2016.
Tona K, Bruggeman V, Onagbesan O, Bamelis F, Gbeassor M, Mertens K et al. Day-old chick quality: relationship to hatching egg quality, adequate incubation practice and prediction of broiler performance. Avian poult. Biol. Rev. Science & technology letters.
A.S. Mendes S.J. Paixão R. Restelatto R. Reffatti J.C. Possenti D.J. de Moura et al. Effects of initial body weight and litter material on broiler production Rev Bras Cienc Avic / Brazilian J Poult Sci 2011 13 165 70
M. Yang L. Shi Y. Ge D. Leng B. Zeng T. Wang et al. Dynamic changes in the gut Microbial Community and function during broiler growth Microbiol Spectr 2022 10 e01005 22 35950773 9430649
K.Z. Coyte J. Schluter K.R. Foster The ecology of the microbiome: networks, competition, and stability Sci (80-) 2015 350 663 6 1:CAS:528:DC%2BC2MXhslGmsr3P
P. Richards J. Fothergill M. Bernardeau P. Wigley Development of the caecal microbiota in three broiler breeds Front Vet Sci 2019 6 1 19
P. Videnska K. Sedlar M. Lukac M. Faldynova L. Gerzova D. Cejkova et al. Succession and replacement of bacterial populations in the caecum of egg laying hens over their whole life PLoS ONE 2014 9 1 14
Bilal M. Effects of probiotics and transfer of fecal microbiota on production, health, and gut microbiota of broiler chickens. Doctoral Thesis, McGill University Canada; 2021.
A. Bedford J. Gong Implications of butyrate and its derivatives for gut health and animal production Anim Nutr 2018 4 151 9 30140754
J. Lei Y. Dong Q. Hou Y. He Y. Lai C. Liao et al. Intestinal microbiota regulate certain meat quality parameters in chicken Front Nutr 2022 9 1 14
A. Nogal P. Louca X. Zhang P.M. Wells C.J. Steves T.D. Spector et al. Circulating levels of the short-chain fatty acid acetate mediate the Effect of the gut microbiome on visceral Fat Front Microbiol 2021 12 1 12
S. Yang Y. Yang X. Long H. Li F. Zhang Z. Wang Integrated Analysis of the effects of Cecal Microbiota and serum metabolome on market weights of Chinese native chickens Animals 2023 13 1 22
Zhou Q, Lan F, Li X, Yan W, Sun C, Li J et al. The spatial and temporal characterization of gut microbiota in Broilers. Front Vet Sci. 2021;8.
A. McKenna U.Z. Ijaz C. Kelly M. Linton W.T. Sloan B.D. Green et al. Impact of industrial production system parameters on chicken microbiomes: mechanisms to improve performance and reduce Campylobacter Microbiome 2020 8 128 1:CAS:528:DC%2BB38XjsVehtLc%3D 32907634 7488076
P.B. Hylemon S.C. Harris J.M. Ridlon Metabolism of hydrogen gases and bile acids in the gut microbiome FEBS Lett 2018 592 2070 82 1:CAS:528:DC%2BC1cXpt1ahurc%3D 29683480
A. Mikami T. Ogita F. Namai S. Shigemori T. Sato T. Shimosato Oral administration of Flavonifractor plautii attenuates inflammatory responses in obese adipose tissue Mol Biol Rep 2020 47 6717 25 1:CAS:528:DC%2BB3cXhs1Oit7rN 32808115
J.Y. Chen Y.H. Yu Bacillus subtilis–fermented products ameliorate the growth performance and alter cecal microbiota community in broilers under lipopolysaccharide challenge Poult Sci 2021 100 875 86 1:CAS:528:DC%2BB3MXoslyrtrs%3D 33518141
O. Ben Braïek S. Smaoui Enterococci: between emerging pathogens and potential probiotics Biomed Res Int 2019 2019 5938210 31240218 6556247
B. Dolka M. Gołȩbiewska-Kosakowska K. Krajewski P. Kwieciński T. Nowak J. Szubstarski et al. Occurrence of Enterococcus spp. in poultry in Poland based on 2014–2015 data Med Weter 2017 73 220 4
Morishita TY. Streptococcosis in Poultry. Merck Vet Man. 2022;1–5.
A. Everard C. Belzer L. Geurts J.P. Ouwerkerk C. Druart L.B. Bindels et al. Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity Proc Natl Acad Sci U S A 2013 110 9066 71 1:CAS:528:DC%2BC3sXhtFait7rM 23671105 3670398
H.L. Chen X.Y. Zhao G.X. Zhao H. Huang H.R. Bin, Li C.W. Shi et al. Dissection of the cecal microbial community in chickens after Eimeria tenella infection Parasites Vectors 2020 13 1 15
A.J. La Reau G. Suen The Ruminococci: key symbionts of the gut ecosystem J Microbiol 2018 56 199 208 29492877
Stanley D, Hughes RJ, Geier MS, Moore RJ. Bacteria within the gastrointestinal tract microbiota correlated with improved growth and feed conversion: challenges presented for the identification of performance enhancing probiotic bacteria. Front Microbiol. 2016;7.
J. Apajalahti K. Vienola Interaction between chicken intestinal microbiota and protein digestion Anim Feed Sci Technol 2016 221 323 30 1:CAS:528:DC%2BC28XptFeltL8%3D
T. Rinttilä J. Apajalahti Intestinal microbiota and metabolites-implications for broiler chicken health and performance J Appl Poult Res 2013 22 647 58
V.A. Torok R.J. Hughes L.L. Mikkelsen R. Perez-Maldonado K. Balding R. MacAlpine et al. Identification and characterization of potential performance-related gut microbiotas in broiler chickens across various feeding trials Appl Environ Microbiol 2011 77 5868 78 1:CAS:528:DC%2BC3MXht1OjurvO 21742925 3165380
S.F. Clarke E.F. Murphy K. Nilaweera P.R. Ross F. Shanahan P.W. Cotter et al. The gut microbiota and its relationship to diet and obesity:new insights Gut Microbes 2012 3 186 202 22572830 3427212
K. Damaziak A. Stelmasiak P. Konieczka D. Adamek-Urbańska D. Gozdowski G. Pogorzelski et al. Water extract of yarrow (Achillea millefolium L.) leaf improves production parameters, tissue antioxidant status and intestinal microbiota activity in turkeys Anim Feed Sci Technol 2022 288 115309 1:CAS:528:DC%2BB38Xhs1ClsrvL
X. Liao Y. Shao G. Sun Y. Yang L. Zhang Y. Guo et al. The relationship among gut microbiota, short-chain fatty acids, and intestinal morphology of growing and healthy broilers Poult Sci 2020 99 5883 95 1:CAS:528:DC%2BB3MXhtl2ru7%2FJ 33142506 7647869
Allert M, Ferretti P, Johnson KE, Heisel T, Gonia S, Knights D et al. Assembly, stability, and dynamics of the infant gut microbiome are linked to bacterial strains and functions in mother’s milk. bioRxiv. 2024;2024.01.28.577594.
S.A. Shetty S. Boeren T.P.N. Bui H. Smidt W.M. de Vos Unravelling lactate-acetate and sugar conversion into butyrate by intestinal Anaerobutyricum and Anaerostipes species by comparative proteogenomics Environ Microbiol 2020 22 4863 75 1:CAS:528:DC%2BB3cXisVygt73F 33001550 7702098
N. Reichardt S.H. Duncan P. Young A. Belenguer C. McWilliam Leitch K.P. Scott et al. Phylogenetic distribution of three pathways for propionate production within the human gut microbiota ISME J 2014 8 1323 35 1:CAS:528:DC%2BC2cXosVyqt74%3D 24553467 4030238
D. Mengin-Lecreulx J. Van Heijenoort Copurification of glucosamine-1-phosphate acetyltransferase and N- acetylglucosamine-1-phosphate uridyltransferase activities of Escherichia coli: characterization of the glmU gene product as a bifunctional enzyme catalyzing two subsequent steps in the pa J Bacteriol 1994 176 5788 95 1:CAS:528:DyaK2cXmsV2isbY%3D 8083170 196783
H. Willemsen N. Everaert A. Witters L. De Smit M. Debonne F. Verschuere et al. Critical Assessment of Chick Quality measurements as an Indicator of Posthatch Performance Poult Sci 2008 87 2358 66 1:STN:280:DC%2BD1cnnt1OqtQ%3D%3D 18931188
V. Van Craeyveld K. Swennen E. Dornez T. Van De Wiele M. Marzorati W. Verstraete et al. Structurally different wheat-derived arabinoxylooligosaccharides have different prebiotic and fermentation properties in rats J Nutr 2008 138 2348 55 19022956
B.J. Callahan J. Wong C. Heiner S. Oh C.M. Theriot A.S. Gulati et al. High-throughput amplicon sequencing of the full-length 16S rRNA gene with single-nucleotide resolution Nucleic Acids Res 2019 47 E103 1:CAS:528:DC%2BB3cXhtVSkt7%2FF 31269198 6765137
R. Caspi R. Billington I.M. Keseler A. Kothari M. Krummenacker P.E. Midford et al. The MetaCyc database of metabolic pathways and enzymes-a 2019 update Nucleic Acids Res 2020 48 D455 453