peach gum; polysaccharide; debranching; side chains; swelling
Abstract :
[en] Aiming to reveal the impact of side chains of peach gum polysaccharides (PGP) on its swelling ability, series PGP samples with different branching ratio (BR) (1.11–0.42) were prepared via α-L-arabinofuranosidase (10, 20, 40 μL) and trifluoroacetic acid (0.5, 1.0, 1.5 h) hydrolysis. Through characterization to the features of their branched structure, it showed that the debranched PGP samples retained the arabinogalactan body structure, presenting smaller MW, less extended molecular chains, and less cross-linking between PGP molecules. Methylation analysis indicated that enzymatic and short time acidic treatment mainly degraded the side chain of PGP, protecting the main chain from destruction. The swelling volume of PGP samples decreased from 0.43 cm3 to 0.08 cm3 with the decreasing BR. However, dynamic vapour sorption profiles revealed that the water absorption ability of PGP was not reduced with the degradation of side chains. This was explained by the changes of PGP network structure and improvement of thermal stability after debranching. This work provided novel knowledge for understanding “structure-property” relations of the arabinose side chains to the swelling properties of PGP.
Disciplines :
Chemistry
Author, co-author :
Li, Jingyao ; Université de Liège - ULiège > TERRA Research Centre
Zhou, Mo
Bi, Jinfeng
Richel, Aurore ; Université de Liège - ULiège > TERRA Research Centre > Chemistry for Sustainable Food and Environmental Systems (CSFES)
Language :
English
Title :
The impact of arabinose side chains on the swelling volume, water absorption, and thermal stability of peach gum polysaccharide
Publication date :
February 2026
Journal title :
Carbohydrate Polymers
ISSN :
0144-8617
eISSN :
1879-1344
Publisher :
Elsevier
Volume :
373
Pages :
124617
Peer reviewed :
Peer Reviewed verified by ORBi
Development Goals :
12. Responsible consumption and production 3. Good health and well-being
CAAS - Chinese Academy of Agricultural Sciences MOA - Ministry of Agriculture and Rural Affairs of the People's Republic of China Shandong Province Natural Science Foundation
Agarwal, D., MacNaughtan, W., Ibbett, R., & Foster, T. J. (2019). Effect of moisture content on thermal and water absorption properties of microfibrillar cellulose with polymeric additives. Carbohydrate Polymers, 211, 91-99. doi:10.1016/j.carbpol.2019.02.004
Baum, A., Dominiak, M., Vidal-Melgosa, S., Willats, W. G. T., Søndergaard, K. M., Hansen, P. W., Meyer, A. S., & Mikkelsen, J. D. (2016). Prediction of Pectin Yield and Quality by FTIR and Carbohydrate Microarray Analysis. Food and Bioprocess Technology, 10(1), 143-154. doi:10.1007/s11947-016-1802-2
Biswal, A. K., Chakraborty, S., Saha, J., Panda, P. K., Pradhan, S. K., Behera, P. K., & Misra, P. K. (2024). Process Optimization, Fabrication, and Characterization of a Starch-Based Biodegradable Film Derived from an Underutilized Crop. ACS Food Science & Technology, 4(8), 1844-1863. doi:10.1021/acsfoodscitech.4c00149
Biswal, A. K., Lenka, C., Panda, P. K., Yang, J. M., & Misra, P. K. (2021). Investigation of the functional and thermal properties of Mahua deoiled cake flour and its protein isolate for prospective food applications. Lwt, 137. doi:10.1016/j.lwt.2020.110459
Bouaziz, F., Koubaa, M., Ellouz Ghorbel, R., & Ellouz Chaabouni, S. (2016). Recent advances in Rosaceae gum exudates: From synthesis to food and non-food applications. International Journal of Biological Macromolecules, 86, 535-545. doi:10.1016/j.ijbiomac.2016.01.081
Bouklas, N., & Huang, R. (2012). Swelling kinetics of polymer gels: comparison of linear and nonlinear theories. Soft Matter, 8(31). doi:10.1039/c2sm25467k
Chen, J. X., Bi, J. F., Li, J. Y., & Zhou, M. (2024b). Understanding the two-stage degradation process of peach gum polysaccharide within ultrasonic field. Food Chemistry, 451. doi:10.1016/j.foodchem.2024.139397
Chen, J. X., Zhou, M., Liu, M., & Bi, J. F. (2022). Physicochemical, rheological properties and in vitro hypoglycemic activities of polysaccharide fractions from peach gum. Carbohydrate Polymers, 296. doi:10.1016/j.carbpol.2022.119954
Chen, J. X., Zhou, M., Xin, G., & Bi, J. F. (2024a). The impact of ultrasonic-assisted extraction on the in vitro hypoglycemic activity of peach gum polysaccharide in relation to its conformational conversion. Journal of the Science of Food and Agriculture, 104(11), 6947-6956. doi:10.1002/jsfa.13527
Chen, L. Y., Du, Y. M., & Zeng, X. Q. (2003). Relationships between the molecular structure and moisture-absorption and moisture-retention abilities of carboxymethyl chitosan. Carbohydrate Research, 338(4), 333-340. doi:10.1016/s0008-6215(02)00462-7
Chen, T. L., Xu, P., Zong, S. A., Wang, Y. F., Su, N. N., & Ye, M. (2017). Purification, structural features, antioxidant and moisture-preserving activities of an exopolysaccharide from Lachnum YM262. Bioorganic & Medicinal Chemistry Letters, 27(5), 1225-1232. doi:10.1016/j.bmcl.2017.01.063
Enomoto-Rogers, Y., Iio, N., Takemura, A., & Iwata, T. (2015). Synthesis and characterization of pullulan alkyl esters. European Polymer Journal, 66, 470-477. doi:10.1016/j.eurpolymj.2015.03.007
Fishman, M. L., Chau, H. K., Qi, P. X., Hotchkiss, A. T., Garcia, R. A., & Cooke, P. H. (2015). Characterization of the global structure of low methoxyl pectin in solution. Food Hydrocolloids, 46, 153-159. doi:10.1016/j.foodhyd.2014.12.021
Fukata, Y., Kimura, S., & Iwata, T. (2020). Synthesis of α-1,3-Glucan branched ester derivatives with excellent thermal stability and thermoplasticity. Polymer Degradation and Stability, 177. doi:10.1016/j.polymdegradstab. 2020.109130
Günter, E. A., Popeyko, O. V., & Istomina, E. I. (2019). Encapsulated drug system based on the gels obtained from callus cultures modified pectins. Journal of Biotechnology, 289, 7-14. doi:10.1016/j.jbiotec.2018.11.005
He, L. L., Su, S., Zhao, Y., & Long, J. (2023). Intrinsic relationship between viscosity, viscosity index, and molecular structure of isoalkanes. Journal of Molecular Modeling, 29(4). doi:10.1007/s00894-023-05494-8
He, Y. X., Li, Y., Sun, Y. D., Zhao, S. J., Feng, M., Xu, G. M., Zhu, H. F., Ji, P. H., Mao, H. L., He, Y. Y., & Gu, Z. W. (2021). A double-network polysaccharide-based composite hydrogel for skin wound healing. Carbohydrate Polymers, 261. doi:10.1016/j.carbpol.2021.117870
Liu, M., Liu, X., Bi, J. F., Lyu, J., Wu, X. Y., Zhou, M., & Liu, J. N. (2023). Comparative study on physicochemical properties of thirteen peach gums from different varieties. Scientia Horticulturae, 310. doi:10.1016/j.scienta.2022.111722
Mahammad, S., Comfort, D. A., Kelly, R. M., & Khan, S. A. (2007). Rheological Properties of Guar Galactomannan Solutions during Hydrolysis with Galactomannanase and α-Galactosidase Enzyme Mixtures. Biomacromolecules, 8(3), 949-956. doi:10.1021/bm0608232
Méndez, D. A., Martínez-Abad, A., Martínez-Sanz, M., López-Rubio, A., & Fabra, M. J. (2023). Tailoring structural, rheological and gelling properties of watermelon rind pectin by enzymatic treatments. Food Hydrocolloids, 135. doi:10.1016/j.foodhyd.2022.108119
Moustafa, M., A. Abu-Saied, M., H. Taha, T., Elnouby, M., A. El Desouky, E., Alamri, S., Shati, A., Alrumman, S., Alghamdii, H., Al-Khatani, M., Al-Qthanin, R., & Al-Emam, A. (2021). Preparation and Characterization of Super-Absorbing Gel Formulated from κ-Carrageenan–Potato Peel Starch Blended Polymers. Polymers, 13(24). doi:10.3390/polym13244308
Ngouémazong, D. E., Kabuye, G., Fraeye, I., Cardinaels, R., Van Loey, A., Moldenaers, P., & Hendrickx, M. (2012). Effect of debranching on the rheological properties of Ca2+–pectin gels. Food Hydrocolloids, 26(1), 44-53. doi:10.1016/j.foodhyd.2011.04.009
Peng, Q., Liu, H., Lei, H. J., & Wang, X. Q. (2016). Relationship between structure and immunological activity of an arabinogalactan from Lycium ruthenicum. Food Chemistry, 194, 595-600. doi:10.1016/j.foodchem.2015.08.087
Shibata, M., Asahina, M., Teramoto, N., & Yosomiya, R. (2001). Chemical modification of pullulan by isocyanate compounds. Polymer, 42(1), 59-64. doi:10.1016/s0032-3861(00)00321-9
Sievers, J., Sperlich, K., Stahnke, T., Kreiner, C., Eickner, T., Martin, H., Guthoff, R. F., Schünemann, M., Bohn, S., & Stachs, O. (2020). Determination of hydrogel swelling factors by two established and a novel non-contact continuous method. Journal of Applied Polymer Science, 138(18). doi:10.1002/app.50326
Simas, F. F., Gorin, P. A. J., Wagner, R., Sassaki, G. L., Bonkerner, A., & Iacomini, M. (2008). Comparison of structure of gum exudate polysaccharides from the trunk and fruit of the peach tree (Prunus persica). Carbohydrate Polymers, 71(2), 218-228. doi:10.1016/j.carbpol.2007.05.032
Sousa, A. G., Nielsen, H. L., Armagan, I., Larsen, J., & Sørensen, S. O. (2015). The impact of rhamnogalacturonan-I side chain monosaccharides on the rheological properties of citrus pectin. Food Hydrocolloids, 47, 130-139. doi:10.1016/j.foodhyd.2015.01.013
Tang, S., Wang, T., Huang, C. X., Lai, C. H., Fan, Y. M., & Yong, Q. (2020). Arabinogalactans from Larix principis-rupprechtii: An investigation into the structure-function contribution of side-chain structures. Carbohydrate Polymers, 227. doi:10.1016/j.carbpol.2019.115354
Wei, C. Y., Zhang, Y., He, L., Cheng, J. W., Li, J. H., Tao, W. Y., Mao, G. Z., Zhang, H., Linhardt, R. J., Ye, X. Q., & Chen, S. G. (2019b). Structural characterization and anti-proliferative activities of partially degraded polysaccharides from peach gum. Carbohydrate Polymers, 203, 193-202. doi:10.1016/j.carbpol.2018.09.029
Wei, C. Y., Zhang, Y., Zhang, H., Li, J. H., Tao, W. Y., Linhardt, R. J., Chen, S. G., & Ye, X. Q. (2019a). Physicochemical properties and conformations of water-soluble peach gums via different preparation methods. Food Hydrocolloids, 95, 571-579. doi:10.1016/j.foodhyd.2018.03.049
Xie, X. L., Peng, M., Li, W., Ma, L., Qin, Z. Z., Su, T. M., Luo, X., Chen, J. H., Yan, Z. G., & Ji, H. B. (2025). Preparation of rapidly absorbing bagasse cellulose-based composite superabsorbent material with semi-interpenetrating networks and its water absorption mechanism. International Journal of Biological Macromolecules, 321. doi:10.1016/j.ijbiomac.2025.146125
Yang, L. Q., & Zhang, L. M. (2009). Chemical structural and chain conformational characterization of some bioactive polysaccharides isolated from natural sources. Carbohydrate Polymers, 76(3), 349-361. doi:10.1016/j.carbpol.2008.12.015
Yang, X. Q., Tan, Z. F., Zhao, W. P., Zheng, Y. F., Ling, S. Q., Guo, X. M., & Dong, X. P. (2025). Molecular interactions and gel network modulation in ionic polysaccharide-gelatin hydrogels for improved texture of skipjack tuna products. Food Chemistry, 482. doi:10.1016/j.foodchem.2025.144002
Yao, X. C., Cao, Y., & Wu, S. J. (2013). Antioxidant activity and antibacterial activity of peach gum derived oligosaccharides. International Journal of Biological Macromolecules, 62, 1-3. doi:10.1016/j.ijbiomac.2013.08.022
Yu, L., Yakubov, G. E., Zeng, W., Xing, X. H., Stenson, J., Bulone, V., & Stokes, J. R. (2017). Multi-layer mucilage of Plantago ovata seeds: Rheological differences arise from variations in arabinoxylan side chains. Carbohydrate Polymers, 165, 132-141. doi:10.1016/j.carbpol.2017.02.038
Zeng, S. H., Long, J. W., Sun, J. H., Wang, G., & Zhou, L. (2022). A review on peach gum polysaccharide: Hydrolysis, structure, properties and applications. Carbohydrate Polymers, 279. doi:10.1016/j.carbpol.2021.119015
Zhang, H., Li, C. C., Ding, J., Lai, P. F. H., Xia, Y. J., & Ai, L. Z. (2020). Structural features and emulsifying stability of a highly branched arabinogalactan from immature peach (Prunus persica) exudates. Food Hydrocolloids, 104. doi:10.1016/j.foodhyd.2020.105721
Zhong, M., Liu, Y. T., Liu, X. Y., Shi, F. K., Zhang, L. Q., Zhu, M. F., & Xie, X. M. (2016). Dually cross-linked single network poly(acrylic acid) hydrogels with superior mechanical properties and water absorbency. Soft Matter, 12(24), 5420-5428. doi:10.1039/c6sm00242k
Zhu, K., Yu, D., Chen, X. Y., & Song, G. L. (2019). Preparation, characterization and controlled-release property of Fe3+ cross-linked hydrogels based on peach gum polysaccharide. Food Hydrocolloids, 87, 260-269. doi:10.1016/j.foodhyd.2018.08.019