[en] Waves in electron-positron plasmas have fundamentally different dispersion characteristics due to the equal charge-to-mass ratios between negative and positive charges, which mix different timescales, and are of interest in understanding aspects of pulsars and active galactic nuclei, where astrophysical electron-positron plasmas occur. Earlier systematic nonlinear treatments of parallel propagating electromagnetic waves via a reductive perturbation analysis had indicated unusual results, namely a vector equivalent of the modified Korteweg-de Vries equation. The latter is nonintegrable except in the case of linear polarization when it becomes equivalent to the scalar (integrable) modified Korteweg-de Vries equation. Here large amplitude purely stationary nonlinear solitary waves are studied in their own reference frame via the McKenzie approach. The behavior of the wave magnetic field can be expressed through an energy integral that involves the Mach number of the structure. Possible solitons are super-Alfvenic and occur symmetrically for positive or negative fields, owing to the obvious symmetry between positive and negative charges with the same mass. The limits on the allowable Mach numbers and soliton amplitudes have also been computed. (C) 2004 American Institute of Physics.
Disciplines :
Physics
Author, co-author :
Verheest, F.
Cattaert, Tom ; Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Bioinformatique
Language :
English
Title :
Large amplitude solitary electromagnetic waves in electron-positron plasmas
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
P.A. Sturrock, Astrophys. J. 164, 529 (1971).
J. G. Lominadze, G. Z. Machabeli, and V. V. Usov, Astrophys. Space Sci. 90, 19 (1983).
P. K. Shukla, Astrophys. Space Sci. 114, 381 (1985).
J. Sakai and T. Kawata, J. Phys. Soc. Jpn. 49, 747 (1980).
J. Sakai and T. Kawata, J. Phys. Soc. Jpn. 49, 753 (1980).
L. Stenfio, P. K. Shukla, and M. Y. Yu, Astrophys. Space Sci. 117, 303 (1985).
G. S. Lakhina and N. L. Tsintsadze, Astrophys. Space Sci. 174, 143 (1990).
P. K. Shukla and L. Stenflo, Astrophys. Space Sci. 209, 323 (1993).
L. N. Tsintsadze, N. L. Tsintsadze, P. K. Shukla, and L. Stenflo, Astrophys. Space Sci. 222, 259 (1994).
G. P. Zank and R. G. Greaves, Phys. Rev. E 51, 6079 (1995).
F. Verheest, M. A. Hellberg, G. J. Gray, and R. L. Mace, Astrophys. Space Sci. 239, 125 (1996).
F. Verheest, Phys. Lett. A 213, 177 (1996).
F. Verheest and G. S. Lakhina, Astrophys. Space Sci. 240, 215 (1996).
G. S. Lakhina and F. Verheest, Astrophys. Space Sci. 253, 97 (1997).
R. Z. Sagdeev, in Reviews of Plasma Physics 4, edited by M. A. Leontovich (Consultants Bureau, New York, 1966), pp. 23-91.
R. Z. Sagdeev and A. A. Galeev, Nonlinear Plasma Theory (Benjamin, New York, 1969).
S. Baboolal, R. Bharuthram, and M. A. Hellberg, J. Plasma Phys. 44, 1 (1990).
R. L. Mace, S. Baboolal, R. Bharuthram, and M. A. Hellberg, J. Plasma Phys. 45, 323 (1991).
J. F. McKenzie and T. B. Doyle, New J. Phys. 5, 26 (2003).
J. F. McKenzie and T. B. Doyle, Phys. Plasmas 8, 4367 (2001).
J. F. McKenzie, Phys. Plasmas 9, 800 (2002).
J. F. McKenzie, J. Plasma Phys. 67, 353 (2002).
J. F. McKenzie, J. Plasma Phys. 69, 199 (2003).
J. F. McKenzie and T. B. Doyle, Phys. Plasmas 9, 55 (2002).
F. Verheest, T. Cattaert, G. S. Lakhina, and S. V. Singh, J. Plasma Phys. 70, 237 (2004).
C. F. F. Karney, A. Sen, and F. Y. F. Chu, in Solitons and Condensed Matter Physics, edited by A. R. Bishop and T. Schneider (Springer, Berlin, 1978), pp. 71-75.
E. Dubinin, K. Sauer, and J. F. McKenzie, J. Plasma Phys. 69, 305 (2003).
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.