[en] Photosynthetic organisms have evolved diverse strategies to adapt to fluctuating light conditions, balancing efficient light capture with photoprotection. In green algae and land plants, this involves specialized light-harvesting complexes (LHCs), non-photochemical quenching, and state transitions driven by dynamic remodeling of antenna proteins associated with Photosystems (PS) I and II. Euglena gracilis, a flagellate with a secondary green plastid, represents a distantly related lineage whose light-harvesting regulation remains poorly understood. Although spectral shifts under different light regimes have been observed, their molecular basis was unknown. Here, through integrated phylogenomic, proteomic, structural, and spectroscopic analyses, we identify a novel chlorophyll a far-red-absorbing antenna complex in E. gracilis, composed of a species-specific Lhce protein family. This antenna forms a pentameric complex under low light and transiently associates with PSII during far-red light exposure. It is structurally and functionally distinct from canonical LHCII₃ trimers and absent in Viridiplantae. Additionally, PSI in E. gracilis is surrounded by an expanded Lhce/LhcbM belt around a minimal core. These findings reveal a unique mechanism for regulating PS antenna size in E. gracilis, distinct from known models in plants and green algae, and highlight an alternative evolutionary strategy for light acclimation in organisms with secondary plastids.
Nawrocki, Wojciech ; Université de Liège - ULiège > Département des sciences de la vie > Génétique et physiologie des microalgues ; Biophysics of Photosynthesis, Department of Physics and Astronomy, Faculty of Science, Vrije Universiteit Amsterdam, 1081HV Amsterdam, the Netherlands
Counson, Charles ; Université de Liège - ULiège > Département des sciences de la vie > Génétique et physiologie des microalgues
Morsomme, Pierre ; Institut des Sciences de la Vie, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
Degand, Hervé; Institut des Sciences de la Vie, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
Croce, Roberta ; Biophysics of Photosynthesis, Department of Physics and Astronomy, Faculty of Science, Vrije Universiteit Amsterdam, 1081HV Amsterdam, the Netherlands
Baurain, Denis ; Université de Liège - ULiège > Département des sciences de la vie > Phylogénomique des eucaryotes
Kouřil, Roman ; Faculty of Science, Department of Biophysics, Palacký University Olomouc, Czech Republic
Cardol, Pierre ; Université de Liège - ULiège > Département des sciences de la vie > Génétique et physiologie des microalgues
BELSPO - Belgian Science Policy Office F.R.S.-FNRS - Fonds de la Recherche Scientifique Czech Ministry of Education, Youth, and Sports UNAM - Universidad Nacional Autónoma de México
Amunts A, Drory O, Nelson N. 2007. The structure of a plant photosystem I supercomplex at 3.4 Å resolution. Nature 447, 58–63.
Aro EM, Virgin I, Andersson B. 1993. Photoinhibition of photosystem II. Inactivation, protein damage and turnover. Biochimica et Biophysica Acta - Bioenergetics 1143, 113–134.
Bag P. 2021. Light harvesting in fluctuating environments: evolution and function of antenna proteins across photosynthetic lineage. Plants 10, 1184.
Basso S, Simionato D, Gerotto C, Segalla A, Giacometti GM, Morosinotto T. 2014. Characterization of the photosynthetic apparatus of the Eustigmatophycean Nannochloropsis gaditana: evidence of convergent evolution in the supramolecular organization of photosystem I. Biochimica et Biophysica Acta - Bioenergetics 1837, 306–314.
Beneragama CK, Goto K. 2010. Chlorophyll a:b ratio increases under low-light in 'shade-tolerant' Euglena gracilis. Tropical Agricultural Research 22, 12–25.
Berne N, Fabryova T, Istaz B, Cardol P, Bailleul B. 2018. The peculiar NPQ regulation in the stramenopile Phaeomonas sp. challenges the xanthophyll cycle dogma. Biochimica et Biophysica Acta - Bioenergetics 1859, 491–500.
Bína D, Gardian Z, Herbstová M, Kotabová E, Koník P, Litvín R, Prášil O, Tichý J, Vácha F. 2014. Novel type of red-shifted chlorophyll a antenna complex from Chromera velia: II. Biochemistry and spectroscopy. Biochimica et Biophysica Acta - Bioenergetics 1837, 802–810.
Biswas S. 2019. The role of PsbX and PsbY in photosystem II of Synechocystis sp. PCC 6803. PhD thesis, Dunedin, New Zealand: University of Otago. https://hdl.handle.net/10523/8785. Accessed January 2025.
Brown JS, French CS. 1961. The long wave length forms of chlorophyll a. Biophysical Journal 1, 539–550.
Burton-Smith RN, Watanabe A, Tokutsu R, et al. 2019. Structural determination of the large photosystem II-light-harvesting complex II supercomplex of Chlamydomonas reinhardtii using nonionic amphipol. The Journal of Biological Chemistry 294, 15003–15013.
Camacho C, Coulouris G, Avagyan V, et al. 2009. BLAST+: architecture and applications. BMC Bioinformatics 10, 421.
Cao P, Su X, Pan X, et al. 2018. Structure, assembly and energy transfer of plant photosystem II supercomplex. Biochimica et Biophysica Acta - Bioenergetics 1859, 633–644.
Caspy I, Nelson N. 2018. Structure of the plant photosystem I. Biochemical Society Transactions 46, 285–294.
Caspy I, Borovikova-Sheinker A, Klaiman D, et al. 2020. The structure of a triple complex of plant photosystem I with ferredoxin and plastocyanin. Nature Plants 6, 1300–1305.
Cazzaniga S, Kim M, Bellamoli F, et al. 2020. Photosystem II antenna complexes CP26 and CP29 are essential for nonphotochemical quenching in Chlamydomonas reinhardtii. Plant, Cell & Environment 43, 496–509.
Chen M, Liu X, He Y, et al. 2022. Diversity among cyanobacterial photosystem I oligomers. Frontiers in Microbiology 12, 781826.
Chu HA, Chiu YF. 2016. The roles of cytochrome b559 in assembly and photoprotection of photosystem II revealed by site-directed mutagenesis studies. Frontiers in Plant Science 6, 1261.
Cordoba J, Perez E, Van Vlierberghe M, et al. 2021. De novo transcriptome meta-assembly of the mixotrophic freshwater microalga Euglena gracilis. Genes 12, 608.
Croce R, Zucchelli G, Garlaschi FM, Jennings RC. 1998. A thermal broadening study of the antenna chlorophylls in PSI-200, LHCI, and PSI core. Biochemistry 37, 17355–17360.
Croce R, Morosinotto T, Castelletti S, et al. 2002. The Lhca antenna complexes of higher plants photosystem I. Biochimica et Biophysica Acta - Bioenergetics 1556, 29–40.
Cunningham F, Schiff J. 1986. Chlorophyll-protein complexes from Euglena gracilis and mutants deficient in chlorophyll b. Plant Physiology 80, 223–230.
de la Rosa-Trevín JM, Quintana A, del Cano L, et al. 2016. Scipion: a software framework toward integration, reproducibility and validation in 3D electron microscopy. Journal of Structural Biology 195, 93–99.
Doege M, Ohmann E, Tschiersch H. 2000. Chlorophyll fluorescence quenching in the alga Euglena gracilis. Photosynthesis Research 63, 159–170.
Edgar RC. 2010. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26, 2460–2461.
Emerson R. 1957. Dependence of yield of photosynthesis in long-wave red on wavelength and intensity of supplementary light. Science 125, 746–752.
Emms DM, Kelly S. 2015. OrthoFinder: solving fundamental biases in whole genome comparisons dramatically improves orthogroup inference accuracy. Genome Biology 16, 157.
Finazzi G, Furia A, Barbagallo RP, Forti G. 1999. State transitions, cyclic and linear electron transport and photophosphorylation in Chlamydomonas reinhardtii. Biochimica et Biophysica Acta - Bioenergetics 1413, 117–129.
Fields O, Hammond MJ, Xu X, O'Neill EC. 2025. Advances in euglenoid genomics: unravelling the fascinating biology of a complex clade. Trends in Genetics 41, 251–260.
Fu L, Niu B, Zhu Z, et al. 2012. CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics 28, 3150–3152.
Fox AR, Scochera F, Laloux T, et al. 2020. Plasma membrane aquaporins interact with the endoplasmic reticulum resident VAP27 proteins at ER-PM contact sites and endocytic structures. The New Phytologist 228, 973–988.
Gain G, Vega de Luna F, Cordoba J, et al. 2021. Trophic state alters the mechanism whereby energetic coupling between photosynthesis and respiration occurs in Euglena gracilis. The New Phytologist 232, 1603–1617.
Gibasiewicz K, Szrajner A, Ihalainen JA, et al. 2005. Characterization of low-energy chlorophylls in the PSI-LHCI supercomplex from Chlamydomonas reinhardtii: a site-selective fluorescence study. The Journal of Physical Chemistry: B 109, 21180–21186.
Gibbs SP. 1978. The chloroplasts of Euglena may have evolved from symbiotic green algae. Canadian Journal of Botany 56, 2883–2889.
Gorski C, Riddle R, Toporik H, et al. 2022. The structure of the Physcomitrium patens photosystem I reveals a unique Lhca2 paralogue replacing Lhca4. Nature Plants 8, 307–316.
Gouy M, Guindon S, Gascuel O. 2010. SeaView version 4: a multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Molecular Biology and Evolution 27, 221–224.
Graça AT, Hall M, Persson K, Schröder WP. 2021. High-resolution model of Arabidopsis photosystem II reveals the structural consequences of digitonin-extraction. Scientific Reports 11, 16707.
Guindon S, Dufayard JF, Lefort V, et al. 2010. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Systematic Biology 59, 307–321.
Hallick RB, Hong L, Drager RG, et al. 1993. Complete sequence of Euglena gracilis chloroplast DNA. Nucleic Acids Research 21, 3537–3544.
Harris EH, Stern DB, Witman GB. 2009. The Chlamydomonas sourcebook. San Diego: Academic Press.
Herbstová M, Bína D, Kaňa R, et al. 2017. Red-light phenotype in a marine diatom involves a specialized oligomeric red-shifted antenna and altered cell morphology. Scientific Reports 7, 11976.
Huang X, Madan A. 1999. CAP3: a DNA sequence assembly program. Genome Research 9, 868–877.
Huang Z, Shen L, Wang W, Mao Z, Yi X, Kuang T, Shen J-R, Zhang X, Han G. 2021. Structure of photosystem I-LHCI-LHCII from green alga Chlamydomonas reinhardtii in state 2. Nature Communications 12, 1100.
Katoh K, Standley DM. 2013. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Molecular Biology and Evolution 30, 772–780.
Irisarri I, Baurain D, Brinkmann H, et al. 2017. Phylotranscriptomic consolidation of the jawed vertebrate timetree. Nature Ecology & Evolution 1, 1370–1378.
Ishii A, Shan J, Sheng X, et al. 2023. The photosystem I supercomplex from a primordial green alga Ostreococcus tauri harbors three light-harvesting complex trimers. eLife 12, e84488.
Islam S, Sabharwal T, Wu S, et al. 2020. Early dynamics of photosynthetic Lhcf2 and Lhcf15 transcription and mRNA stabilities in response to herbivory-related decadienal in Phaeodactylum tricornutum. Scientific Reports 10, 2035.
Iwai M, Grob P, Iavarone AT, et al. 2018. A unique supramolecular organization of photosystem I in the moss Physcomitrella patens. Nature Plants 4, 904–909.
Iwai M, Patel-Tupper D, Niyogi KK. 2024. Structural diversity in eukaryotic photosynthetic light harvesting. Annual Review of Plant Biology 75, 119–152.
Karapetyan NV, Bolychevtseva YV, Yurina NP, et al. 2014. Long-wavelength chlorophylls in photosystem I of cyanobacteria: origin, localization, and functions. Biochemistry Moscow 79, 213–220.
Klein S, Schiff JA, Holowinsky AW. 1972. Events surrounding the early development of Euglena chloroplasts: II. Normal development of fine structure and the consequences of preillumination. Developmental Biology 28, 253–273.
Kouřil R, Nosek L, Semchonok D, et al. 2018. Organization of plant photosystem II and photosystem I supercomplexes. In: Harris JR, Boekema EJ, eds. Membrane protein complexes: structure and function. Subcellular biochemistry, vol. 87. Singapore: Springer, 259–286.
Koziol AG, Borza T, Ishida KI, et al. 2007. Tracing the evolution of the light-harvesting antennae in chlorophyll a/b-containing organisms. Plant Physiology 143, 1802–1816.
Koziol AG, Durnford DG. 2008. Euglena light-harvesting complexes are encoded by multifarious polyprotein mRNAs that evolve in concert. Molecular Biology and Evolution 25, 92–100.
Letunic I, Bork P. 2024. Interactive Tree of Life (iTOL) v6: recent updates to the phylogenetic tree display and annotation tool. Nucleic Acids Research 52, W78–W82.
Longoni P, Samol I, Goldschmidt-Clermont M. 2019. The kinase STATE TRANSITION 8 phosphorylates light-harvesting complex II and contributes to light acclimation in Arabidopsis thaliana. Frontiers in Plant Science 10, 1156.
Miloslavina Y, De Bianchi S, Dall'Osto L, et al. 2011. Quenching in Arabidopsis thaliana mutants lacking monomeric antenna proteins of photosystem II. The Journal of Biological Chemistry 286, 36830–36840.
Miranda-Astudillo H, Arshad R, Vega de Luna F, et al. 2025. Data from: A unique light-harvesting complex protein family, LHCE, is involved in far-red absorption by photosystems I and II in Euglena gracilis. Zenodo. https://doi.org/10.5281/zenodo.15353545
Nagao R, Yokono M, Kato KH, et al. 2021. High-light modification of excitation-energy-relaxation processes in the green flagellate Euglena gracilis. Photosynthesis Research 149, 303–311.
Naschberger A, Mosebach L, Tobiasson V, et al. 2022. Algal photosystem I dimer and high-resolution model of PSI-plastocyanin complex. Nature Plants 8, 1191–1201.
Neilson JAD, Rangsrikitphoti P, Durnford DG. 2017. Evolution and regulation of Bigelowiella natans light-harvesting antenna system. Journal of Plant Physiology 217, 68–76.
Nguyen LT, Schmidt HA, von Haeseler A, Minh BQ. 2015. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Molecular Biology and Evolution 32, 268–274.
Niyogi KK, Truong TB. 2013. Evolution of flexible non-photochemical quenching mechanisms that regulate light harvesting in oxygenic photosynthesis. Current Opinion in Plant Biology 16, 307–314.
Ozawa SI, Bald T, Onishi T, et al. 2018. Configuration of ten light-harvesting chlorophyll a/b complex I subunits in Chlamydomonas reinhardtii photosystem I. Plant Physiology 178, 583–595.
Pan X, Cao P, Su X, et al. 2020. Structural analysis and comparison of light-harvesting complexes I and II. Biochimica et Biophysica Acta - Bioenergetics 1861, 148038.
Pan X, Tokutsu R, Li A, et al. 2021. Structural basis of LhcbM5-mediated state transitions in green algae. Nature Plants 7, 1119–1131.
Perez-Boerema A, Klaiman D, Caspy I, et al. 2020. Structure of a minimal photosystem I from the green alga Dunaliella salina. Nature Plants 6, 321–327.
Philippe H. 1993. MUST, a computer package of management utilities for sequences and trees. Nucleic Acids Research 21, 5264–5272.
Pinnola A, Alboresi A, Nosek L, et al. 2018. A LHCB9-dependent photosystem I megacomplex induced under low light in Physcomitrella patens. Nature Plants 4, 910–919.
Qin X, Pi X, Wang W, et al. 2019. Structure of a green algal photosystem I in complex with a large number of light-harvesting complex I subunits. Nature Plants 5, 263–272.
Scheller HV, Jensen PE, Haldrup A, et al. 2001. Role of subunits in eukaryotic photosystem I. Biochimica et Biophysica Acta - Bioenergetics 1507, 41–60.
Semchonok DA, Sathish Yadav KN, Xu P, et al. 2017. Interaction between the photoprotective protein LHCSR3 and C2S2 Photosystem II supercomplex in Chlamydomonas reinhardtii. Biochimica et Biophysica Acta - Bioenergetics 1858, 379–385.
Shen L, Huang Z, Chang S, et al. 2019. Structure of a C2S2M2N2-type PSII-LHCII supercomplex from the green alga Chlamydomonas reinhardtii. Proceedings of the National Academy of Sciences, USA 116, 21246–21255.
Sheng X, Watanabe A, Li A, et al. 2019. Structural insight into light harvesting for photosystem II in green algae. Nature Plants 5, 1320–1330.
Shubin VV, Bezsmertnaya IN, Karapetyan NV. 1992. Isolation from Spirulina membranes of two photosystem I-type complexes, one of which contains chlorophyll responsible for the 77 K fluorescence band at 760 nm. The FEBS Journal 309, 340–342.
Simion P, Philippe H, Baurain D, et al. 2017. A large and consistent phylogenomic dataset supports sponges as the sister group to all other animals. Current Biology 27, 958–967.
Six C, Worden AZ, Rodríguez F, et al. 2005. New insights into the nature and phylogeny of prasinophyte antenna proteins: Ostreococcus tauri, a case study. Molecular Biology and Evolution 22, 2217–2230.
Stamatakis A. 2014. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313.
Sultana S, Khan S, Shaika NA, et al. 2024. Ecology of freshwater harmful euglenophytes: A review. Heliyon 10, e29625.
Sobotka R, Esson HJ, Koník P, et al. 2017. Extensive gain and loss of photosystem I subunits in chromerid algae, photosynthetic relatives of apicomplexans. Scientific Reports 7, 724.
Sonoike K. 1995. Selective photoinhibition of photosystem I in isolated thylakoid membranes from cucumber and spinach. Plant & Cell Physiology 36, 825–830.
Suzuki T, Tada O, Makimura M, et al. 2004. Isolation and characterization of oxygen-evolving photosystem II complexes retaining the PsbO, P and Q proteins from Euglena gracilis. Plant & Cell Physiology 45, 1168–1175.
Swingley WD, Iwai M, Chen Y, et al. 2010. Characterization of photosystem I antenna proteins in the prasinophyte Ostreococcus tauri. Biochimica et Biophysica Acta - Bioenergetics 1797, 1458–1464.
Tanaka R, Tanaka A. 2011. Chlorophyll cycle regulates the construction and destruction of the light-harvesting complexes. Biochimica et Biophysica Acta - Bioenergetics 1807, 968–976.
Tian L, Liu Z, Wang F, et al. 2017. Isolation and characterization of PSI-LHCI super-complex and their sub-complexes from a red alga Cyanidioschyzon merolae. Photosynthesis Research 133, 201–214.
Tokutsu R, Iwai M, Minagawa J. 2009. CP29, a monomeric light-harvesting complex II protein, is essential for state transitions in Chlamydomonas reinhardtii. The Journal of Biological Chemistry 284, 7777–7782.
Turmel M, Gagnon MC, O'Kelly CJ, et al. 2009. The chloroplast genomes of the green algae Pyramimonas, Monomastix, and Pycnococcus shed new light on the evolutionary history of prasinophytes and the origin of the secondary chloroplasts of euglenids. Molecular Biology and Evolution 26, 631–648.
Valencia WM, Pandit A. 2024. Photosystem II subunit S (PsbS): a nano regulator of plant photosynthesis. Journal of Molecular Biology 436, 168407.
Virtanen O, Tyystjärvi E. 2023. Plastoquinone pool redox state and control of state transitions in Chlamydomonas reinhardtii in darkness and under illumination. Photosynthesis Research 155, 59–76.
Wang J, Yu L, Wang W, et al. 2021. Structure of plant photosystem I-light harvesting complex I supercomplex at 2.4 Å resolution. Journal of Integrative Plant Biology 63, 1367–1381.
Winter J, Brandt P. 1986. Stage-specific State I-State II transitions during the cell cycle of Euglena gracilis. Plant Physiology 81, 548–552.
Wittig I, Karas M, Schägger H. 2007. High resolution clear native electrophoresis for in-gel functional assays and fluorescence studies of membrane protein complexes. Molecular & Cellular Proteomics 6, 1215–1225.
Xu C, Pi X, Huang Y, et al. 2020. Structural basis for energy transfer in a huge diatom PSI-FCPI supercomplex. Nature Communications 11, 5081.
Yadav KNS, Miranda-Astudillo HV, Colina-Tenorio L, et al. 2017. Atypical composition and structure of the mitochondrial dimeric ATP synthase from Euglena gracilis. Biochimica et Biophysica Acta - Bioenergetics 1858, 267–275.
Yang H, Liu J, Wen X, Lu C. 2015. Molecular mechanism of photosystem I assembly in oxygenic organisms. Biochimica et Biophysica Acta - Bioenergetics 1847, 838–848.
Zhao LS, Wang N, Li K, et al. 2024. Architecture of symbiotic dinoflagellate photosystem I-light-harvesting supercomplex in Symbiodinium. Nature Communications 15, 3198.
Zhou C, Feng Y, Li Z, et al. 2024. Structural and spectroscopic insights into fucoxanthin chlorophyll a/c-binding proteins of diatoms in diverse oligomeric states. Plant Communications 5, 101041.