Aquifer recharge; Burkina Faso; Effect; Multidimensional approach; Runoff water management; Water spreading weirs; Geology; Earth-Surface Processes
Abstract :
[en] In recent years, water spreading weirs have been implemented on watercourses in West Africa. This study investigates the hydrological impact of water spreading weirs (WSWs) in the semi-arid Wedbila watershed of Burkina Faso, a region challenged by soil degradation and scarce water resources. The study employs an integrated, multidisciplinary approach combining in situ monitoring of surface water levels, soil moisture at multiple depths, and piezometric fluctuations to capture the influence of WSWs on soil water dynamics and aquifer recharge. Comparative analyses between zones impacted by water spreading and control zones provide a robust empirical basis—making this one of the few West African studies to comprehensively combine these measurements in assessing WSW effects on infiltration and groundwater recharge. Results demonstrate that WSWs significantly enhance soil moisture retention near the surface and notable rises in piezometric levels observed during and after flood events. Correlation analysis of monitored parameters indicated that groundwater recharge is dependent on rainfall distribution, surface water levels, and soil properties. Using soil water balance, the annual infiltration calculated in the spreading zone was 568 mm, significantly exceeding that observed outside the spreading zone. Cumulative infiltration during spreading periods accounted for 57 % of annual infiltration. This water spreading weirs positive impact demonstrates, contingent upon spreading duration, topography and soil characteristics. Importantly, the WSWs as a low-cost managed aquifer recharge (MAR) solution suitable for data-poor, semi-arid regions like Burkina Faso. By enhancing the landscape's capacity to capture scarce and erratic rainfall, WSWs contribute to climate resilience and agricultural productivity in vulnerable rural communities facing increasing water scarcity due to climate change. They serve as a complementary technique for raising the groundwater level when conditions are favorable in Burkina Faso.
This study was made possible thanks to the financial support of Wallonia Brussels International of Belgium and the logistical support of the Permanent Secretariat for the Integrated Management of Water Resources of Burkina Faso specially Moustapha CONGO. We would like to thank them all.The authors would like to acknowledge the support of the Ministry of Water and in particular the Permanent Secretariat of Integrate Water Resources Management (SPGIRE) in Burkina Faso, which provided the necessary logistics for the investigation and data collection. They thank KOUDOUGOU Audrey, intern at SPGIRE in 2020\u20132021, and the SPGIRE drivers for the instigations and data collection in the field.
Allison, G.B., A review of some of the physical, chemical and isotopic techniques available for estimating groundwater recharge. Estimation Natural Groundwater Recharge, 1988, 49–72.
Allison, G.B., Gee, G.W., Tyler, S.W., Vadose-zone techniques for estimating groundwater recharge in arid and semiarid regions. Soil Sci. Soc. Am. J. 58:1 (1994), 6–14, 10.2136/sssaj1994.03615995005800010002x.
Bambara, A., Orban, P., Ouedraogo, I., Hallot, E., Guyon, F., Zangré, A., Brouyère, S., Quantifying focused groundwater recharge induced by irrigation surface water reservoirs in crystalline basement areas for complementary irrigation. Water, 12(10), 2020, 23, 10.3390/w12102880.
Batelaan, O., De Smedt, F., GIS-based recharge estimation by coupling surface–subsurface water balances. J. Hydrol. 337:3–4 (2007), 337–355.
Besbes, M., Recharge des aquifères par les crues d'oueds. 2006, IAHS-AISH Publication, 43–72.
Bethune, M.G., Selle, B., Wang, Q.J., Understanding and predicting deep percolation under surface irrigation. Water Resour. Res., 44(12), 2008.
Bonn, D., Eggers, J., Indekeu, J., Meunier, J., Rolley, E., Wetting and Spreading. 2009, 10.1103/RevModPhys.81.739 81(June), 739-805.
Boughanmi, M., Dridi, L., Hamdi, M., Majdoub, R., Schäfer, G., Impact of floodwaters on vertical water fluxes in the deep vadose zone of an alluvial aquifer in a semi-arid region. Hydrol. Sci. J. 63:1 (2018), 136–153, 10.1080/02626667.2017.1410281.
Bouwer, H., Rice, R.C., A slug test for determining hydraulic conductivity of unconfined aquifers with completely or partially penetrating wells. Water Resour. Res. 12:3 (1976), 423–428.
Chenini, I., Ben Mammou, A., Groundwater recharge study in arid region : an approach using GIS techniques and numerical modeling. Comput. Geosci. 36:6 (2010), 801–817, 10.1016/j.cageo.2009.06.014.
Dahan, O., Tatarsky, B., Enzel, Y., Kulls, C., Seely, M., Benito, G., Dynamics of flood water infiltration and ground water recharge in hyperarid desert. Groundwater 46:3 (2008), 450–461.
Dembele, Y., Some, L., Proprietes hydrodynamiques des principaux types de sol du Burkina Faso, 199, 1991, IAHS-AISH Publication, 217–227.
de Vries, J.J., Simmers, I., Groundwater recharge : an overview of process and challenges. Hydrogeol. J. 10:1 (2002), 5–17, 10.1007/s10040-001-0171-7.
Farooq, T.H., Ma, X., Rashid, M.H.U., Wu, W., Xu, J., Tarin, M.W.K., He, Z., Wu, P., Impact of stand density on soil quality in Chinese fir (Cunninghamia lanceolata) monoculture. Appl. Ecol. Environ. Res., 17(2), 2019.
Fu, Y., Lu, Y., Heitman, J., Ren, T., Root influences on soil bulk density measurements with thermo-time domain reflectometry. Geoderma, 403, 2021, 115195, 10.1016/j.geoderma.2021.115195.
Gee, G.W., Hillel, D., Groundwater recharge in arid regions : review and critique of estimation methods. Hydrol. Process. 2:3 (1988), 255–266, 10.1002/hyp.3360020306.
Getnet, M., Amede, T., Tilahun, G., Legesse, G., Gumma, M.K., Abebe, H., et al. Water spreading weirs altering flood, nutrient distribution and crop productivity in upstream–downstream settings in dry lowlands of Afar, Ethiopia. Renew. Agric. Food Syst. 37:S1 (2022), S17–S27.
Ghazavi, R., Vali, A.B., Eslamian, S., Impact of flood spreading on groundwater level variation and groundwater quality in an arid environment. Water Resour. Manag. 26:6 (2012), 1651–1663, 10.1007/s11269-012-9977-4.
Hashemi, H., Berndtsson, R., Kompani-Zare, M., Persson, M., Natural vs. Artificial groundwater recharge, quantification through inverse modeling. Hydrol. Earth Syst. Sci. 17:2 (2013), 637–650, 10.5194/hess-17-637-2013.
Hillel, D., Introduction to Environmental Soil Physics. 2003, Elsevier.
Hillel, D., Introduction to Soil Physics. 2013, Academic press.
Jabar, B.S., Sayl, K.N., Rashid, R.S., Approaches to modeling soil erosion caused by water: a review. AIP Conference Proceedings, 2775, 2023, AIP Publishing LLC, 040001 1.
Khaledian, Y., Kiani, F., Ebrahimi, S., Brevik, E.C., Aitkenhead-Peterson, J., Assessment and monitoring of soil degradation during land use change using multivariate analysis. Land Degrad. Dev. 28:1 (2017), 128–141.
King, A.C., Raiber, M., Cox, M.E., Cendón, D.I., Comparaison de techniques d'estimation de recharge des eaux souterraines pour un système aquifère alluvial lié à un cours d'eau temporaire (Queensland, Australie). Hydrogeol. J. 25:6 (2017), 1759–1777, 10.1007/s10040-017-1565-5.
Koïta, M., Yonli, H.F., Soro, D.D., Dara, A.E., Vouillamoz, J.M., Groundwater storage change estimation using combination of hydrogeophysical and groundwater table fluctuation methods in hard rock aquifers. Resources, 7(1), 2018, 10.3390/resources7010005.
Mahe, G., Diello, P., Paturel, J.-E., Barbier, B., Karambiri, H., Dezetter, A., Dieulin, C., Rouche, N., Baisse des pluies et augmentation des écoulements au Sahel : Impact climatique et anthropique sur les écoulements du Nakambe au Burkina Faso. Secheresse (Montrouge) 21:4 (2010), 330–332, 10.1684/sec.2010.0268.
Mare, J.C., Dewandel, B., Ahmed, S., Galeazzi, L., Zaidi, F.K., Combined estimation of specific yield and natural recharge in a semi-arid groundwater basin with irrigated agriculture. J. Hydrol., 281–293, 2006, 10.1016/j.jhydrol.2006.02.022.
Mesbah, S.H., Mohammadnia, M., Kowsar, S.A., Long-term improvement of agricultural vegetation by floodwater spreading in the Gareh Bygone Plain, Iran. In the pursuit of human security, is artificial recharge of groundwater more lucrative than selling soil. Hydrogeol. J. 24:2 (2016), 303–317.
Min, L., Shen, Y., Pei, H., Estimating groundwater recharge using deep vadose zone data under typical irrigated cropland in the piedmont region of the North China Plain. J. Hydrol. 527 (2015), 305–315, 10.1016/j.jhydrol.2015.04.064.
Morin, E., Grodek, T., Dahan, O., Benito, G., Kulls, C., Jacoby, Y., Van Langenhove, G., Seely, M., Enzel, Y., Flood routing and alluvial aquifer recharge along the ephemeral arid Kuiseb River, Namibia. J. Hydrol. 368:1–4 (2009), 262–275.
Mohammed, S.S., Sayl, K.N., Kamel, A.H., Ground water recharging methods: review study. 2ND INTERNATIONAL CONFERENCE ON ENGINEERING AND ADVANCED TECHNOLOGY:(ICEAT 2022), 2787, 2023, AIP Publishing LLC, 060016 1.
Mohammed, S.S., Sayl, K.N., Kamel, A.H., Ground water recharge mapping in Iraqi Western Desert. Int. J. Des. Nat. Ecodyn. 17:6 (2022), 913–920, 10.18280/ijdne.170612.
Mutin, P., Soeiro, F.-A., Infiltration en milieu naturel argileux interprétation physique des phénomènes. La Houille Blanche 55:8 (1969), 897–906, 10.1051/lhb/1969069.
Naghibi, S.A., Vafakhah, M., Hashemi, H., Pradhan, B., Alavi, S.J., Groundwater augmentation through the site selection of floodwater spreading using a data mining approach (case study : Mashhad Plain, Iran). Water (Switzerland), 10(10), 2018, 10.3390/w10101405.
Naghibi, S.A., Vafakhah, M., Hashemi, H., Pradhan, B., Alavi, S.J., Water resources management through flood spreading project suitability mapping using frequency ratio, k-nearest neighbours, and random forest algorithms. Nat. Resour. Res. 29:3 (2020), 1915–1933, 10.1007/s11053-019-09530-4.
Nazoumou, Y., Besbes, M., Estimation de la recharge et modélisation de nappe en zone aride : Cas de la nappe de Kairouan, Tunisie, 269, 2001, IAHS-AISH Publication, 75–88.
Ouandaogo-Yameogo, S., Blavoux, B., Nikiema, J., Savadogo, A., Caractérisation du fonctionnement des aquifères de socle dans la région de Ouagadougou à partir d'une étude de la qualité chimique des eaux. Revue des sciences de l'eau/Journal of Water Science 26:3 (2013), 173–191.
Pakparvar, M., Walraevens, K., Cheraghi, S.A.M., Ghahari, G., Cornelis, W., Gabriels, D., Kowsar, S.A., Assessment of groundwater recharge influenced by floodwater spreading : an integrated approach with limited accessible data. Hydrol. Sci. J. 62:1 (2017), 147–164, 10.1080/02626667.2016.1183164.
Pool, D.R., Variations in climate and ephemeral channel recharge in southeastern Arizona, United States. Water Resour. Res., 41(11), 2005.
Scanlon, B.R., Healy, R.W., Cook, P.G., Choosing appropriate techniques for quantifying groundwater recharge. Hydrogeol. J. 10:1 (2002), 18–39, 10.1007/s10040-001-0176-2.
Shanafield, M., Cook, P.G., Transmission losses, infiltration and groundwater recharge through ephemeral and intermittent streambeds : a review of applied methods. J. Hydrol. 511 (2014), 518–529, 10.1016/j.jhydrol.2014.01.068.
Woessner, W.W., Groundwater-surface water exchange. The Groundwater Project, 2020, 158.