[en] Mucosal immunization represents a promising strategy for preventing enteric infections. Rotavirus (RV), a leading gastrointestinal pathogen distinguished by its remarkable stability and segmented double-stranded RNA genome, has been engineered into a versatile oral vaccine vector through advanced reverse genetics systems. The clinical efficacy of live-attenuated RV vaccines highlights their unique capacity to concurrently induce mucosal IgA responses and systemic neutralizing antibodies, positioning them as a multiple action vector for multiple immune protection. In this review, we summarize the RV colonization of the intestine and stimulation of intestinal immunity, as well as recent advancements in RV reverse genetics, and focus on their application in the rational design of a multivalent mucosal vaccine vector targeting enteric pathogens considering the advantages and challenges of RV as a vector. We further propose molecular strategies to overcome genetic instability in recombinant RV vectors, including the codon optimization of heterologous inserts. These insights provide a theoretical foundation for developing next-generation mucosal immunization platforms with enhanced safety, stability, and cross-protective efficacy.
Disciplines :
Veterinary medicine & animal health
Author, co-author :
Wang, Jun ✱; State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China ; College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing 163319, China
Qin, Songkang ✱; Université de Liège - ULiège > TERRA Research Centre ; State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
Li, Kuanhao; State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
Yin, Xin ; State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China ; College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing 163319, China
Sun, Dongbo; College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing 163319, China
Chang, Jitao; State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China ; Institute of Western Agriculture, Chinese Academy of Agricultural Sciences, Changji 831100, China
✱ These authors have contributed equally to this work.
Language :
English
Title :
Rotavirus Reverse Genetics Systems and Oral Vaccine Delivery Vectors for Mucosal Vaccination.
This study was supported by the Key Project of the Natural Science Foundation of Heilongjiang Province of China (grant no. ZD2023C006), the National Key Research and Development Program of China (2023YFD180250302) and the Development Program of China (2023YFD1802500).
Sender R. Fuchs S. Milo R. Revised Estimates for the Number of Human and Bacteria Cells in the Body PLoS Biol. 2016 14 e1002533 10.1371/journal.pbio.1002533
Honda K. Littman D.R. The microbiome in infectious disease and inflammation Annu. Rev. Immunol. 2012 30 759 795 10.1146/annurev-immunol-020711-074937
Seki N. Kimizuka T. Gondo M. Yamaguchi G. Sugiura Y. Akiyama M. Yakabe K. Uchiyama J. Higashi S. Haneda T. et al. (D)-Tryptophan suppresses enteric pathogen and pathobionts and prevents colitis by modulating microbial tryptophan metabolism iScience 2022 25 104838 10.1016/j.isci.2022.104838
Devkota S. Wang Y. Musch M.W. Leone V. Fehlner-Peach H. Nadimpalli A. Antonopoulos D.A. Jabri B. Chang E.B. Dietary-fat-induced taurocholic acid promotes pathobiont expansion and colitis in Il10−/− mice Nature 2012 487 104 108 10.1038/nature11225
Garrett W.S. Lord G.M. Punit S. Lugo-Villarino G. Mazmanian S.K. Ito S. Glickman J.N. Glimcher L.H. Communicable ulcerative colitis induced by T-bet deficiency in the innate immune system Cell 2007 131 33 45 10.1016/j.cell.2007.08.017
Yamashiro R. Sakudo A. Nagatsu M. Efficient recovery and enrichment of infectious rotavirus using separation with antibody-integrated graphite-encapsulated magnetic nanobeads produced by argon/ammonia gas plasma technology Int. J. Nanomed. 2019 14 1865 1876 10.2147/IJN.S191784
WHO Diarrhoeal Disease Available online: https://www.who.int/news-room/fact-sheets/detail/diarrhoeal-disease (accessed on 7 March 2024)
Pensaert M.B. de Bouck P. A new coronavirus-like particle associated with diarrhea in swine Arch. Virol. 1978 58 243 247 10.1007/BF01317606
Elliott E.J. Acute gastroenteritis in children BMJ (Clin. Res. Ed.) 2007 334 35 40 10.1136/bmj.39036.406169.80
Zhang S.X. Yang C.L. Gu W.P. Ai L. Serrano E. Yang P. Zhou X. Li S.Z. Lv S. Dang Z.S. et al. Case-control study of diarrheal disease etiology in individuals over 5 years in southwest China Gut Pathog. 2016 8 58 10.1186/s13099-016-0141-1
Cossart P. Sansonetti P.J. Bacterial invasion: The paradigms of enteroinvasive pathogens Science 2004 304 242 248 10.1126/science.1090124
Shi C.Z. Chen H.Q. Liang Y. Xia Y. Yang Y.Z. Yang J. Zhang J.D. Wang S.H. Liu J. Qin H.L. Combined probiotic bacteria promotes intestinal epithelial barrier function in interleukin-10-gene-deficient mice World J. Gastroenterol. 2014 20 4636 4647 10.3748/wjg.v20.i16.4636
Yinda C.K. Vanhulle E. Conceição-Neto N. Beller L. Deboutte W. Shi C. Ghogomu S.M. Maes P. Van Ranst M. Matthijnssens J. Gut Virome Analysis of Cameroonians Reveals High Diversity of Enteric Viruses, Including Potential Interspecies Transmitted Viruses mSphere 2019 4 e00585-18 10.1128/mSphere.00585-18
Niu X. Kong F. Xu J. Liu M. Wang Q. Mutations in Porcine Epidemic Diarrhea Virus nsp1 Cause Increased Viral Sensitivity to Host Interferon Responses and Attenuation In Vivo J. Virol. 2022 96 e00469-22 10.1128/jvi.00469-22
Xu Y. Yuen P.W. Lam J.K. Intranasal DNA Vaccine for Protection against Respiratory Infectious Diseases: The Delivery Perspectives Pharmaceutics 2014 6 378 415 10.3390/pharmaceutics6030378
Song D.S. Oh J.S. Kang B.K. Yang J.S. Moon H.J. Yoo H.S. Jang Y.S. Park B.K. Oral efficacy of Vero cell attenuated porcine epidemic diarrhea virus DR13 strain Res. Vet. Sci. 2007 82 134 140 10.1016/j.rvsc.2006.03.007
Pabst O. New concepts in the generation and functions of IgA Nat. Rev. Immunol. 2012 12 821 832 10.1038/nri3322
Lim C.H. Voedisch S. Wahl B. Rouf S.F. Geffers R. Rhen M. Pabst O. Independent bottlenecks characterize colonization of systemic compartments and gut lymphoid tissue by Salmonella PLoS Pathog. 2014 10 e1004270 10.1371/journal.ppat.1004270
Sano K. Bhavsar D. Singh G. Floda D. Srivastava K. Gleason C. Carreño J.M. Simon V. Krammer F. SARS-CoV-2 vaccination induces mucosal antibody responses in previously infected individuals Nat. Commun. 2022 13 5135 10.1038/s41467-022-32389-8
Wahid R. Fresnay S. Levine M.M. Sztein M.B. Cross-reactive multifunctional CD4+ T cell responses against Salmonella enterica serovars Typhi, Paratyphi A and Paratyphi B in humans following immunization with live oral typhoid vaccine Ty21a Clin. Immunol. 2016 173 87 95 10.1016/j.clim.2016.09.006
Mohan T. Kim J. Berman Z. Wang S. Compans R.W. Wang B.Z. Co-delivery of GPI-anchored CCL28 and influenza HA in chimeric virus-like particles induces cross-protective immunity against H3N2 viruses J. Control. Release 2016 233 208 219 10.1016/j.jconrel.2016.05.021
Huang X.N. Ma Y.Y. Wang Y.X. Niu C. Liu Z.M. Yao X. Jiang X.X. Pan R.H. Jia S. Li D.D. et al. Oral Probiotic Vaccine Expressing Koi Herpesvirus (KHV) ORF81 Protein Delivered by Chitosan-Alginate Capsules Is a Promising Strategy for Mass Oral Vaccination of Carps against KHV Infection J. Virol. 2021 95 e00415-21 10.1128/JVI.00415-21
Romero-Maraccini O.C. Sadik N.J. Rosado-Lausell S.L. Pugh C.R. Niu X.Z. Croué J.P. Nguyen T.H. Sunlight-induced inactivation of human Wa and porcine OSU rotaviruses in the presence of exogenous photosensitizers Environ. Sci. Technol. 2013 47 11004 11012 10.1021/es402285u
Komoto S. Sasaki J. Taniguchi K. Reverse genetics system for introduction of site-specific mutations into the double-stranded RNA genome of infectious rotavirus Proc. Natl. Acad. Sci. USA 2006 103 4646 4651 10.1073/pnas.0509385103
Kanai Y. Komoto S. Kawagishi T. Nouda R. Nagasawa N. Onishi M. Matsuura Y. Taniguchi K. Kobayashi T. Entirely plasmid-based reverse genetics system for rotaviruses Proc. Natl. Acad. Sci. USA 2017 114 2349 2354 10.1073/pnas.1618424114
Agbemabiese C.A. Philip A.A. Patton J.T. Recovery of Recombinant Rotaviruses by Reverse Genetics Methods Mol. Biol. 2023 2733 249 263 10.1007/978-1-0716-3533-9_15
Trask S.D. Taraporewala Z.F. Boehme K.W. Dermody T.S. Patton J.T. Dual selection mechanisms drive efficient single-gene reverse genetics for rotavirus Proc. Natl. Acad. Sci. USA 2010 107 18652 18657 10.1073/pnas.1011948107
Troupin C. Dehée A. Schnuriger A. Vende P. Poncet D. Garbarg-Chenon A. Rearranged genomic RNA segments offer a new approach to the reverse genetics of rotaviruses J. Virol. 2010 84 6711 6719 10.1128/JVI.00547-10
Johne R. Reetz J. Kaufer B.B. Trojnar E. Generation of an Avian-Mammalian Rotavirus Reassortant by Using a Helper Virus-Dependent Reverse Genetics System J. Virol. 2016 90 1439 1443 10.1128/JVI.02730-15
Komoto S. Fukuda S. Ide T. Ito N. Sugiyama M. Yoshikawa T. Murata T. Taniguchi K. Generation of Recombinant Rotaviruses Expressing Fluorescent Proteins by Using an Optimized Reverse Genetics System J. Virol. 2018 92 e00588-18 10.1128/JVI.00588-18
Sánchez-Tacuba L. Feng N. Meade N.J. Mellits K.H. Jaïs P.H. Yasukawa L.L. Resch T.K. Jiang B. López S. Ding S. et al. An Optimized Reverse Genetics System Suitable for Efficient Recovery of Simian, Human, and Murine-Like Rotaviruses J. Virol. 2020 94 e01294-20 10.1128/JVI.01294-20
Kanai Y. Onishi M. Kawagishi T. Pannacha P. Nurdin J.A. Nouda R. Yamasaki M. Lusiany T. Khamrin P. Okitsu S. et al. Reverse Genetics Approach for Developing Rotavirus Vaccine Candidates Carrying VP4 and VP7 Genes Cloned from Clinical Isolates of Human Rotavirus J. Virol. 2020 95 e01374-20 10.1128/JVI.01374-20
Philip A.A. Patton J.T. Rotavirus as an Expression Platform of Domains of the SARS-CoV-2 Spike Protein Vaccines 2021 9 449 10.3390/vaccines9050449
Diebold O. Gonzalez V. Venditti L. Sharp C. Blake R.A. Tan W.S. Stevens J. Caddy S. Digard P. Borodavka A. et al. Using Species a Rotavirus Reverse Genetics to Engineer Chimeric Viruses Expressing SARS-CoV-2 Spike Epitopes J. Virol. 2022 96 e00488-22 10.1128/jvi.00488-22
Kawagishi T. Sánchez-Tacuba L. Feng N. Costantini V.P. Tan M. Jiang X. Green K.Y. Vinjé J. Ding S. Greenberg H.B. Mucosal and systemic neutralizing antibodies to norovirus induced in infant mice orally inoculated with recombinant rotaviruses Proc. Natl. Acad. Sci. USA 2023 120 e2214421120 10.1073/pnas.2214421120
Qin S.K. Li K.H. Liu B.J. Cao C. Yu D.B. Jiang Z.G. Wang J. Han Y.X. Wang F. Qi Y.L. et al. Efficient and robust reverse genetics system for bovine rotavirus generation and its application for antiviral screening Virol. Sin. 2024 39 917 928 10.1016/j.virs.2024.09.010
Kawamura Y. Komoto S. Fukuda S. Kugita M. Tang S. Patel A. Pieknik J.R. Nagao S. Taniguchi K. Krause P.R. et al. Development of recombinant rotavirus carrying herpes simplex virus 2 glycoprotein D gene based on reverse genetics technology Microbiol. Immunol. 2024 68 56 64 10.1111/1348-0421.13107
Oishi T. Hasegawa S. Nakano T. Sudo S. Kuwajima H. Tokuriki S. Tamura T. Changes in vaccine coverage and incidence of acute gastroenteritis and severe rotavirus gastroenteritis in children <5 years in Shibata City, Niigata Prefecture, Japan Hum. Vaccines Immunother. 2024 20 2322202 10.1080/21645515.2024.2322202
Elkady G. Chen Y. Hu C. Chen J. Chen X. Guo A. MicroRNA Profile of MA-104 Cell Line Associated with the Pathogenesis of Bovine Rotavirus Strain Circulated in Chinese Calves Front. Microbiol. 2022 13 854348 10.3389/fmicb.2022.854348
Qiu Y. Yang J. Wang W. Zhao W. Peng F. Xiang Y. Chen G. Chen T. Chai C. Zheng S. et al. HMGB1-promoted and TLR2/4-dependent NK cell maturation and activation take part in rotavirus-induced murine biliary atresia PLoS Pathog. 2014 10 e1004011 10.1371/journal.ppat.1004011
Pesavento J.B. Crawford S.E. Roberts E. Estes M.K. Prasad B.V. pH-induced conformational change of the rotavirus VP4 spike: Implications for cell entry and antibody neutralization J. Virol. 2005 79 8572 8580 10.1128/JVI.79.13.8572-8580.2005
Araud E. DiCaprio E. Yang Z. Li X. Lou F. Hughes J.H. Chen H. Li J. High-Pressure Inactivation of Rotaviruses: Role of Treatment Temperature and Strain Diversity in Virus Inactivation Appl. Environ. Microbiol. 2015 81 6669 6678 10.1128/AEM.01853-15
Sánchez-San Martín C. López T. Arias C.F. López S. Characterization of rotavirus cell entry J. Virol. 2004 78 2310 2318 10.1128/JVI.78.5.2310-2318.2004
Gonzalez-Hernandez M.B. Liu T. Payne H.C. Stencel-Baerenwald J.E. Ikizler M. Yagita H. Dermody T.S. Williams I.R. Wobus C.E. Efficient norovirus and reovirus replication in the mouse intestine requires microfold (M) cells J. Virol. 2014 88 6934 6943 10.1128/JVI.00204-14
Santiana M. Ghosh S. Ho B.A. Rajasekaran V. Du W.L. Mutsafi Y. De Jésus-Diaz D.A. Sosnovtsev S.V. Levenson E.A. Parra G.I. et al. Vesicle-Cloaked Virus Clusters Are Optimal Units for Inter-Organismal Viral Transmission Cell Host Microbe 2018 24 208 220.e8 10.1016/j.chom.2018.07.006
Azevedo M.S. Yuan L. Jeong K.I. Gonzalez A. Nguyen T.V. Pouly S. Gochnauer M. Zhang W. Azevedo A. Saif L.J. Viremia and nasal and rectal shedding of rotavirus in gnotobiotic pigs inoculated with Wa human rotavirus J. Virol. 2005 79 5428 5436 10.1128/JVI.79.9.5428-5436.2005
Nyblade C. Zhou P. Frazier M. Frazier A. Hensley C. Fantasia-Davis A. Shahrudin S. Hoffer M. Agbemabiese C.A. LaRue L. et al. Human Rotavirus Replicates in Salivary Glands and Primes Immune Responses in Facial and Intestinal Lymphoid Tissues of Gnotobiotic Pigs Viruses 2023 15 1864 10.3390/v15091864
Ghosh S. Kumar M. Santiana M. Mishra A. Zhang M. Labayo H. Chibly A.M. Nakamura H. Tanaka T. Henderson W. et al. Enteric viruses replicate in salivary glands and infect through saliva Nature 2022 607 345 350 10.1038/s41586-022-04895-8
Miao Q. Pan Y. Gong L. Guo L. Wu L. Jing Z. Zhang G. Tian J. Feng L. Full genome characterization of a human-porcine reassortment G12P[7] rotavirus and its pathogenicity in piglets Transbound. Emerg. Dis. 2022 69 3506 3517 10.1111/tbed.14712
Kim H.H. Park J.G. Matthijnssens J. Kim H.J. Kwon H.J. Son K.Y. Ryu E.H. Kim D.S. Lee W.S. Kang M.I. et al. Pathogenicity of porcine G9P[23] and G9P[7] rotaviruses in piglets Vet. Microbiol. 2013 166 123 137 10.1016/j.vetmic.2013.05.024
Crawford S.E. Patel D.G. Cheng E. Berkova Z. Hyser J.M. Ciarlet M. Finegold M.J. Conner M.E. Estes M.K. Rotavirus viremia and extraintestinal viral infection in the neonatal rat model J. Virol. 2006 80 4820 4832 10.1128/JVI.80.10.4820-4832.2006
Amimo J.O. Raev S.A. Chepngeno J. Mainga A.O. Guo Y.S. Saif L. Vlasova A.N. Rotavirus Interactions with Host Intestinal Epithelial Cells Front. Immunol. 2021 12 793841 10.3389/fimmu.2021.793841
Criglar J.M. Anish R. Hu L. Crawford S.E. Sankaran B. Prasad B.V.V. Estes M.K. Phosphorylation cascade regulates the formation and maturation of rotaviral replication factories Proc. Natl. Acad. Sci. USA 2018 115 E12015 E12023 10.1073/pnas.1717944115
Crawford S.E. Ramani S. Tate J.E. Parashar U.D. Svensson L. Hagbom M. Franco M.A. Greenberg H.B. O’Ryan M. Kang G. et al. Rotavirus infection Nat. Rev. Dis. Primers 2017 3 17083 10.1038/nrdp.2017.83
Velázquez F.R. Matson D.O. Calva J.J. Guerrero L. Morrow A.L. Carter-Campbell S. Glass R.I. Estes M.K. Pickering L.K. Ruiz-Palacios G.M. Rotavirus infection in infants as protection against subsequent infections N. Engl. J. Med. 1996 335 1022 1028 10.1056/NEJM199610033351404
Hou G. Son J. Gomez Castro M.F. Kawagishi T. Ren X. Roth A.N. Antia A. Zeng Q. DeVeaux A.L. Feng N. et al. Innate immune sensing of rotavirus by intestinal epithelial cells leads to diarrhea Cell Host Microbe 2025 33 408 419.E8 10.1016/j.chom.2025.02.005
Lockhart A. Mucida D. Parsa R. Immunity to enteric viruses Immunity 2022 55 800 818 10.1016/j.immuni.2022.04.007
Vlasova A.N. Amimo J.O. Saif L.J. Porcine Rotaviruses: Epidemiology, Immune Responses and Control Strategies Viruses Basel 2017 9 48 10.3390/v9030048
Desselberger U. Huppertz H.I. Immune responses to rotavirus infection and vaccination and associated correlates of protection J. Infect. Dis. 2011 203 188 195 10.1093/infdis/jiq031
Ramig R.F. Genetics of the rotaviruses Annu. Rev. Microbiol. 1997 51 225 255 10.1146/annurev.micro.51.1.225
Clark H.F. Offit P.A. Ellis R.W. Eiden J.J. Krah D. Shaw A.R. Pichichero M. Treanor J.J. Borian F.E. Bell L.M. et al. The development of multivalent bovine rotavirus (strain WC3) reassortant vaccine for infants J. Infect. Dis. 1996 174 (Suppl. 1) S73 S80 10.1093/infdis/174.Supplement_1.S73
Wang J. Zhang H. Zhang H. Fang H. Public health impact and cost-effectiveness of rotavirus vaccination in China: Comparison between private market provision and national immunization programs Hum. Vaccines Immunother. 2022 18 2090162 10.1080/21645515.2022.2090162
Ghonaim A.H. Rouby S.R. Nageeb W.M. Elgendy A.A. Xu R. Jiang C. Ghonaim N.H. He Q. Li W. Insights into recent advancements in human and animal rotavirus vaccines: Exploring new frontiers Virol. Sin. 2025 40 1 14 10.1016/j.virs.2024.12.001
Wang J. Wen X. Ran X. Advances in the development of human rotavirus vaccine Chin. J. Zoonosess 2021 37 278 284
Chang J.T. Li X. Liu H.J. Yu L. Ovine rotavirus strain LLR-85-based bovine rotavirus candidate vaccines: Construction, characterization and immunogenicity evaluation Vet. Microbiol. 2010 146 35 43 10.1016/j.vetmic.2010.04.016
Ávila-Pérez G. Nogales A. Martín V. Almazán F. Martínez-Sobrido L. Reverse Genetic Approaches for the Generation of Recombinant Zika Virus Viruses 2018 10 597 10.3390/v10110597
Ishii K. Ueda Y. Matsuo K. Matsuura Y. Kitamura T. Kato K. Izumi Y. Someya K. Ohsu T. Honda M. et al. Structural analysis of vaccinia virus DIs strain: Application as a new replication-deficient viral vector Virology 2002 302 433 444 10.1006/viro.2002.1622
Komoto S. Kugita M. Sasaki J. Taniguchi K. Generation of recombinant rotavirus with an antigenic mosaic of cross-reactive neutralization epitopes on VP4 J. Virol. 2008 82 6753 6757 10.1128/JVI.00601-08
Navarro A. Trask S.D. Patton J.T. Generation of genetically stable recombinant rotaviruses containing novel genome rearrangements and heterologous sequences by reverse genetics J. Virol. 2013 87 6211 6220 10.1128/JVI.00413-13
Criglar J. Greenberg H.B. Estes M.K. Ramig R.F. Reconciliation of rotavirus temperature-sensitive mutant collections and assignment of reassortment groups D, J, and K to genome segments J. Virol. 2011 85 5048 5060 10.1128/JVI.02691-10
Komoto S. Fukuda S. Murata T. Taniguchi K. Human Rotavirus Reverse Genetics Systems to Study Viral Replication and Pathogenesis Viruses 2021 13 1791 10.3390/v13091791
Kobayashi T. Antar A.A. Boehme K.W. Danthi P. Eby E.A. Guglielmi K.M. Holm G.H. Johnson E.M. Maginnis M.S. Naik S. et al. A plasmid-based reverse genetics system for animal double-stranded RNA viruses Cell Host Microbe 2007 1 147 157 10.1016/j.chom.2007.03.003
Boyce M. Celma C.C.P. Roy P. Development of reverse genetics systems for bluetongue virus: Recovery of infectious virus from synthetic RNA transcripts J. Virol. 2008 82 8339 8348 10.1128/JVI.00808-08
Guo Y.Z. Pretorius J.M. Xu Q.Y. Wu D.L. Bu Z.G. Theron J. Sun E.C. Development and optimization of a DNA-based reverse genetics systems for epizootic hemorrhagic disease virus Arch. Virol. 2020 165 1079 1087 10.1007/s00705-020-04583-w
Kaname Y. Celma C.C.P. Kanai Y. Roy P. Recovery Of African horse sickness virus from synthetic RNA J. Gen. Virol. 2013 94 2259 2265 10.1099/vir.0.055905-0
Kanai Y. Kobayashi T. Rotavirus reverse genetics systems: Development and application Virus Res. 2021 295 198296 10.1016/j.virusres.2021.198296
Campagna M. Eichwald C. Vascotto F. Burrone O.R. RNA interference of rotavirus segment 11 mRNA reveals the essential role of NSP5 in the virus replicative cycle J. Gen. Virol. 2005 86 1481 1487 10.1099/vir.0.80598-0
Eichwald C. De Lorenzo G. Schraner E.M. Papa G. Bollati M. Swuec P. de Rosa M. Milani M. Mastrangelo E. Ackermann M. et al. Identification of a Small Molecule That Compromises the Structural Integrity of Viroplasms and Rotavirus Double-Layered Particles J. Virol. 2018 92 e01943-17 10.1128/JVI.01943-17
Papa G. Venditti L. Arnoldi F. Schraner E.M. Potgieter C. Borodavka A. Eichwald C. Burrone O.R. Recombinant Rotaviruses Rescued by Reverse Genetics Reveal the Role of NSP5 Hyperphosphorylation in the Assembly of Viral Factories J. Virol. 2019 94 e01110-19 10.1128/JVI.01110-19
Smee D.F. Sidwell R.W. Clark S.M. Barnett B.B. Spendlove R.S. Inhibition of rotaviruses by selected antiviral substances: Mechanisms of viral inhibition and in vivo activity Antimicrob. Agents Chemother. 1982 21 66 73 10.1128/AAC.21.1.66
Kanai Y. Kawagishi T. Nouda R. Onishi M. Pannacha P. Nurdin J.A. Nomura K. Matsuura Y. Kobayashi T. Development of Stable Rotavirus Reporter Expression Systems J. Virol. 2019 93 e01774-18 10.1128/JVI.01774-18
Hatazawa R. Fukuda S. Kumamoto K. Matsushita F. Nagao S. Murata T. Taniguchi K. Matsui T. Komoto S. Strategy for generation of replication-competent recombinant rotaviruses expressing multiple foreign genes J. Gen. Virol. 2021 102 e001587 10.1099/jgv.0.001587
Philip A.A. Herrin B.E. Garcia M.L. Abad A.T. Katen S.P. Patton J.T. Collection of Recombinant Rotaviruses Expressing Fluorescent Reporter Proteins Microbiol. Resour. Announc. 2019 8 e00523-19 10.1128/MRA.00523-19
Philip A.A. Patton J.T. Expression of Separate Heterologous Proteins from the Rotavirus NSP3 Genome Segment Using a Translational 2A Stop-Restart Element J. Virol. 2020 94 e00959-20 10.1128/JVI.00959-20
Zhu Y. Sánchez-Tacuba L. Hou G. Kawagishi T. Feng N. Greenberg H.B. Ding S. A recombinant murine-like rotavirus with Nano-Luciferase expression reveals tissue tropism, replication dynamics, and virus transmission Front. Immunol. 2022 13 911024 10.3389/fimmu.2022.911024
Philip A.A. Patton J.T. Generation of Recombinant Rotaviruses Expressing Human Norovirus Capsid Proteins J. Virol. 2022 96 e01262-22 10.1128/jvi.01262-22
Kotaki T. Kanai Y. Onishi M. Minami S. Chen Z. Nouda R. Nurdin J.A. Yamasaki M. Kobayashi T. Generation of single-round infectious rotavirus with a mutation in the intermediate capsid protein VP6 J. Virol. 2024 98 e00762-24 10.1128/jvi.00762-24
Sun C. Gardner C.L. Watson A.M. Ryman K.D. Klimstra W.B. Stable, high-level expression of reporter proteins from improved alphavirus expression vectors to track replication and dissemination during encephalitic and arthritogenic disease J. Virol. 2014 88 2035 2046 10.1128/JVI.02990-13
Fukuyama S. Katsura H. Zhao D.M. Ozawa M. Ando T. Shoemaker J.E. Ishikawa I. Yamada S. Neumann G. Watanabe S. et al. Multi-spectral fluorescent reporter influenza viruses (Color-flu) as powerful tools for studies Nat. Commun. 2015 6 6600 10.1038/ncomms7600
Philip A.A. Hu S. Dai J. Patton J.T. Recombinant rotavirus expressing the glycosylated S1 protein of SARS-CoV-2 J. Gen. Virol. 2023 104 001899 10.1099/jgv.0.001899
Kim S.H. Jang Y.S. The development of mucosal vaccines for both mucosal and systemic immune induction and the roles played by adjuvants Clin. Exp. Vaccine Res. 2017 6 15 21 10.7774/cevr.2017.6.1.15
Wang J. Zhu Q.H. Xing X.X. Sun D.B. A Mini-Review on the Common Antiviral Drug Targets of Coronavirus Microorganisms 2024 12 600 10.3390/microorganisms12030600
Kang G.G.D. Lakhkar A. Bhamare C. Dharmadhikari A. Narwadkar J. Kanujia A. Desai S. Gunale B. Poonawalla C.S. Kulkarni P.S. Post-marketing safety surveillance of the rotavirus vaccine in India Vaccine X 2023 15 100362 10.1016/j.jvacx.2023.100362
Clark A. Tate J. Parashar U. Jit M. Hasso-Agopsowicz M. Henschke N. Lopman B. Van Zandvoort K. Pecenka C. Fine P. et al. Mortality reduction benefits and intussusception risks of rotavirus vaccination in 135 low-income and middle-income countries: A modelling analysis of current and alternative schedules Lancet. Glob. Health 2019 7 e1541 e1552 10.1016/S2214-109X(19)30412-7
Verkerke H. Sobuz S. Ma J.Z. Petri S.E. Reichman D. Qadri F. Rahman M. Haque R. Petri W.A.J. Malnutrition Is Associated with Protection from Rotavirus Diarrhea: Evidence from a Longitudinal Birth Cohort Study in Bangladesh J. Clin. Microbiol. 2016 54 2568 2574 10.1128/JCM.00916-16
Du Y. Chen C. Zhang X. Yan D. Jiang D. Liu X. Yang M. Ding C. Lan L. Hecht R. et al. Global burden and trends of rotavirus infection-associated deaths from 1990 to 2019: An observational trend study Virol. J. 2022 19 166 10.1186/s12985-022-01898-9
Tissera M.S. Cowley D. Bogdanovic-Sakran N. Hutton M.L. Lyras D. Kirkwood C.D. Buttery J.P. Options for improving effectiveness of rotavirus vaccines in developing countries Hum. Vaccines Immunother. 2017 13 921 927 10.1080/21645515.2016.1252493
Writing Group for Expert Consensus on Rotavirus Gastroenteritis Expert consensus on immunoprophylaxis of childhood rotavirus gastroenteritis (2024 version) Chin. J. Prev. Med. 2024 58 1 33 10.3760/cma.j.cn112150-20231220-00472
Pawar S.D. Kode S.S. Keng S.S. Tare D.S. Diop O.M. Abraham P. Sharma D.K. Sangal L. Yadav P.D. Potdar V.A. Replication of SARS-CoV-2 in cell lines used in public health surveillance programmes with special emphasis on biosafety Indian J. Med. Res. 2022 155 129 135 10.4103/ijmr.ijmr_1448_21
Pathogen Regulation Directorate Human Rotavirus Available online: https://www.ehs.com/resources/sds-resources/free-safety-data-sheet-index/human-rotavirus/ (accessed on 1 September 2010)