Antony, J. W., Van Dam, J., Massey, J. R., Barnett, A. J., & Bennion, K. A., (2023). Long-term, multi-event surprise correlates with enhanced autobiographical memory. Nature Human Behaviour, 7(12), 2152–2168. https://doi.org/10.1038/s41562-023-01631-8
Anwyl-Irvine, A. L., Massonnié, J., Flitton, A., Kirkham, N., & Evershed, J. K., (2020). Gorilla in our midst: An online behavioral experiment builder. Behavior Research Methods, 52(1), 388–407. https://doi.org/10.3758/s13428-019-01237-x
Arnold, A. E. G. F., Iaria, G., & Ekstrom, A. D., (2016). Mental simulation of routes during navigation involves adaptive temporal compression. Cognition, 157, 14–23. https://doi.org/10.1016/j.cognition.2016.08.009
Bainbridge, W. A., & Baker, C. I., (2022). Multidimensional memory topography in the medial parietal cortex identified from neuroimaging of thousands of daily memory videos. Nature Communications, 13(1), 6508. https://doi.org/10.1038/s41467-022-34075-1
Balcı, F., Ünübol, H., Grondin, S., Sayar, G. H., Van Wassenhove, V., & Wittmann, M., (2023). Dynamics of retrospective timing: A big data approach. Psychonomic Bulletin & Review, 30(5), 1840–1847. https://doi.org/10.3758/s13423-023-02277-3
Barr, D. J., Levy, R., Scheepers, C., & Tily, H. J., (2013). Random effects structure for confirmatory hypothesis testing: Keep it maximal. Journal of Memory and Language, 68(3), 255–278. https://doi.org/10.1016/j.jml.2012.11.001
Bates, D., Mächler, M., Bolker, B., & Walker, S., (2015). Fitting linear mixed-effects models using lme4. Journal of Statistical Software, 67(1), 1–48. https://doi.org/10.18637/jss.v067.i01
Bird, C. M., & Burgess, N., (2008). The hippocampus and memory: Insights from spatial processing. Nature Reviews Neuroscience, 9(3), 182–194. https://doi.org/10.1038/nrn2335
Block, R. A., Hancock, P. A., & Zakay, D., (2010). How cognitive load affects duration judgments: A meta-analytic review. Acta Psychologica, 134(3), 330–343. https://doi.org/10.1016/j.actpsy.2010.03.006
Block, R. A., & Reed, M. A., (1978). Remembered duration: Evidence for a contextual-change hypothesis. Journal of Experimental Psychology: Human Learning and Memory, 4(6), 656–665. https://doi.org/10.1037/0278-7393.4.6.656
Bonasia, K., Blommesteyn, J., & Moscovitch, M., (2016). Memory and navigation: Compression of space varies with route length and turns. Hippocampus, 26(1), 9–12. https://doi.org/10.1002/hipo.22539
Brewer, W. F., (1988). Memory for randomly sampled autobiographical events. In U., Neisser & E., Winograd (Eds.), Remembering reconsidered: Ecological and traditional approaches to the study of memory (pp. 21–90). Cambridge University Press. https://doi.org/10.1017/CBO9780511664014.004
Brown, N. R., (2023). Autobiographical memory and the self: A transition theory perspective. WIREs Cognitive Science, 14(3), e1621. https://doi.org/10.1002/wcs.1621
Byrne, P., Becker, S., & Burgess, N., (2007). Remembering the past and imagining the future: A neural model of spatial memory and imagery. Psychological Review, 114(2), 340–375. https://doi.org/10.1037/0033-295X.114.2.340
Chan, J. C. K., & LaPaglia, J. A., (2013). Impairing existing declarative memory in humans by disrupting reconsolidation. Proceedings of the National Academy of Sciences, 110(23), 9309–9313. https://doi.org/10.1073/pnas.1218472110
Chow, T. E., & Rissman, J., (2017). Neurocognitive mechanisms of real-world autobiographical memory retrieval: Insights from studies using wearable camera technology. Annals of the New York Academy of Sciences, 1396(1), 202–221. https://doi.org/10.1111/nyas.13353
Clewett, D., & Davachi, L., (2017). The ebb and flow of experience determines the temporal structure of memory. Current Opinion in Behavioral Sciences, 17, 186–193. https://doi.org/10.1016/j.cobeha.2017.08.013
Clewett, D., DuBrow, S., & Davachi, L., (2019). Transcending time in the brain: How event memories are constructed from experience. Hippocampus, 29(3), 162–183. https://doi.org/10.1002/hipo.23074
Colson, C., Panneels, G., & D’Argembeau, A., (2025). Negative emotion reduces the temporal compression of events in episodic memory. Cognition and Emotion. Advance online publication. https://doi.org/10.1080/02699931.2025.2501047
Conway, M. A., (2005). Memory and the self. Journal of Memory and Language, 53(4), 594–628. https://doi.org/10.1016/j.jml.2005.08.005
Cowan, E. T., Chanales, A. J., Davachi, L., & Clewett, D., (2024). Goal shifts structure memories and prioritize event-defining information in memory. Journal of Cognitive Neuroscience, 36(11), 2415–2431. https://doi.org/10.1162/jocn_a_02220
Cowan, E. T., Schapiro, A. C., Dunsmoor, J. E., & Murty, V. P., (2021). Memory consolidation as an adaptive process. Psychonomic Bulletin & Review, 28(6), 1796–1810. https://doi.org/10.3758/s13423-021-01978-x
D’Argembeau, A., (2020). Zooming in and out on one’s life: autobiographical representations at multiple time scales. Journal of Cognitive Neuroscience, 32(11), 2037–2055. https://doi.org/10.1162/jocn_a_01556
D’Argembeau, A., Comblain, C., & Van Der Linden, M., (2003). Phenomenal characteristics of autobiographical memories for positive, negative, and neutral events. Applied Cognitive Psychology, 17(3), 281–294. https://doi.org/10.1002/acp.856
D’Argembeau, A., Jeunehomme, O., & Stawarczyk, D., (2022). Slices of the past: How events are temporally compressed in episodic memory. Memory (Hove, England), 30(1), 43–48. https://doi.org/10.1080/09658211.2021.1896737
De Chastelaine, M., Mattson, J. T., Wang, T. H., Donley, B. E., & Rugg, M. D., (2017). Independent contributions of fMRI familiarity and novelty effects to recognition memory and their stability across the adult lifespan. NeuroImage, 156, 340–351. https://doi.org/10.1016/j.neuroimage.2017.05.039
Durocher, B., Leroy, N., & D’Argembeau, A., (2025). Understanding the origin of omitted moments in memories of real-world events. OSF, https://doi.org/10.31234/osf.io/gs7cj_v3
Elsey, J. W. B., Van Ast, V. A., & Kindt, M., (2018). Human memory reconsolidation: A guiding framework and critical review of the evidence. Psychological Bulletin, 144(8), 797–848. https://doi.org/10.1037/bul0000152
Faber, M., & Gennari, S. P., (2015). In search of lost time: Reconstructing the unfolding of events from memory. Cognition, 143, 193–202. https://doi.org/10.1016/j.cognition.2015.06.014
Fernández, G., & Morris, R. G. M., (2018). Memory, novelty and prior knowledge. Trends in Neurosciences, 41(10), 654–659. https://doi.org/10.1016/j.tins.2018.08.006
Finley, J. R., & Brewer, W. F., (2024). Accuracy and completeness of autobiographical memory: Evidence from a wearable camera study. Memory (Hove, England), 32(8), 1012–1042. https://doi.org/10.1080/09658211.2024.2377193
Folville, A., Jeunehomme, O., Bastin, C., & D’Argembeau, A., (2020). The impact of age on the temporal compression of daily life events in episodic memory. Psychology and Aging, 35(4), 484–496. https://doi.org/10.1037/pag0000456
Frank, D., & Kafkas, A., (2021). Expectation-driven novelty effects in episodic memory. Neurobiology of Learning and Memory, 183, 107466. https://doi.org/10.1016/j.nlm.2021.107466
Fu, M.-H., Yen, A.-Z., Huang, H.-H., & Chen, H.-H., (2020). Incorporating semantic knowledge for visual lifelog activity recognition. Proceedings of the 2020 International Conference on Multimedia Retrieval, 450–456. https://doi.org/10.1145/3372278.3390700
Gilboa, A., & Marlatte, H., (2017). Neurobiology of schemas and schema-mediated memory. Trends in Cognitive Sciences, 21(8), 618–631. https://doi.org/10.1016/j.tics.2017.04.013
Goetschalckx, L., & Wagemans, J., (2019). MemCat: A new category-based image set quantified on memorability. PeerJ, 7, e8169. https://doi.org/10.7717/peerj.8169
Green, P., & MacLeod, C. J., (2016). SIMR: An R package for power analysis of generalized linear mixed models by simulation. Methods in Ecology and Evolution, 7(4), 493–498. https://doi.org/10.1111/2041-210X.12504
Greene, R. L., (1987). Effects of maintenance rehearsal on human memory. Psychological Bulletin, 102(3), 403–413. doi:10.1037/0033-2909.102.3.403
Hard, B. M., Recchia, G., & Tversky, B., (2011). The shape of action. Journal of Experimental Psychology: General, 140(4), 586–604. https://doi.org/10.1037/a0024310
Hassabis, D., & Maguire, E. A., (2007). Deconstructing episodic memory with construction. Trends in Cognitive Sciences, 11(7), 299–306. https://doi.org/10.1016/j.tics.2007.05.001
Hoffman, L., (2019). On the interpretation of parameters in multivariate multilevel models across different combinations of model specification and estimation. Advances in Methods and Practices in Psychological Science, 2(3), 288–311. https://doi.org/10.1177/2515245919842770
Horstmann, G., & Herwig, A., (2016). Novelty biases attention and gaze in a surprise trial. Attention, Perception, & Psychophysics, 78(1), 69–77. https://doi.org/10.3758/s13414-015-0995-1
Jeunehomme, O., & D’Argembeau, A., (2019). The time to remember: Temporal compression and duration judgements in memory for real-life events. Quarterly Journal of Experimental Psychology, 72(4), 930–942. https://doi.org/10.1177/1747021818773082
Jeunehomme, O., & D’Argembeau, A., (2020). Event segmentation and the temporal compression of experience in episodic memory. Psychological Research, 84(2), 481–490. https://doi.org/10.1007/s00426-018-1047-y
Jeunehomme, O., & D’Argembeau, A., (2023). Memory editing: The role of temporal discontinuities in the compression of events in episodic memory editing. Journal of Experimental Psychology: Learning, Memory, and Cognition, 49(5), 766–775. https://doi.org/10.1037/xlm0001141
Kafkas, A., & Montaldi, D., (2014). Two separate, but interacting, neural systems for familiarity and novelty detection: A dual-route mechanism. Hippocampus, 24(5), 516–527. https://doi.org/10.1002/hipo.22241
Kafkas, A., & Montaldi, D., (2018). How do memory systems detect and respond to novelty?Neuroscience Letters, 680, 60–68. https://doi.org/10.1016/j.neulet.2018.01.053
Kelly, P., Marshall, S. J., Badland, H., Kerr, J., Oliver, M., Doherty, A. R., & Foster, C., (2013). An ethical framework for automated, wearable cameras in health behavior research. American Journal of Preventive Medicine, 44(3), 314–319. https://doi.org/10.1016/j.amepre.2012.11.006
Kosie, J. E., & Baldwin, D., (2019). Attention rapidly reorganizes to naturally occurring structure in a novel activity sequence. Cognition, 182, 31–44. https://doi.org/10.1016/j.cognition.2018.09.004
Kurby, C. A., & Zacks, J. M., (2008). Segmentation in the perception and memory of events. Trends in Cognitive Sciences, 12(2), 72–79. https://doi.org/10.1016/j.tics.2007.11.004
Kurby, C. A., & Zacks, J. M., (2018). Preserved neural event segmentation in healthy older adults. Psychology and Aging, 33(2), 232–245. https://doi.org/10.1037/pag0000226
Leroy, N., Majerus, S., & D’Argembeau, A., (2024). Working memory capacity for continuous events: The root of temporal compression in episodic memory?Cognition, 247, 105789. https://doi.org/10.1016/j.cognition.2024.105789
Leroy, N., Majerus, S., & D’Argembeau, A., (2025). The role of working memory in encoding the temporal structure of events in episodic memory: Evidence from a dual-task paradigm. Memory and Cognition. Advance online publication. https://doi.org/10.3758/s13421-025-01798-7.
Levine, B., Svoboda, E., Hay, J. F., Winocur, G., & Moscovitch, M., (2002). Aging and autobiographical memory: Dissociating episodic from semantic retrieval. Psychology and Aging, 17(4), 677–689. https://doi.org/10.1037/0882-7974.17.4.677
Loock, K., Kalbe, F., & Schwabe, L., (2025). Cognitive mechanisms of aversive prediction error-induced memory enhancements. Journal of Experimental Psychology: General, 154(4), 1102–1121. https://doi.org/10.1037/xge0001712
Martin, C. B., Hong, B., Newsome, R. N., Savel, K., Meade, M. E., Xia, A., Honey, C. J., & Barense, M. D., (2022). A smartphone intervention that enhances real-world memory and promotes differentiation of hippocampal activity in older adults. Proceedings of the National Academy of Sciences, 119(51), e2214285119. https://doi.org/10.1073/pnas.2214285119
Maylor, E. A., Chater, N., & Brown, G. D. A., (2001). Scale invariance in the retrieval of retrospective and prospective memories. Psychonomic Bulletin & Review, 8(1), 162–167. https://doi.org/10.3758/BF03196153
Michelmann, S., Hasson, U., & Norman, K. A., (2023). Evidence that event boundaries are access points for memory retrieval. Psychological Science, 34(3), 326–344. https://doi.org/10.1177/09567976221128206
Morales-Calva, F., & Leal, S. L., (2025). Tell me why: The missing w in episodic memory’s what, where, and when. Cognitive, Affective, & Behavioral Neuroscience, 25(1), 6–24. https://doi.org/10.3758/s13415-024-01234-4
Moreton, B. J., & Ward, G., (2010). Time scale similarity and long-term memory for autobiographical events. Psychonomic Bulletin & Review, 17(4), 510–515. https://doi.org/10.3758/PBR.17.4.510
Nagy, D. G., Orbán, G., & Wu, C. M., (2025). Adaptive compression as a unifying framework for episodic and semantic memory. Nature Reviews Psychology, 4(7), 484–498. https://doi.org/10.1038/s44159-025-00458-6
Nicolás, B., Wu, X., García-Arch, J., Dimiccoli, M., Sierpowska, J., Saiz-Masvidal, C., Soriano-Mas, C., Radeva, P., & Fuentemilla, L., (2021). Behavioural and neurophysiological signatures in the retrieval of individual memories of recent and remote real-life routine episodic events. Cortex, 141, 128–143. https://doi.org/10.1016/j.cortex.2021.04.006
Nielson, D. M., Smith, T. A., Sreekumar, V., Dennis, S., & Sederberg, P. B., (2015). Human hippocampus represents space and time during retrieval of real-world memories. Proceedings of the National Academy of Sciences, 112(35), 11078–11083. https://doi.org/10.1073/pnas.1507104112
Ornstein, R. E., (1969). On the experience of time (p. 126). Penguin.
Pedersen, E. J., Miller, D. L., Simpson, G. L., & Ross, N., (2019). Hierarchical generalized additive models in ecology: An introduction with mgcv. PeerJ, 7, e6876. https://doi.org/10.7717/peerj.6876
Pooja, R., Ghosh, P., & Sreekumar, V., (2024). Towards an ecologically valid naturalistic cognitive neuroscience of memory and event cognition. Neuropsychologia, 203, 108970. https://doi.org/10.1016/j.neuropsychologia.2024.108970
Poynter, W. D., (1983). Duration judgment and the segmentation of experience. Memory & Cognition, 11(1), 77–82. https://doi.org/10.3758/BF03197664
Quent, J. A., Henson, R. N., & Greve, A., (2021). A predictive account of how novelty influences declarative memory. Neurobiology of Learning and Memory, 179, 107382. https://doi.org/10.1016/j.nlm.2021.107382
Radvansky, G. A., Doolen, A. C., Pettijohn, K. A., & Ritchey, M., (2022). A new look at memory retention and forgetting. Journal of Experimental Psychology: Learning, Memory, and Cognition, 48(11), 1698–1723. https://doi.org/10.1037/xlm0001110
Rauthmann, J. F., Gallardo-Pujol, D., Guillaume, E. M., Todd, E., Nave, C. S., Sherman, R. A., Ziegler, M., Jones, A. B., & Funder, D. C., (2014). The Situational Eight DIAMONDS: A taxonomy of major dimensions of situation characteristics. Journal of Personality and Social Psychology, 107(4), 677–718. https://doi.org/10.1037/a0037250
Rauthmann, J. F., & Sherman, R. A., (2016). Ultra-brief measures for the situational eight DIAMONDS domains. European Journal of Psychological Assessment, 32(2), 165–174. https://doi.org/10.1027/1015-5759/a000245
Rissman, J., Chow, T. E., Reggente, N., & Wagner, A. D., (2016). Decoding fMRI signatures of real-world autobiographical memory retrieval. Journal of Cognitive Neuroscience, 28(4), 604–620. https://doi.org/10.1162/jocn_a_00920
Robin, J., Buchsbaum, B. R., & Moscovitch, M., (2018). The primacy of spatial context in the neural representation of events. The Journal of Neuroscience, 38(11), 2755–2765. https://doi.org/10.1523/JNEUROSCI.1638-17.2018
Roseboom, W., Fountas, Z., Nikiforou, K., Bhowmik, D., Shanahan, M., & Seth, A. K., (2019). Activity in perceptual classification networks as a basis for human subjective time perception. Nature Communications, 10(1), 267. https://doi.org/10.1038/s41467-018-08194-7
Rubin, D. C., Schrauf, R. W., & Greenberg, D. L., (2003). Belief and recollection of autobiographical memories. Memory & Cognition, 31(6), 887–901. https://doi.org/10.3758/BF03196443
Schomaker, J., & Meeter, M., (2015). Short- and long-lasting consequences of novelty, deviance and surprise on brain and cognition. Neuroscience & Biobehavioral Reviews, 55, 268–279. https://doi.org/10.1016/j.neubiorev.2015.05.002
Shi, L., Brown, N. R., & Reimer, P. J. C., (2024). Exploring the metamnemonic and phenomenal differences between transitional and mundane events. Memory & Cognition, 52(5), 1164–1181. https://doi.org/10.3758/s13421-024-01534-7
Simpson, G. L., (2024). Gratia: An R package for exploring generalized additive models. Journal of Open Source Software, 9(104), 6962. https://doi.org/10.21105/joss.06962
Sreekumar, V., Nielson, D. M., Smith, T. A., Dennis, S. J., & Sederberg, P. B., (2018). The experience of vivid autobiographical reminiscence is supported by subjective content representations in the precuneus. Scientific Reports, 8(1), 14899. https://doi.org/10.1038/s41598-018-32879-0
St. Jacques, P. L., & Schacter, D. L., (2013). Modifying memory: Selectively enhancing and updating personal memories for a museum tour by reactivating them. Psychological Science, 24(4), 537–543. https://doi.org/10.1177/0956797612457377
Thompson, C. P., Skowronski, J. J., Larsen, S. F., & Betz, A., (1996). Autobiographical memory: Remembering what and remembering when (pp. xiv, 238). Lawrence Erlbaum Associates, Inc.
Thomsen, D. K., Jensen, T., Holm, T., Olesen, M. H., Schnieber, A., & Tønnesvang, J., (2015). A 3.5year diary study: Remembering and life story importance are predicted by different event characteristics. Consciousness and Cognition, 36, 180–195. https://doi.org/10.1016/j.concog.2015.06.011
Tobin, S., Bisson, N., & Grondin, S., (2010). An ecological approach to prospective and retrospective timing of long durations: A study involving gamers. PLoS One, 5(2), e9271. https://doi.org/10.1371/journal.pone.0009271
Tulving, E., (2002). Episodic memory: From mind to brain. Annual Review of Psychology, 53(1), 1–25. https://doi.org/10.1146/annurev.psych.53.100901.135114
Tulving, E., & Kroll, N., (1995). Novelty assessment in the brain and long-term memory encoding. Psychonomic Bulletin & Review, 2(3), 387–390. https://doi.org/10.3758/BF03210977
Tulving, E., & Pearlstone, Z., (1966). Availability versus accessibility of information in memory for words. Journal of Verbal Learning and Verbal Behavior, 5(4), 381–391. https://doi.org/10.1016/S0022-5371(66)80048-8
Van Genugten, R. D. I., & Schacter, D. L., (2024). Automated scoring of the autobiographical interview with natural language processing. Behavior Research Methods, 56(3), 2243–2259. https://doi.org/10.3758/s13428-023-02145-x
Van Kesteren, M. T. R., Ruiter, D. J., Fernández, G., & Henson, R. N., (2012). How schema and novelty augment memory formation. Trends in Neurosciences, 35(4), 211–219. https://doi.org/10.1016/j.tins.2012.02.001
Wearden, J., O’Donoghue, A., Ogden, R., & Montgomery, C., (2014). Subjective duration in the laboratory and the world outside. In V., Arstila & D., Lloyd (Eds.), Subjective time: The philosophy, psychology, and neuroscience of temporality (pp. 287–306). The MIT Press. https://doi.org/10.7551/mitpress/8516.003.0022
Yarmey, A. D., (2000). Retrospective duration estimations for variant and invariant events in field situations. Applied Cognitive Psychology, 14(1), 45–57. https://doi.org/10.1002/(SICI)1099-0720(200001)14:1<45::AID-ACP623>3.0.CO;2-U
Zacks, J. M., (2020). Event perception and memory. Annual Review of Psychology, 71(1), 165–191. https://doi.org/10.1146/annurev-psych-010419-051101
Zacks, J. M., Kurby, C. A., Eisenberg, M. L., & Haroutunian, N., (2011). Prediction error associated with the perceptual segmentation of naturalistic events. Journal of Cognitive Neuroscience, 23(12), 4057–4066. https://doi.org/10.1162/jocn_a_00078
Zacks, J. M., Speer, N. K., Swallow, K. M., Braver, T. S., & Reynolds, J. R., (2007). Event perception: A mind-brain perspective. Psychological Bulletin, 133(2), 273–293. https://doi.org/10.1037/0033-2909.133.2.273