[en] Most micro-organisms remain unculturable under standard laboratory conditions, limiting our understanding of microbial diversity and ecological interactions. One major cause of this uncultivability is the loss of access to essential cross-fed metabolites when bacteria are removed from their natural communities. During a bioprospecting campaign targeting actinomycetes of an Apis mellifera beehive, we identified five isolates (DT32, DT45T, DT55, DT59 and DT194) that required co-cultivation for growth recovery, suggesting a dependence on microbial interactions in their native habitat. Whole-genome sequencing and phylogenetic analysis positioned these isolates within a distinct lineage of Micromonosporaceae, separate from the five officially recognized clades of the Micromonospora genus. A combination of microscopic, chemotaxonomic and physiological characterizations further supported their uniqueness. Notably, they exhibited high auxotrophy, being unable to use all carbon sources tested, likely due to genome reduction (4.6 Mbp) compared to other Micromonosporaceae. Pangenomic comparisons with their closest Micromonospora relatives revealed gene losses in key metabolic pathways, including the glyoxylate bypass and the Entner-Doudoroff pathway, which may explain their metabolic reliance. These findings reveal a highly specialized, ecologically adapted lineage with deep evolutionary divergence and further support microbial interdependence isolation strategies to explore the microbial dark matter. We propose Melissospora conviva as a novel genus and species within the Actinomycetota phylum, with isolate DT45T as the representative type species and type strain, which has been deposited in public collections under the accession numbers DSM 117791 and LMG 33580.
Ribeiro Monteiro, Silvia ; Université de Liège - ULiège > Département des sciences de la vie > Centre d'Ingénierie des Protéines (CIP)
Rigolet, Augustin ; Université de Liège - ULiège > Département GxABT > Microbial technologies ; Department of Molecular Biotechnology, Institute of Biology, Leiden University, Leiden 2311 EZ, Netherlands
Burguet, Pierre ; Université de Liège - ULiège > Molecular Systems (MolSys)
Van Damme, Petra; iR.I.P. Unit - Laboratory of Microbiology, University of Ghent, Ghent B-9000, Belgium
Carro, Lorena; Departamento de Microbiología y Genética, Universidad de Salamanca, Salamanca 37008, Spain
Rigali, Sébastien ; Université de Liège - ULiège > Département des sciences de la vie
Zha Y, Chong H, Yang P, Ning K. Microbial dark matter: from discovery to applications. Genom Proteom Bioinform 2022;20:867–881.
Schultz J, Modolon F, Peixoto RS, Rosado AS. Shedding light on the composition of extreme microbial dark matter: alternative approaches for culturing extremophiles. Front Microbiol 2023;14.
Adam D, Maciejewska M, Naômé A, Martinet L, Coppieters W, et al. Isolation, characterization, and antibacterial activity of hard-toculture actinobacteria from cave moonmilk deposits. Antibiotics 2018;7:28.
Maciejewska M, Adam D, Martinet L, Naômé A, Całusińska M, et al. A phenotypic and genotypic analysis of the antimicrobial potential of cultivable Streptomyces isolated from cave moonmilk deposits. Front Microbiol 2016;7:1455.
Shirling EB, Gottlieb D. Methods for characterization of Streptomyces species. Int J Syst Evol Microbiol 1966;16:313–340.
Stulanovic N, Kerdel Y, Belde L, Rezende L, Deflandre B, et al. Nitrogen fertilizers activate siderophore production by the common scab causative agent Streptomyces scabiei. Metallomics 2024;16:mfae048.
Kieser T, Bibb MJ, Buttner MJ, Chater KF, Hopwood DA. Practical Streptomyces Genetics: A Laboratory Manual. Norwich: John Innes Foundation; 2000.
Maciejewska M, Pessi IS, Arguelles-Arias A, Noirfalise P, Luis G, et al. Streptomyces lunaelactis sp. nov., a novel ferroverdin A-producing Streptomyces species isolated from a moonmilk speleothem. Antonie van Leeuwenhoek 2015;107:519–531.
Zech H, Thole S, Schreiber K, Kalhöfer D, Voget S, et al. Growth phase-dependent global protein and metabolite profiles of Phaeobacter gallaeciensis strain DSM 17395, a member of the marine Roseobacter-clade. Prpteomics 2009;9:3677–3697.
Schumann P. 5-Peptidoglycan structure. In: Rainey F and Oren A (eds). Methods in Microbiology. Academic Press;. pp. 101–129.
Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids.
Vieira S, Huber KJ, Neumann-Schaal M, Geppert A, Luckner M, et al. Usitatibacter rugosus gen. nov., sp. nov. and Usitatibacter palustris sp. nov., novel members of Usitatibacteraceae fam. nov. within the order Nitrosomonadales isolated from soil. Int J Syst Evol Microbiol 2021;71.
Vilchèze C, Jacobs WR. Isolation and analysis of Mycobacterium tuberculosis mycolic acids. Curr Protoc Microbiol 2007;Chapter 10:Unit 10A.3.
Bligh EG, Dyer WJ. A rapid method of total lipid extraction and purification. Can J Biochem Physiol 1959;37:911–917.
Tindall BJ, Sikorski J, Smibert RA, Krieg NR. Phenotypic characterization and the principles of comparative systematics. In: Methods for General and Molecular Microbiology. John Wiley & Sons, Ltd,. pp. 330–393.
Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012;19:455–477.
Madeira F, Madhusoodanan N, Lee J, Eusebi A, Niewielska A, et al. The EMBL-EBI Job Dispatcher sequence analysis tools framework in 2024. Nucleic Acids Res 2024;52:W521–W525.
Meier-Kolthoff JP, Göker M. TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nat Commun 2019;10:2182.
Ondov BD, Treangen TJ, Melsted P, Mallonee AB, Bergman NH, et al. Mash: fast genome and metagenome distance estimation using MinHash. Genome Biol 2016;17:132.
Lagesen K, Hallin P, Rødland EA, Staerfeldt H-H, Rognes T, et al. RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res 2007;35:3100–3108.
Lefort V, Desper R, Gascuel O. FastME 2.0: a comprehensive, accurate, and fast distance-based phylogeny inference program. Mol Biol Evol 2015;32:2798–2800.
Letunic I, Bork P. Interactive Tree of Life (iTOL) v6: recent updates to the phylogenetic tree display and annotation tool. Nucleic Acids Res 2024;52:W78–W82.
Cornet L, Durieu B, Baert F, D’hooge E, Colignon D, et al. The GENERA toolbox: unified and reproducible workflows for research in microbial genomics. GigaScience 2022;12:giad022.
Jain C, Rodriguez-R LM, Phillippy AM, Konstantinidis KT, Aluru S. High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. Nat Commun 2018;9:5114.
Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 2015;25:1043–1055.
Orakov A, Fullam A, Coelho LP, Khedkar S, Szklarczyk D, et al. GUNC: detection of chimerism and contamination in prokaryotic genomes. Genom Biol 2021;22:178.
Cornet L, Baurain D. Contamination detection in genomic data: more is not enough. Genom Biol 2022;23:60.
Emms DM, Kelly S. OrthoFinder: phylogenetic orthology inference for comparative genomics. Genom Biol 2019;20:238.
Katoh K, Misawa K, Kuma K, Miyata T. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res 2002;30:3059–3066.
Criscuolo A, Gribaldo S. BMGE (Block Mapping and Gathering with Entropy): a new software for selection of phylogenetic informative regions from multiple sequence alignments. BMC Evol Biol 2010;10:210.
Roure B, Rodriguez-Ezpeleta N, Philippe H. SCaFoS: a tool for selection, concatenation and fusion of sequences for phylogenomics. BMC Evol Biol 2007;7 Suppl 1:S2.
Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 2014;30:1312–1313.
Hitch TCA, Riedel T, Oren A, Overmann J, Lawley TD, et al. Automated analysis of genomic sequences facilitates high-throughput and comprehensive description of bacteria. ISME Commun 2021;1:16.
Eren AM, Esen ÖC, Quince C, Vineis JH, Morrison HG, et al. Anvi’o: an advanced analysis and visualization platform for ‘omics data. PeerJ 2015;3:e1319.
Blin K, Shaw S, Augustijn HE, Reitz ZL, Biermann F, et al. antiSMASH 7.0: new and improved predictions for detection, regulation, chemical structures and visualisation. Nucleic Acids Res 2023;51:W46–W50.
Terlouw BR, Blin K, Navarro-Muñoz JC, Avalon NE, Chevrette MG, et al. MIBiG 3.0: a community-driven effort to annotate experimentally validated biosynthetic gene clusters. Nucleic Acids Res 2023;51:D603–D610.
Navarro-Muñoz JC, Selem-Mojica N, Mullowney MW, Kautsar SA, Tryon JH, et al. A computational framework to explore large-scale biosynthetic diversity. Nat Chem Biol 2020;16:60–68.
Kohl M, Wiese S, Warscheid B. Cytoscape: software for visualization and analysis of biological networks. Methods Mol Biol 2011;696:291–303.
Carro L, Nouioui I, Sangal V, Meier-Kolthoff JP, Trujillo ME, et al. Genome-based classification of micromonosporae with a focus on their biotechnological and ecological potential. Sci Rep 2018;8:525.
Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P, et al. DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007;57:81–91.
Magarvey NA, Keller JM, Bernan V, Dworkin M, Sherman DH. Isolation and characterization of novel marine-derived actinomycete taxa rich in bioactive metabolites. Appl Environ Microbiol 2004;70:7520–7529.
Hardisson C, Suarez JE. Fine structure of spore formation and germination in Micromonospora chalcea. Microbiology 1979;110:233–237.
Cronan JE, Laporte D. Tricarboxylic acid cycle and glyoxylate bypass. EcoSal Plus 2005;1:10.
Spaans SK, Weusthuis RA, van der Oost J, Kengen SWM. NADPHgenerating systems in bacteria and archaea. Front Microbiol 2015;6.
Chavarría M, Nikel PI, Pérez-Pantoja D, de Lorenzo V. The EntnerDoudoroff pathway empowers Pseudomonas putida KT2440 with a high tolerance to oxidative stress. Environ Microbiol 2013;15:1772–1785.
Reher M, Fuhrer T, Bott M, Schönheit P. The nonphosphorylative Entner-Doudoroff pathway in the thermoacidophilic euryarchaeon Picrophilus torridus involves a novel 2-keto-3-deoxygluconatespecific aldolase. J Bacteriol 2010;192:964–974.
Mahendrarajah TA, Moody ERR, Schrempf D, Szánthó LL, Dombrowski N, et al. ATP synthase evolution on a cross-braced dated tree of life. Nat Commun 2023;14:7456.
Mayer F, Müller V. ATP synthases from archaea: structure and function. In: Roberts GCK (eds). Encyclopedia of Biophysics. Berlin, Heidelberg: Springer;. pp. 122–129.
Carro L, Golinska P, Nouioui I, Bull AT, Igual JM, et al. Micromonospora acroterricola sp. nov., a novel actinobacterium isolated from a high altitude Atacama Desert soil. Int J Syst Evol Microbiol 2019;69:3426–3436.
C Garcia L, Martínez-Molina E, Trujillo ME. Micromonospora pisi sp. nov., isolated from root nodules of Pisum sativum. Int J Syst Evol Microbiol 2010;60:331–337.
Xiang W, Yu C, Liu C, Zhao J, Yang L, et al. Micromonospora polyrhachis sp. nov., an actinomycete isolated from edible Chinese black ant (Polyrhachis vicina Roger). Int J Syst Evol Microbiol 2014;64:495–500.
Tamura T, Hatano K, Suzuki K-I. A new genus of the family Micromonosporaceae, Polymorphospora gen. nov., with description of Polymorphospora rubra sp. nov. Int J Syst Evol Microbiol 2006;56:1959–1964.