Modeling feed herbage proportion and modeling of the likelihood of feeding strategies focused on grazing and herbage consumption using milk Fourier-transform mid-infrared spectral analysis.
[en] Effectively evaluating and promoting pro-grazing practices necessitates the implementation of a verification system. To address this imperative, exploration of milk composition analysis as a means to assess grazing practices has garnered substantial attention. In this study, we used component predictions from milk Fourier-transform mid-infrared (FT-MIR) spectra to construct an indicator to estimate the proportion of herbage consumed by dairy cows and another indicator to validate grazing. This approach was developed and validated using 75 estimated bulk milk analyses, each associated with 3 variables related to feeding from the same day ± 3 d, totaling 526 observations. These 3 variables are based on the occupation time, harvested and conserved herbage, and other feeds from 7 farms in Luxembourg. Hierarchical clustering facilitated the effective segregation of observations into distinct groups, with one group predominantly focused on herbage and the other group on other feeds. Leveraging partial least squares discriminant analysis trained on FT-MIR predicted milk characteristics from both groups, we successfully developed an indicator-the probability of belonging to the herbage group-with a maximum accuracy of 0.93, a sensitivity of 0.94, and a specificity of 0.93 on the Luxembourg dataset. In a partial least squares regression, the cross-validation yielded results of predicting the percentage of herbage in the diet with an error of 8.77%. Notably, the indicator relied on FT-MIR predicted components expected to reflect a diet based on herbage, such as the total of C18:1 trans fatty acids and CLA. However, it also incorporated unexpected FT-MIR predicted parameters like milk acidity parameters, citrate content, and specific proteins such as lactoferrin. Finally, the developed indicators were tested on the 5,886,364 Walloon spectra collected between 2009 and 2023, as well as 23,718 Walloon spectra between 2023 and 2025 from 72 farms known to practice grazing. The annual trends were analyzed in the context of Walloon dairy production, helping to refine the selection of better indicators. These results could contribute to practical tools for monitoring and estimating days spent on pasture. Looking ahead, future research should aim to incorporate more comprehensive data, such as precise feed compositions, to further refine our understanding of the influence of specific herbage diets on milk composition and enhance the detection of associated changes.
Disciplines :
Agriculture & agronomy
Author, co-author :
Dichou, Killian ; Université de Liège - ULiège > TERRA Research Centre
Nickmilder, Charles ; Université de Liège - ULiège > Département GxABT > Echanges Eau - Sol - Plantes
Marvuglia, Antonino ; Luxembourg Institute of Science and Technology (LIST), 4362 Esch-sur-Alzette, Luxembourg
Soyeurt, Hélène ; Université de Liège - ULiège > Département GxABT > Modélisation et développement
Language :
English
Title :
Modeling feed herbage proportion and modeling of the likelihood of feeding strategies focused on grazing and herbage consumption using milk Fourier-transform mid-infrared spectral analysis.
FNR - Fonds National de la Recherche Luxembourg F.R.S.-FNRS - Fonds de la Recherche Scientifique SPW - Service Public de Wallonie
Funding number :
D65-1435; INTERFNRS/18/12987586; T.0221.19.
Funding text :
This work was supported by the Service Public de Wallonie (Namur, Belgium) with the project WALLeSmart (grant number D65-1435), as well as the FNR (Esch-sur-Alzette, Luxembourg) with the grant INTERFNRS/18/12987586 and the F.R.S-FNRS (Brussels, Belgium) with the grant T.0221.19. under the bilateral Simulating Economic and Environmental Impacts of Dairy Cattle Management Using Agent-Based Models (SIMBA) project.
Alothman, M., Hogan, S.A., Hennessy, D., Dillon, P., Kilcawley, K.N., O'Donovan, M., Tobin, J., Fenelon, M.A., O'Callaghan, T.F., The “grass-fed” milk story: Understanding the impact of pasture feeding on the composition and quality of bovine milk. Foods, 8, 2019, 350 https://doi.org/10.3390/foods8080350 31426489.
Axema Promotion and Services, CHRONOPATURE. AGRITECH DAY—6th edition: The International Conference of Technologies and Solutions for Efficient and Sustainable Agriculture. Paris, France, 2023, 111–113 https://agritechday.com/wp-content/uploads/2023/11/BookAGTD_2023_BD.pdf. (Accessed 4 September 2025)
Bär, C., Sutter, M., Kopp, C., Neuhaus, P., Portmann, R., Egger, L., Reidy, B., Bisig, W., Impact of herbage proportion, animal breed, lactation stage and season on the fatty acid and protein composition of milk. Int. Dairy J., 109, 2020, 104785 https://doi.org/10.1016/j.idairyj.2020.104785.
Beauregard, A., Dallaire, M.-P., Gervais, R., Chouinard, P.Y., Lactational performance of cows fed extruded flaxseed in commercial dairy herds. Animal - Open Space, 2, 2023, 100043 10.1016/j.anopes.2023.100043.
Birkinshaw, A., Sutter, M., Reidy, B., Jungo, L., Mueller, S., Kreuzer, M., Terranova, M., Evaluation and quantification of associations between commonly suggested milk biomarkers and the proportion of grassland-based feeds in the diets of dairy cows. PLoS One, 18, 2023, e0282515 https://doi.org/10.1371/journal.pone.0282515 36862746.
Cabiddu, A., Peratoner, G., Valenti, B., Monteils, V., Martin, B., Coppa, M., A quantitative review of on-farm feeding practices to enhance the quality of grassland-based ruminant dairy and meat products. Animal, 16, 2022, 100375 https://doi.org/10.1016/j.animal.2021.100375 34688562.
Capuano, E., Rademaker, J., van den Bijgaart, H., van Ruth, S.M., Verification of fresh grass feeding, pasture grazing and organic farming by FTIR spectroscopy analysis of bovine milk. Food Res. Int. 60 (2014), 59–65 https://doi.org/10.1016/j.foodres.2013.12.024.
Chassaing, C., Sibra, C., Verbič, J., Harstad, O.M., Golecký, J., Martin, B., Ferlay, A., Constant, I., Delavaud, C., Hurtaud, C., Pongrac, V.Ž., Agabriel, C., Mineral, vitamin A and fat composition of bulk milk related to European production conditions throughout the year. Dairy Sci. Technol. 96 (2016), 715–733 https://doi.org/10.1007/s13594-016-0300-7.
Christophe, O.S., Grelet, C., Bertozzi, C., Veselko, D., Lecomte, C., Höeckels, P., Werner, A., Auer, F.-J., Gengler, N., Dehareng, F., Soyeurt, H., Multiple breeds and countries' predictions of mineral contents in milk from milk mid-infrared spectrometry. Foods, 10, 2021, 2235 https://doi.org/10.3390/foods10092235 34574345.
Coelho Ribeiro, L.A., Bresolin, T., Rosa, G.J., Rume Casagrande, D., Danes, M.A.C., Dórea, J.R.R., Disentangling data dependency using cross-validation strategies to evaluate prediction quality of cattle grazing activities using machine learning algorithms and wearable sensor data. J. Anim. Sci., 99, 2021, skab206 https://doi.org/10.1093/jas/skab206 34223900.
Collomb, M., Bisig, W., Bütikofer, U., Sieber, R., Bregy, M., Etter, L., Fatty acid composition of mountain milk from Switzerland : Comparison of organic and integrated farming systems. Int. Dairy J. 18 (2008), 976–982 https://doi.org/10.1016/j.idairyj.2008.05.010.
Coppa, M., Chassaing, C., Sibra, C., Cornu, A., Verbič, J., Golecký, J., Engel, E., Ratel, J., Boudon, A., Ferlay, A., Martin, B., Forage system is the key driver of mountain milk specificity. J. Dairy Sci. 102 (2019), 10483–10499 https://doi.org/10.3168/jds.2019-16726 31495613.
Coppa, M., Martin, B., Hulin, S., Guillemin, J., Gauzentes, J.V., Pecou, A., Andueza, D., Prediction of indicators of cow diet composition and authentication of feeding specifications of Protected Designation of Origin cheese using mid-infrared spectroscopy on milk. J. Dairy Sci. 104 (2021), 112–125 https://doi.org/10.3168/jds.2020-18468 33162089.
Coulon, J., d'Hour, P., Capacité d'ingestion comparée de génisses et de vaches de race Holstein, Montbéliarde et Tarentaise. Ann. Zootech. 43 (1994), 389–392 https://doi.org/10.1051/animres:19940408.
CRAN, The Comprehensive R Archive Network. https://cran.r-project.org/, 2023. (Accessed 7 August 2025)
Cuvelier, C., Dufrasne, I., Hornick, J.-L., Froidmont, É., Knapp, É., Istasse, L., L'alimentation de la vache laitière: Physiologie et besoins–Aliments, calculs de ration, indicateurs d'évaluation des déséquilibres de la ration et pathologies d'origine nutritionnelle (Livret de l'Agriculture, no 22). 2021, Service public de Wallonie, Agriculture, Ressources naturelles et Environnement https://ediwall.wallonie.be/les-livrets-de-l-agriculture-22-l-alimentation-de-la-vache-laitiere-physiologie-et-besoins-aliments-calculs-de-ration-indicateurs-d-evaluation-des-desequilibres-de-la-ration-et-pathologies-d-origine-nutritionnelle-numerique-080283. (Accessed 7 August 2025)
De Brabander, D., De Campeneere, S., Ryckaert, I., Anthonissen, A., Melkveevoeding (ILVO Mededeling no 101). Vlaamse Overheid – Departement Landbouw en Visserij. https://www.rundveeloket.be/sites/default/files/inline-files/Brochure_Melkveevoeding_2011.pdf, 2011. (Accessed 7 August 2025)
De La Torre-Santos, S., Royo, L.J., Martínez-Fernández, A., Chocarro, C., Vicente, F., The mode of grass supply to dairy cows impacts on fatty acid and antioxidant profile of milk. Foods, 9, 2020, 1256 https://doi.org/10.3390/foods9091256 32911648.
Dewhurst, R.J., Moloney, A.P., 8. Modification of animal diets for the enrichment of dairy and meat products with omega-3 fatty acids. Jacobsen, C., Nielsen, N.S., Horn, A.F., S⊘rensen, A.-D. M., (eds.) Food Enrichment with Omega-3 Fatty Acids, 2013, Woodhead Publishing, 257–287 https://doi.org/10.1533/9780857098863.3.257.
Dewhurst, R.J., Shingfield, K.J., Lee, M.R.F., Scollan, N.D., Increasing the concentrations of beneficial polyunsaturated fatty acids in milk produced by dairy cows in high-forage systems. Anim. Feed Sci. Technol. 131 (2006), 168–206 https://doi.org/10.1016/j.anifeedsci.2006.04.016.
Dillon, P., Roche, J.R., Shalloo, L., Horan, B., Optimising financial return from grazing in temperate pastures. Murphy, J., (eds.) Utilisation of grazed grass in temperate animal systems, 2005, Wageningen Academic Publishers, 131–147.
Elgersma, A., Ellen, G., van der Horst, H., Boer, H., Dekker, P.R., Tamminga, S., Quick changes in milk fat composition from cows after transition from fresh grass to a silage diet. Anim. Feed Sci. Technol. 117 (2004), 13–27 https://doi.org/10.1016/j.anifeedsci.2004.08.003.
Ellis, K.A., Innocent, G., Grove-White, D., Cripps, P., McLean, W.G., Howard, C.V., Mihm, M., Comparing the fatty acid composition of organic and conventional milk. J. Dairy Sci. 89 (2006), 1938–1950 https://doi.org/10.3168/jds.S0022-0302(06)72261-5 16702257.
European Commission, The common agricultural policy at a glance. 2024, European Commission https://agriculture.ec.europa.eu/common-agricultural-policy/cap-overview/cap-glance_en. (Accessed 7 August 2025)
Grelet, C., Bastin, C., Gelé, M., Davière, J.-B., Johan, M., Werner, A., Reding, R., Fernández Pierna, J.A., Colinet, F.G., Dardenne, P., Gengler, N., Soyeurt, H., Dehareng, F., Development of Fourier transform mid-infrared calibrations to predict acetone, β-hydroxybutyrate, and citrate contents in bovine milk through a European dairy network. J. Dairy Sci. 99 (2016), 4816–4825 10.3168/jds.2015-10477.
Grelet, C., Dardenne, P., Soyeurt, H., Fernandez, J.A., Vanlierde, A., Stevens, F., Gengler, N., Dehareng, F., Large-scale phenotyping in dairy sector using milk MIR spectra: Key factors affecting the quality of predictions. Methods 186 (2021), 97–111 https://doi.org/10.1016/j.ymeth.2020.07.012 32763376.
Grelet, C., Froidmont, E., Foldager, L., Salavati, M., Hostens, M., Ferris, C.P., Ingvartsen, K.L., Crowe, M.A., Sorensen, M.T., Fernandez Pierna, J.A., Vanlierde, A., Gengler, N., E. Gplus Consortium. Dehareng, F., Potential of milk mid-infrared spectra to predict nitrogen use efficiency of individual dairy cows in early lactation. J. Dairy Sci. 103 (2020), 4435–4445 10.3168/jds.2019-17910.
Grelet, C., Larsen, T., Crowe, M.A., Wathes, D.C., Ferris, C.P., Ingvartsen, K.L., Marchitelli, C., Becker, F., Vanlierde, A., Leblois, J., Schuler, U., Auer, F.J., Köck, A., Dale, L., Sölkner, J., Christophe, O., Hummel, J., Mensching, A., Fernández Pierna, J.A., Soyeurt, H., Calmels, M., Reding, R., Gelé, M., Chen, Y., Gengler, N., E. Gplus Consortium. Dehareng, F., Prediction of key milk biomarkers in dairy cows through milk mid-infrared spectra and international collaborations. J. Dairy Sci. 107 (2024), 1669–1684 10.3168/jds.2023-23843.
Grelet, C., Pierna, J.A.F., Dardenne, P., Soyeurt, H., Vanlierde, A., Colinet, F., Bastin, C., Gengler, N., Baeten, V., Dehareng, F., Standardization of milk mid-infrared spectrometers for the transfer and use of multiple models. J. Dairy Sci. 100 (2017), 7910–7921 https://doi.org/10.3168/jds.2017-12720 28755945.
Grelet, C., Pierna, J.F., Soyeurt, H., Dehareng, F., Gengler, N., Dardenne, P., Creation of universal MIR calibrations by standardization of milk spectra: Example of fatty acids. Book of Abstracts of the 65th Annual Meeting of the European Association for Animal Production, 2014, European Federation of Animal Science, 108.
Grelet, C., Simon, H., Leblois, J., Christophe, O., Jattiot, M., Gaudillère, N., Reding, R., Wavreille, J., Strang, E.J.P., Auer, F.J., Goossens, K., Chevaux, E., Gengler, N., Dehareng, F., Can we get information on dairy cow chronic stress biomarkers from milk mid-infrared spectra?. J. Dairy Sci. 108 (2025), 10186–10202 10.3168/jds.2025-26502.
Grelet, C., Vanlierde, A., Hostens, M., Foldager, L., Salavati, M., Ingvartsen, K.L., Crowe, M., S⊘rensen, M.T., Froidmont, É., Ferris, C.P., Marchitelli, C., Becker, F., Larsen, T., Carter, F., Dehareng, F., E. Gplus Consortium. Potential of milk mid-IR spectra to predict metabolic status of cows through blood components and an innovative clustering approach. Animal 13 (2019), 649–658 10.1017/S1751731118001751.
Gulati, A., Galvin, N., Lewis, E., Hennessy, D., O'Donovan, M., McManus, J.J., Fenelon, M.A., Guinee, T.P., Outdoor grazing of dairy cows on pasture versus indoor feeding on total mixed ration: Effects on gross composition and mineral content of milk during lactation. J. Dairy Sci. 101 (2018), 2710–2723 https://doi.org/10.3168/jds.2017-13338 28964522.
Haskell, M.J., Rennie, L.J., Bowell, V.A., Bell, M.J., Lawrence, A.B., Housing system, milk production, and zero-grazing effects on lameness and leg injury in dairy cows. J. Dairy Sci. 89 (2006), 4259–4266 https://doi.org/10.3168/jds.S0022-0302(06)72472-9 17033013.
Hayes, E., Wallace, D., O'Donnell, C., Greene, D., Hennessy, D., O'Shea, N., Tobin, J.T., Fenelon, M.A., Trend analysis and prediction of seasonal changes in milk composition from a pasture-based dairy research herd. J. Dairy Sci. 106 (2023), 2326–2337 https://doi.org/10.3168/jds.2021-21483 36759275.
Huang, G., Wang, J., Liu, K., Wang, F., Zheng, N., Zhao, S., Qu, X., Yu, J., Zhang, Y., Wang, J., Effect of flaxseed supplementation on milk and plasma fatty acid composition and plasma parameters of Holstein dairy cows. Animals (Basel), 12, 2022, 1898 https://doi.org/10.3390/ani12151898 35892548.
Iqbal, M.W., Draganova, I., Morel, P.C.H., Morris, S.T., Validation of an accelerometer sensor-based collar for monitoring grazing and rumination behaviours in grazing dairy cows. Animals (Basel), 11, 2021, 2724 https://doi.org/10.3390/ani11092724 34573689.
Kostovska, R., Horan, B., Drouin, G., Tobin, J.T., O'Callaghan, T.F., Kelly, A.L., Gómez-Mascaraque, L.G., Effects of multispecies pasture diet and cow breed on milk composition and quality in a seasonal spring-calving dairy production system. J. Dairy Sci. 107 (2024), 10256–10267 https://doi.org/10.3168/jds.2024-24975 39004133.
Kučević, D., Trivunović, S., Bogdanović, V., Čobanović, K., Janković, D., Stanojević, D., Composition of raw milk from conventional and organic dairy farming. Biotechnol. Anim. Husb. 32 (2016), 133–143 https://doi.org/10.2298/BAH1602133K.
Kuhn, M., Wing, J., Weston, S., Williams, A., Keefer, C., Engelhardt, A., Cooper, T., Mayer, Z., Kenkel, B., R Core Team, Benesty, M., Lescarbeau, R., Ziem, A., Scrucca, L., Tang, Y., Candan, C., Hunt, T., caret: Classification and Regression Training (Version 6.0-94) [Logiciel]. https://cran.r-project.org/web/packages/caret/index.html, 2023. (Accessed 7 August 2025)
Leduc, A., Souchet, S., Gelé, M., Le Provost, F., Boutinaud, M., Effect of feed restriction on dairy cow milk production: A review. J. Anim. Sci., 99, 2021, skab130 https://doi.org/10.1093/jas/skab130 34196701.
Legrand, A.L., von Keyserlingk, M.G., Weary, D.M., Preference and usage of pasture versus free-stall housing by lactating dairy cattle. J. Dairy Sci. 92 (2009), 3651–3658 https://doi.org/10.3168/jds.2008-1733 19620646.
Liland, K.H., Mevik, B.-H., Wehrens, R., Hiemstra, P., pls: Partial Least Squares and Principal Component Regression (Version 2.8-3) [Logiciel]. https://cran.r-project.org/web/packages/pls/index.html, 2023.
Mambrini, M., Peyraud, J., Hetault, H., Stephant, A., Texier, M., Mean retention time in digestive tract and digestion of fresh perennial ryegrass by lactating dairy cows: Influence of grass maturity and comparison with a maize silage diet. Reprod. Nutr. Dev. 34 (1994), 9–23 https://doi.org/10.1051/rnd:19940102 8129846.
Manzocchi, E., Martin, B., Bord, C., Verdier-Metz, I., Bouchon, M., De Marchi, M., Constant, I., Giller, K., Kreuzer, M., Berard, J., Musci, M., Coppa, M., Feeding cows with hay, silage, or fresh herbage on pasture or indoors affects sensory properties and chemical composition of milk and cheese. J. Dairy Sci. 104 (2021), 5285–5302 https://doi.org/10.3168/jds.2020-19738 33685688.
Musati, M., Coppa, M., Delbès, C., Verdier-Metz, I., Popova, M., Niderkorn, V., Bouchon, M., Farizon, Y., Enjalbert, F., Renna, M., Lussiana, C., Mangione, G., Martin, B., Ferlay, A., The ruminal and faecal microbiota, digestion processes, and milk composition of dairy cows are modified by the botanical biodiversity of pastures. Animal, 19, 2025, 101537 10.1016/j.animal.2025.101537.
O'Brien, B., Hennessy, D., Scientific appraisal of the Irish grass-based milk production system as a sustainable source of premium quality milk and dairy products. Ir. J. Agric. Food Res. 56 (2017), 120–129 https://doi.org/10.1515/ijafr-2017-0011.
O'Callaghan, T., Hennessy, D., Mcauliffe, S., Sheehan, J., Kilcawley, K., Dillon, P., Ross, R.P., Stanton, C., The effect of cow feeding system on the composition and quality of milk and dairy products. Paper presented at the Grass-Fed Dairy Conference, Naas, Co. Kildare, Ireland. https://www.researchgate.net/publication/328687482_The_effect_of_cow_feeding_system_on_the_composition_and_quality_of_milk_and_dairy_products, 2018. (Accessed 7 August 2025)
Olmos, G., Boyle, L., Hanlon, A., Patton, J., Murphy, J.J., Mee, J.F., Hoof disorders, locomotion ability and lying times of cubicle-housed compared to pasture-based dairy cows. Livest. Sci. 125 (2009), 199–207 https://doi.org/10.1016/j.livsci.2009.04.009.
POSIT, Posit. https://www.posit.co/, 2024.
Soyeurt, H., Gerards, C., Nickmilder, C., Bindelle, J., Franceschini, S., Dehareng, F., Veselko, D., Bertozzi, C., Gengler, N., Marvuglia, A., Bayram, A., Tedde, A., Prediction of indirect indicators of a grass-based diet by milk Fourier transform mid-infrared spectroscopy to assess the feeding typologies of dairy farms. Animals (Basel), 12, 2022, 2663 https://doi.org/10.3390/ani12192663 36230404.
Stergiadis, S., Qin, N., Faludi, G., Beauclercq, S., Pitt, J., Desnica, N., Pétursdóttir, Á.H., Newton, E.E., Angelidis, A.E., Givens, I., Humphries, D.J., Gunnlaugsdóttir, H., Juniper, D.T., Mineral concentrations in bovine milk from farms with contrasting grazing management. Foods, 10, 2021, 2733 https://doi.org/10.3390/foods10112733 34829015.
The Forage and Grazing Terminology Committee. Grazing Terminology. 2009, Forage Information System https://forages.oregonstate.edu/fi/topics/pasturesandgrazing/grazingsystemdesign/grazingterminology. (Accessed 7 August 2025)
Timlin, M., Tobin, J.T., Brodkorb, A., Murphy, E.G., Dillon, P., Hennessy, D., O'Donovan, M., Pierce, K.M., O'Callaghan, T.F., The impact of seasonality in pasture-based production systems on milk composition and functionality. Foods, 10, 2021, 607 https://doi.org/10.3390/foods10030607 33809356.
van den Oever, S.P., Haselmann, A., Schreiner, M., Fuerst-Waltl, B., Zebeli, Q., Mayer, H.K., Knaus, W., Hay versus silage: Does hay feeding positively affect milk composition?. Int. Dairy J., 118, 2021, 105024 https://doi.org/10.1016/j.idairyj.2021.105024.
Ward, J.H., Hierarchical grouping to optimize an objective function. J. Am. Stat. Assoc. 58 (1963), 236–244 10.1080/01621459.1963.10500845.
Wattiaux, M.A., Dairy Essentials: Nutrition and Feeding, Reproduction and Genetic Selection, Lactation and Milking, Raising Dairy Heifers. 1995, Babcock Institute for International Dairy Research and Development, Madison, WI.
White, S.L., Bertrand, J.A., Wade, M.R., Washburn, S.P., Green, J.T. Jr., Jenkins, T.C., Comparison of fatty acid content of milk from Jersey and Holstein cows consuming pasture or a total mixed ration. J. Dairy Sci. 84 (2001), 2295–2301 https://doi.org/10.3168/jds.S0022-0302(01)74676-0 11699461.
Woodward, S.J.R., Neal, M.B., Cross, P.S., Preliminary investigation into the feasibility of combining satellite and GPS data to identify pasture growth and grazing. J. N. Z. Grasslands 81 (2019), 47–54 https://doi.org/10.33584/jnzg.2019.81.404.
Baumont, R., Dulphy, J., Sauvant, D., Meschy, F., Aufrère, J., Peyraud, J., Alimentation des bovins, ovins et caprins. Besoins des animaux–Valeur des aliments. 2010, Éditions Quæ, Versailles, France https://wiki.tripleperformance.fr/images/fr/2/20/Alimentations_des_caprins%2C_ovins%2C_bovins.pdf. (Accessed 7 August 2025)
Hammami, H., Colinet, F., Bastin, C., Grelet, C., Vanlierde, A., Dehareng, F., Gengler, N., Using milk based biomarkers to monitor the physiological state of dairy cows in large populations. 68th Annual Meeting of the European Federation of Animal Science, Tallinn, Estonia. 2017, European Federation of Animal Science https://www.cra.wallonie.be/fr/using-milk-based-biomarkers-to-monitor-the-physiological-state-of-dairy-cows-in-large-populations-2017.