Burgard, C ; Laboratoire d'Océanographie et du Climat: Expérimentations et Approches Numériques (LOCEAN), Sorbonne Université, CNRS, MNHN, Paris, France ; IGE, University Grenoble Alpes, CNRS, INRAE, Grenoble INP, Grenoble, France
Jourdain, N. C. ; IGE, University Grenoble Alpes, CNRS, INRAE, Grenoble INP, Grenoble, France
Mosbeux, C; IGE, University Grenoble Alpes, CNRS, INRAE, Grenoble INP, Grenoble, France
Caillet, J ; IGE, University Grenoble Alpes, CNRS, INRAE, Grenoble INP, Grenoble, France ; Thayer School of Engineering, Dartmouth College, Hanover, USA
Mathiot, P; IGE, University Grenoble Alpes, CNRS, INRAE, Grenoble INP, Grenoble, France
Kittel, Christoph ; Université de Liège - ULiège > Département de géographie > Climatologie et Topoclimatologie ; IGE, University Grenoble Alpes, CNRS, INRAE, Grenoble INP, Grenoble, France ; Physical Geography Research Group, Department of Geography, Vrije Universiteit Brussel, Brussels, Belgium
Language :
English
Title :
Ocean warming threatens the viability of 60% of Antarctic ice shelves
C.S.M. Doake H.F.J. Corr H. Rott P. Skvarca N.W. Young Breakup and conditions for stability of the northern Larsen Ice Shelf, Antarctica Nature 391 778 780 1998Natur.391.778D 1:CAS:528:DyaK1cXhtlCjsbk%3D
R. Reese G.H. Gudmundsson A. Levermann R. Winkelmann The far reach of ice-shelf thinning in Antarctica Nat. Clim. Change 8 53 57 2018NatCC..8..53R
J. Fürst et al. The safety band of antarctic ice shelves Nat. Clim. Change 6 479 482 2016NatCC..6.479F
E. Rignot et al. Accelerated ice discharge from the Antarctic Peninsula following the collapse of Larsen B Ice Shelf Geophys. Res. Lett. 31 L18401 2004GeoRL.3118401R
Scambos, T. A., Bohlander, J. A., Shuman, C. A. Skvarca, P. Glacier acceleration and thinning after ice shelf collapse in the Larsen B embayment, Antarctica. Geophys. Res. Lett. https://doi.org/10.1029/2004GL020670 (2004).
Robin, G. d. Q. & Adie, R. J. in Antarctic Research (eds Priestley, R. E., Adie, R. J. & Robin, G. d. Q.) 100–117 (Butterworths, London, 1964).
J.H. Mercer West Antarctic ice sheet and CO2 greenhouse effect: a threat of disaster Nature 271 321 325 1978Natur.271.321M
D. Vaughan C. Doake Recent atmospheric warming and retreat of ice shelves on the Antarctic Peninsula Nature 379 328 331 1996Natur.379.328V 1:CAS:528:DyaK28XotVOmsw%3D%3D
A. Cook D. Vaughan Overview of areal changes of the ice shelves on the Antarctic Peninsula over the past 50 years Cryosphere 4 77 98 2010TCry..4..77C
J. Weertman Stability of the junction of an ice sheet and an ice shelf J. Glaciol. 13 3 11 1974JGlac.13..3W
C. Schoof Ice sheet grounding line dynamics: steady states, stability, and hysteresis J. Geophys. Res. 112 F03S28 2007JGRF.112.3S28S
R. DeConto D. Pollard Contribution of Antarctica to past and future sea-level rise Nature 531 591 597 2016Natur.531.591D 1:CAS:528:DC%2BC28XltlSqu7c%3D 27029274
J.N. Bassis et al. Stability of ice shelves and ice cliffs in a changing climate Annu. Rev. Earth Planet Sci. 52 221 247 2024AREPS.52.221B 1:CAS:528:DC%2BB2cXhtVygurs%3D
B. Davison et al. Annual mass budget of Antarctic ice shelves from 1997 to 2021 Sci. Adv. 9 eadi0186 37824617 11650781
F. Paolo H. Fricker L. Padman Volume loss from Antarctic ice shelves is accelerating Science 348 327 331 2015Sci..348.327P 1:CAS:528:DC%2BC2MXmsVSqt7w%3D 25814064
C. Kittel et al. Diverging future surface mass balance between the Antarctic ice shelves and grounded ice sheet Cryosphere 15 1215 1236 2021TCry..15.1215K
J.M. van Wessem M.R. van den Broeke B. Wouters S. Lhermitte Variable temperature thresholds of melt pond formation on antarctic ice shelves Nat. Clim. Change 13 161 166 2023NatCC.13.161V
R. Timmermann H.H. Hellmer Southern Ocean warming and increased ice shelf basal melting in the twenty-first and twenty-second centuries based on coupled ice-ocean finite-element modelling Ocean Dyn. 63 1011 1026 2013OcDyn.63.1011T
P. Mathiot N. Jourdain Southern Ocean warming and Antarctic ice shelf melting in conditions plausible by late 23rd century in a high-end scenario Ocean Sci. 19 1595 1615 2023OcSci.19.1595M
T.A. Scambos C. Hulbe M. Fahnestock J. Bohlander The link between climate warming and break-up of ice shelves in the Antarctic Peninsula J. Glaciol. 46 516 530 2000JGlac.46.516S
Scambos, T, Hulbe, C. & Fahnestock, M. in Antarctic Peninsula Climate Variability: Historical and Paleoenvironmental Perspectives (eds Domack, E., Levente, A., Burnet, A., Bindschadler, R., Convey, P. & Kirby, M.) 79–92 (American Geophysical Union, Washington DC, 2003).
P. Skvarca H. De Angelis A.F. Zakrajsek Climatic conditions, mass balance and dynamics of Larsen B Ice Shelf, Antarctic Peninsula, prior to collapse Ann. Glaciol. 39 557 562 2004AnGla.39.557S
C.-Y. Lai et al. Vulnerability of Antarctica’s ice shelves to meltwater-driven fracture Nature 584 574 578 2020Natur.584.574L 1:CAS:528:DC%2BB3cXhs12jt7fE 32848224
A. Shepherd D. Wingham T. Payne P. Skvarca Larsen Ice Shelf has progressively thinned Science 302 856 859 2003Sci..302.856S 1:CAS:528:DC%2BD3sXos1Cmtr4%3D 14593176
C. Walker et al. The multi-decadal collapse of East Antarctica’s Conger-Glenzer Ice Shelf Nat. Geosci. 17 1240 1248 2024NatGe.17.1240W 1:CAS:528:DC%2BB2cXis1yjtLfL
C.T. Wild et al. Weakening of the pinning point buttressing Thwaites Glacier, West Antarctica Cryosphere 16 397 417 2022TCry..16.397W
J.T.M. Lenaerts et al. Climate and surface mass balance of coastal West Antarctica resolved by regional climate modelling Ann. Glaciol. 59 29 41 2018AnGla.59..29L
M. Donat-Magnin et al. Future surface mass balance and surface melt in the Amundsen sector of the West Antarctic Ice Sheet Cryosphere 15 571 593 2021TCry..15.571D
E. Rignot D.G. Vaughan M. Schmeltz T. Dupont D. MacAyeal Acceleration of Pine island and Thwaites glaciers, west Antarctica Ann. Glaciol. 34 189 194 2002AnGla.34.189R
E. Rignot J. Mouginot M. Morlighem H. Seroussi B. Scheuchl Widespread, rapid grounding line retreat of Pine Island, Thwaites, Smith, and Kohler glaciers, West Antarctica, from 1992 to 2011 Geophys. Res. Lett. 41 3502 3509 2014GeoRL.41.3502R
S. Lhermitte et al. Damage accelerates ice shelf instability and mass loss in Amundsen Sea Embayment Proc. Natl Acad. Sci. USA 117 24735 24741 2020PNAS.11724735L 1:CAS:528:DC%2BB3cXitVSrtrrL 32929004 7547219
H. Seroussi et al. Insights into the vulnerability of Antarctic glaciers from the ISMIP6 ice sheet model ensemble and associated uncertainty Cryosphere 17 5197 5217 2023TCry..17.5197S
V. Eyring et al. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization Geosci. Model Dev. 9 1937 1958 2016GMD...9.1937E
N.C. Jourdain C. Amory C. Kittel G. Durand Changes in Antarctic surface conditions and potential for ice shelf hydrofracturing from 1850 to 2200 Cryosphere 19 1641 1674 2025TCry..19.1641J
C. Burgard N. Jourdain R. Reese A. Jenkins P. Mathiot An assessment of basal melt parameterisations for Antarctic ice shelves Cryosphere 16 4931 4975 2022TCry..16.4931B
C. Burgard et al. Emulating present and future simulations of melt rates at the base of Antarctic ice shelves with neural networks J. Adv. Model. Earth Syst. 15 e2023MS003829 2023JAMES.1503829B
J.-Y. Park et al. Future sea-level projections with a coupled atmosphere–ocean–ice-sheet model Nat. Commun. 14 2023NatCo.14.636P 1:CAS:528:DC%2BB3sXjtlKiurk%3D 36788205 9929224 636
V. Coulon et al. Disentangling the drivers of future Antarctic ice loss with a historically calibrated ice-sheet model Cryosphere 18 653 681 2024TCry..18.653C
M. Morlighem et al. The West Antarctic Ice Sheet may not be vulnerable to marine ice cliff instability during the 21st century Sci. Adv. 10 eado7794 39167647 11338217
D. Benn et al. Rapid fragmentation of Thwaites Eastern Ice Shelf Cryosphere 16 2545 2564 2022TCry..16.2545B
C. Wild et al. Rift propagation signals the last act of the Thwaites Eastern Ice Shelf despite low basal melt rates J. Glaciol. 70 e21
J. De Rydt K. Naughten Geometric amplification and suppression of ice-shelf basal melt in West Antarctica Cryosphere 18 1863 1888 2024TCry..18.1863D
A.T. Bradley D.T. Bett P. Dutrieux J. De Rydt P.R. Holland The influence of Pine Island ice shelf calving on basal melting J. Geophys. Res. 127 e2022JC018621 2022JGRC.12718621B
R. Beadling et al. Representation of Southern Ocean properties across coupled model intercomparison project generations: CMIP3 to CMIP6 J. Clim. 33 6555 6581 2020JCli..33.6555B
C. Heuzé Antarctic bottom water and North Atlantic deep water in CMIP6 models Ocean Sci. 17 59 90 2021OcSci.17..59H
R. Smith et al. Coupling the U.K. Earth System Model to dynamic models of the Greenland and Antarctic ice sheets J. Adv. Model. Earth Syst. 13 e2021MS002520 2021JAMES.1302520S
D.F. Martin S.L. Cornford A.J. Payne Millennial-scale vulnerability of the Antarctic Ice Sheet to regional ice shelf collapse Geophys. Res. Lett. 46 1467 1475 2019GeoRL.46.1467M
E. Rignot et al. Four decades of Antarctic Ice Sheet mass balance from 1979–2017 Proc. Natl Acad. Sci. USA 116 1095 1103 2019PNAS.116.1095R 1:CAS:528:DC%2BC1MXhsF2nu78%3D 30642972 6347714
Morlighem, M. MEaSUREs BedMachine Antarctica, Version 2 (2020) (NASA National Snow and Ice Data Center Distributed Active Archive Center; accessed 6 October 2025).
Jourdain, N. C. nicojourdain/CMIP6_data_to_ISMIP6_grid: v1.0. Zenodo https://doi.org/10.5281/zenodo.12755910 (2024).
N. Jourdain et al. A protocol for calculating basal melt rates in the ISMIP6 Antarctic ice sheet projections Cryosphere 14 3111 3134 2020TCry..14.3111J
A. Beckmann H. Goosse A parameterization of ice shelf-ocean interaction for climate models Ocean Model. 5 157 170 2003OcMod..5.157B
P. Holland A. Jenkins D. Holland The response of ice shelf basal melting to variations in ocean temperature J. Clim. 21 2558 2572 2008JCli..21.2558H
A. Jenkins et al. West Antarctic Ice Sheet retreat in the Amundsen Sea driven by decadal oceanic variability Nat. Geosci. 11 733 738 2018NatGe.11.733J 1:CAS:528:DC%2BC1cXhsV2ksL7F
W. Lazeroms A. Jenkins G. Gudmunsson R. van de Wal Modelling present-day basal melt rates for Antarctic ice shelves using a parametrization of buoyant meltwater plumes Cryosphere 12 49 70 2018TCry..12..49L
W. Lazeroms A. Jenkins S. Rienstra R. van de Wal An analytical derivation of ice-shelf basal melt based on the dynamics of meltwater plumes J. Phys. Oceanogr. 49 917 939 2019JPO..49.917L
R. Reese T. Albrecht M. Mengel X. Asay-Davis R. Winkelmann Antarctic sub-shelf melt rates via PICO Cryosphere 12 1969 1985 2018TCry..12.1969R
E. Lambert C. Burgard Brief communication: sensitivity of Antarctic ice shelf melting to ocean warming across basal melt models Cryosphere 19 2495 2505 2025TCry..19.2495L
Madec, G. & the NEMO System Team. NEMO ocean engine reference manual. Zenodo https://doi.org/10.5281/zenodo.1464816 (2019).
H. Tsujino et al. JRA-55 based surface dataset for driving ocean-sea-ice models (JRA55-do) Ocean Model. 130 79 139 2018OcMod.130..79T
E. Rignot S. Jacobs J. Mouginot B. Scheuchl Ice-shelf melting around Antarctica Science 341 266 270 2013Sci..341.266R 1:CAS:528:DC%2BC3sXhtFSms7fO 23765278
H. Gallée G. Schayes Development of a three-dimensional meso-γ primitive equation model: katabatic winds simulation in the area of Terra Nova Bay, Antarctica Mon. Weather Rev. 122 671 685 1994MWRv.122.671G
B. Franco X. Fettweis C. Lang M. Erpicum Impact of spatial resolution on the modelling of the Greenland ice sheet surface mass balance between 1990–2010, using the regional climate model MAR Cryosphere 6 695 711 2012TCry..6.695F
B. Noël et al. Higher Antarctic ice sheet accumulation and surface melt rates revealed at 2 km resolution Nat. Commun. 14 2023NatCo.14.7949N 38040701 10692123 7949
S. Sun et al. Antarctic ice sheet response to sudden and sustained ice-shelf collapse (ABUMIP) J. Glaciol. 66 891 904 2020JGlac.66.891S
O. Gagliardini et al. Capabilities and performance of Elmer/Ice, a new-generation ice sheet model Geosci. Model Dev. 6 1299 1318 2013GMD...6.1299G
J. Brondex F. Gillet-Chaulet O. Gagliardini Sensitivity of centennial mass loss projections of the Amundsen basin to the friction law Cryosphere 13 177 195 2019TCry..13.177B
E. Klein et al. Annual cycle in flow of Ross Ice Shelf, Antarctica: contribution of variable basal melting J. Glaciol. 66 861 875 2020JGlac.66.861K
C. Mosbeux L. Padman E. Klein P. Bromirski H. Fricker Seasonal variability in Antarctic ice shelf velocities forced by sea surface height variations Cryosphere 17 2585 2606 2023TCry..17.2585M
F. Gillet-Chaulet et al. Assimilation of surface velocities acquired between 1996 and 2010 to constrain the form of the basal friction law under Pine Island Glacier Geophys. Res. Lett. 43 10,311–10,321
G.H. Gudmundsson F.S. Paolo S. Adusumilli H. Fricker Instantaneous Antarctic ice sheet mass loss driven by thinning ice shelves Geophys. Res. Lett. 46 13903 13909 2019GeoRL.4613903G
G. Meehl et al. Context for interpreting equilibrium climate sensitivity and transient climate response from the CMIP6 Earth system models Sci. Adv. 6 eaba1981 2020SciA..6.1981M 32637602 7314520
Rignot, E., Mouginot, J. Scheuchl, B. MEaSUREs InSAR-based Antarctica Ice Velocity map, Version 2 (2017) (NASA National Snow and Ice Data Center Distributed Active Archive Center; accessed 6 October 2025).
J.M. van Wessem et al. Modelling the climate and surface mass balance of polar ice sheets using RACMO2—Part 2: Antarctica (1979–2016) Cryosphere 12 1479 1498 2018TCry..12.1479M
Forster, P. et al. in The Earth’s Energy Budget, Climate Feedbacks, and Climate Sensitivity. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (eds Masson-Delmotte, V. et al.) 923–1054 (IPCC, Cambridge Univ. Press, 2021).
Mastrandrea, M. et al. Guidance Note for Lead Authors of the IPCC Fifth Assessment Report on Consistent Treatment of Uncertainties. Intergovernmental Panel on Climate Change (IPCC, 2010).