[en] Perennial firn aquifers (PFAs) are year-round bodies of liquid water within firns, which modulate meltwater runoff to crevasses, potentially impacting ice-shelf and icesheet stability. Recently identified in the Antarctic Peninsula, PFAs form in regions with both high surface melt and snow accumulation rates and are expected to expand due to the anticipated increase in surface melt and snowfall. Using a firn model to predict future Antarctic PFAs for multiple climatic forcings is relatively computationally expensive. To address this, we developed an XGBoost perennial firn aquifer emulator, a fast machine learning model. It was trained, using a scenario and spatial blocking evaluation approach, on PFA output of simulations from the firn densification model IMAU-FDM, which was forced by the combined regional climate model RACMO2.3p2 and the global climate model CESM2 for three emission scenarios (SSP1-2.6, SSP2-4.5 and SSP5-8.5). The trained emulator was applied on nine additional forcings (2015-2100) from the regional climate models MAR and HIRHAM in combination with five global climate models. We show that the emulator is robust, explaining at least 89 % of the variance in PFA presence and meltwater storage. Our results indicate that, for the SSP1-2.6 and SSP2-4.5 scenarios, PFAs remain mostly restricted to the Antarctic Peninsula. For SSP5-8.5, PFAs expand to Ellsworth Land in six out of the seven simulations and to Enderby Land in East Antarctica in five out of the seven simulations. Furthermore, the emulator predicts PFAs for similar surface melt and accumulation conditions when forced with MAR or RACMO data. For HIRHAM these conditions are slightly different, due to the different relationship between temperature, accumulation and melt in HIRHAM compared with RACMO. Overall, our findings show that PFAs are likely to expand in a warmer Antarctica, irrespective of the emission scenario, increasing the risk that an ice shelf collapses due to hydrofracturing.
Disciplines :
Earth sciences & physical geography
Author, co-author :
Veldhuijsen, Sanne; Institute for Marine and Atmospheric Research Utrecht, Utrecht University, Utrecht, the Netherlands
Van De Berg, Willem; Institute for Marine and Atmospheric Research Utrecht, Utrecht University, Utrecht, the Netherlands
Kuipers Munneke, Peter; Institute for Marine and Atmospheric Research Utrecht, Utrecht University, Utrecht, the Netherlands
Hansen, Nicolaj; Department of National Centre for Climate Research (NCKF), Danish Meteorological Institute, Copenhagen, Denmark
Boberg, Fredrik; Department of National Centre for Climate Research (NCKF), Danish Meteorological Institute, Copenhagen, Denmark
Kittel, Christoph ; Université de Liège - ULiège > Département de géographie > Climatologie et Topoclimatologie ; Institut des Géosciences de l'Environnement (IGE), Univ. Grenoble Alpes/CNRS, IRD/G-INP, Grenoble, France ; Physical Geography research group, Department of Geography, Vrije Universiteit Brussel, Brussels, Belgium
Amory, Charles ; Université de Liège - ULiège > Département de géographie > Climatologie et Topoclimatologie ; Institut des Géosciences de l'Environnement (IGE), Univ. Grenoble Alpes/CNRS, IRD/G-INP, Grenoble, France
Van Den Broeke, Michiel; Institute for Marine and Atmospheric Research Utrecht, Utrecht University, Utrecht, the Netherlands
Language :
English
Title :
Emulating the expansion of Antarctic perennial firn aquifers in the 21st century
Anilkumar, R., Bharti, R., Chutia, D., and Aggarwal, S. P.: Modelling point mass balance for the glaciers of the Central European Alps using machine learning techniques, The Cryosphere, 17, 2811-2828, https://doi.org/10.5194/tc-17-2811-2023, 2023.
Arthern, R. J., Vaughan, D. G., Rankin, A. M., Mulvaney, R., and Thomas, E. R.: In situ measurements of Antarctic snow compaction compared with predictions of models, J. Geophys. Res.-Earth, 115, https://doi.org/10.1029/2009JF001306, 2010.
Banwell, A. F., MacAyeal, D. R., and Sergienko, O. V.: Breakup of the Larsen B Ice Shelf triggered by chain reaction drainage of supraglacial lakes, Geophys. Res. Lett., 40, 5872-5876, https://doi.org/10.1002/2013GL057694, 2013.
Bell, R. E., Banwell, A. F., Trusel, L. D., and Kingslake, J.: Antarctic surface hydrology and impacts on ice-sheet mass balance, Nat. Clim. Change, 8, 1044-1052, https://doi.org/10.1038/s41558-018-0326-3, 2018.
Boberg, F., Mottram, R., Hansen, N., Yang, S., and Langen, P. L.: Uncertainties in projected surface mass balance over the polar ice sheets from dynamically downscaled EC-Earth models, The Cryosphere, 16, 17-33, https://doi.org/10.5194/tc-16-17-2022, 2022.
Bozkurt, D., Bromwich, D. H., Carrasco, J., and Rondanelli, R.: Temperature and precipitation projections for the Antarctic Peninsula over the next two decades: contrasting global and regional climate model simulations, Clim. Dynam., 56, 3853-3874, https://doi.org/10.1007/s00382-021-05667-2, 2021.
Braun, M., Humbert, A., and Moll, A.: Changes of Wilkins Ice Shelf over the past 15 years and inferences on its stability, The Cryosphere, 3, 41-56, https://doi.org/10.5194/tc-3-41-2009, 2009.
Brils, M., Munneke, P. K., Jullien, N., Tedstone, A. J., Machguth, H., van de Berg, W., and van den Broeke, M.: Climatic drivers of ice slabs and firn aquifers in Greenland, Geophys. Res. Lett., 51, e2023GL106613, https://doi.org/10.1029/2023GL106613, 2024.
Calonne, N., Milliancourt, L., Burr, A., Philip, A., Martin, C. L., Flin, F., and Geindreau, C.: Thermal conductivity of snow, firn, and porous ice from 3-D imagebased computations, Geophys. Res. Lett., 46, 13079-13089, https://doi.org/10.1029/2019GL085228, 2019.
Carter, J., Leeson, A., Orr, A., Kittel, C., and van Wessem, J. M.: Variability in Antarctic surface climatology across regional climate models and reanalysis datasets, The Cryosphere, 16, 3815-3841, https://doi.org/10.5194/tc-16-3815-2022, 2022.
Chen, T. and Guestrin, C.: Xgboost: A scalable tree boosting system, in: Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining, 13-17 August 2016, San Francisco, CA, USA, 785-794, https://doi.org/10.1145/2939672.2939785, 2016.
Coléou, C. and Lesaffre, B.: Irreducible water saturation in snow: experimental results in a cold laboratory, Ann. Glaciol., 26, 64-68, https://doi.org/10.3189/1998AoG26-1-64-68, 1998.
Cook, A. J. and Vaughan, D. G.: Overview of areal changes of the ice shelves on the Antarctic Peninsula over the past 50 years, The Cryosphere, 4, 77-98, https://doi.org/10.5194/tc-4-77-2010, 2010.
Culberg, R., Schroeder, D. M., and Chu, W.: Extreme melt season ice layers reduce firn permeability across Greenland, Nat. Commun., 12, 2336, https://doi.org/10.1038/s41467-021-22656-5, 2021.
Danabasoglu, G., Lamarque, J.-F., Bacmeister, J., Bailey, D., Du-Vivier, A., Edwards, J., Emmons, L., Fasullo, J., Garcia, R., Gettelman, A., Hannay, C., Holland, M. M., Large, W. G., Lauritzen, P. H., Lawrence, D. M., Lenaerts, J. T. M., Lindsay, K., Lipscomb, W. H., Mills, M. J., Neale, R., Oleson, K. W., Otto-Bliesner, B., Phillips, A. S., Sacks, W., Tilmes, S., van Kampenhout, L., Vertenstein, M., Bertini, A., Dennis, J., Deser, C., Fischer, C., Fox-Kemper, B., Kay, J. E., Kinnison, D., Kushner, P. J., Larson, V. E., Long, M. C., Mickelson, S., Moore, J. K., Nienhouse, E., Polvani, L., Rasch, P. J., and Strand, W. G.: The community earth system model version 2 (CESM2), J. Adv. Model. Earth Sy., 12, e2019MS001916, https://doi.org/10.1029/2019MS001916, 2020.
Datta, R. T., Tedesco, M., Agosta, C., Fettweis, X., Kuipers Munneke, P., and van den Broeke, M. R.: Melting over the northeast Antarctic Peninsula (1999-2009): evaluation of a high-resolution regional climate model, The Cryosphere, 12, 2901-2922, https://doi.org/10.5194/tc-12-2901-2018, 2018.
Di Biase, V., Kuipers Munneke, P., Veldhuijsen, S., de Roda Husman, S., van den Broeke, M., Noël, B., Buth, L., and Wouters, B.: Probability of firn aquifer presence in Antarctica by combining remote sensing and regional climate model data, Geophys. Res. Lett., 51, e2024GL109367, https://doi.org/10.1029/2024GL109367, 2024.
Dunmire, D., Lenaerts, J. T. M., Datta, R. T., and Gorte, T.: Antarctic surface climate and surface mass balance in the Community Earth System Model version 2 during the satellite era and into the future (1979-2100), The Cryosphere, 16, 4163-4184, https://doi.org/10.5194/tc-16-4163-2022, 2022.
Dunmire, D., Wever, N., Banwell, A. F., and Lenaerts, J. T.: Antarctic-wide ice-shelf firn emulation reveals robust future firn air depletion signal for the Antarctic Peninsula, Communications Earth & Environment, 5, 100, https://doi.org/10.1038/s43247-024-01255-4, 2024.
Fatima, S., Hussain, A., Amir, S. B., Ahmed, S. H., and Aslam, S. M. H.: Xgboost and random forest algorithms: An in depth analysis, Pakistan Journal of Scientific Research, 3, 26-31, https://doi.org/10.57041/pjosr.v3i1.946, 2023.
Forster, R. R., Box, J. E., Van Den Broeke, M. R., Miège, C., Burgess, E.W., Van Angelen, J. H., Lenaerts, J. T., Koenig, L. S., Paden, J., Lewis, C., Gogineni, S. P., Lauschen, C., and McConnel, J. R.: Extensive liquid meltwater storage in firn within the Greenland ice sheet, Nat. Geosci., 7, 95-98, https://doi.org/10.1038/ngeo2043, 2014.
Fricker, H. A., Allison, I., Craven, M., Hyland, G., Ruddell, A., Young, N., Coleman, R., King, M., Krebs, K., and Popov, S.: Redefinition of the Amery ice shelf, East Antarctica, grounding zone, J. Geophys. Res.-Sol. Ea., 107, ECV-1, https://doi.org/10.1029/2001JB000383, 2002.
González Herrero, S., Vasallo, F., Bech, J., Gorodetskaya, I., Elvira Montejo, B., and Justel, A.: Extreme precipitation records in Antarctica, Int. J. Climatol., 1-14, https://doi.org/10.1002/joc.8020, 2023.
Grinsztajn, L., Oyallon, E., and Varoquaux, G.: Why do tree-based models still outperform deep learning on typical tabular data?, Adv. Neur. In., 35, 507-520, 2022.
Hansen, N., Langen, P. L., Boberg, F., Forsberg, R., Simonsen, S. B., Thejll, P., Vandecrux, B., and Mottram, R.: Downscaled surface mass balance in Antarctica: impacts of subsurface processes and large-scale atmospheric circulation, The Cryosphere, 15, 4315-4333, https://doi.org/10.5194/tc-15-4315-2021, 2021.
Horlings, A. N., Christianson, K., and Miège, C.: Expansion of firn aquifers in southeast Greenland, J. Geophys. Res.-Earth, 127, e2022JF006753, https://doi.org/10.1029/2022JF006753, 2022.
Hubbard, B., Luckman, A., Ashmore, D.W., Bevan, S., Kulessa, B., Kuipers Munneke, P., Philippe, M., Jansen, D., Booth, A., Sevestre, H., Tison, J.-L., O?leary, M., and Rutt, I.: Massive subsurface ice formed by refreezing of ice-shelf melt ponds, Nat. Commun., 7, 11897, https://doi.org/10.1038/ncomms11897, 2016.
Iban, M. C. and Bilgilioglu, S. S.: Snow avalanche susceptibility mapping using novel tree-based machine learning algorithms (XGBoost, NGBoost, and LightGBM) with eXplainable Artificial Intelligence (XAI) approach, Stoch. Env. Res. Risk A., 37, 2243-2270, https://doi.org/10.1007/s00477-023-02392-6, 2023.
Jakobs, C. L., Reijmer, C. H., Kuipers Munneke, P., König-Langlo, G., and van den Broeke, M. R.: Quantifying the snowmelt-Albedo feedback at Neumayer Station, East Antarctica, The Cryosphere, 13, 1473-1485, https://doi.org/10.5194/tc-13-1473-2019, 2019.
Jourdain, N. C., Amory, C., Kittel, C., and Durand, G.: Changes in Antarctic surface conditions and potential for ice shelf hydrofracturing from 1850 to 2200, EGUsphere [preprint], https://doi.org/10.5194/egusphere-2024-58, 2024.
Kingslake, J., Ng, F., and Sole, A.: Modelling channelized surface drainage of supraglacial lakes, J. Glaciol., 61, 185-199, https://doi.org/10.3189/2015JoG14J158, 2015.
Kittel, C., Amory, C., Agosta, C., Jourdain, N. C., Hofer, S., Delhasse, A., Doutreloup, S., Huot, P.-V., Lang, C., Fichefet, T., and Fettweis, X.: Diverging future surface mass balance between the Antarctic ice shelves and grounded ice sheet, The Cryosphere, 15, 1215-1236, https://doi.org/10.5194/tc-15-1215-2021, 2021.
Kuipers Munneke, P., M. Ligtenberg, S., Van Den Broeke, M., Van Angelen, J., and Forster, R.: Explaining the presence of perennial liquid water bodies in the firn of the Greenland Ice Sheet, Geophys. Res. Lett., 41, 476-483, https://doi.org/10.1002/2013GL058389, 2014.
Lai, C.-Y., Kingslake, J., Wearing, M. G., Chen, P.-H. C., Gentine, P., Li, H., Spergel, J. J., and van Wessem, J. M.: Vulnerability of Antarctica?s ice shelves to meltwater-driven fracture, Nature, 584, 574-578, https://doi.org/10.1038/s41586-020-2627-8, 2020.
Lepparanta, M., Jarvinen, O., and Mattila, O.-P.: Structure and life cycle of supraglacial lakes in Dronning Maud Land, Antarct. Sci., 25, 457-467, https://doi.org/10.1017/S0954102012001009, 2013.
Luckman, A., Elvidge, A., Jansen, D., Kulessa, B., Munneke, P. K., King, J., and Barrand, N. E.: Surface melt and ponding on Larsen C Ice Shelf and the impact of föhn winds, Antarct. Sci., 26, 625-635, https://doi.org/10.1017/S0954102014000339, 2014.
MacDonell, S., Fernandoy, F., Villar, P., and Hammann, A.: Stratigraphic analysis of firn cores from an Antarctic ice shelf firn aquifer,Water-Sui., 13, 731, https://doi.org/10.3390/w13050731, 2021.
Miège, C., Forster, R. R., Brucker, L., Koenig, L. S., Solomon, D. K., Paden, J. D., Box, J. E., Burgess, E. W., Miller, J. Z., McNerney, L., Brautigam, N., Fausto, R. S., and Gogineni, S.: Spatial extent and temporal variability of Greenland firn aquifers detected by ground and airborne radars, J. Geophys. Res.-Earth, 121, 2381-2398, https://doi.org/10.1002/2016JF003869, 2016.
Miller, O., Solomon, D. K., Miège, C., Koenig, L., Forster, R., Schmerr, N., Ligtenberg, S. R., and Montgomery, L.: Direct evidence of meltwater flow within a firn aquifer in southeast Greenland, Geophys. Res. Lett., 45, 207-215, https://doi.org/10.1002/2017GL075707, 2018.
Montgomery, L., Miège, C., Miller, J., Scambos, T. A., Wallin, B., Miller, O., Solomon, D. K., Forster, R., and Koenig, L.: Hydrologic properties of a highly permeable firn aquifer in the Wilkins Ice Shelf, Antarctica, Geophys. Res. Lett., 47, e2020GL089552, https://doi.org/10.1029/2020GL089552, 2020.
Mottram, R., Hansen, N., Kittel, C., vanWessem, J. M., Agosta, C., Amory, C., Boberg, F., van de Berg, W. J., Fettweis, X., Gossart, A., van Lipzig, N. P. M., van Meijgaard, E., Orr, A., Phillips, T., Webster, S., Simonsen, S. B., and Souverijns, N.: What is the surface mass balance of Antarctica? An intercomparison of regional climate model estimates, The Cryosphere, 15, 3751-3784, https://doi.org/10.5194/tc-15-3751-2021, 2021.
Oppenheimer, M., Glavovic, B., Hinkel, J., van de Wal, R., Magnan, A. K., Abd-Elgawad, A., Cai, R., Cifuentes-Jara, M., Deconto, R. M., Ghosh, T., Hay, J., Ben, M., Meyssignac, B., Sebesvari, Z., A, S., Dangendorf, S., and Frederikse, T.: Sea level rise and implications for low lying islands, coasts and communities, The Intergovernmental Panel on Climate Change, https://doi.org/10.1017/9781009157964.006, 2019.
Poinar, K., Joughin, I., Lilien, D., Brucker, L., Kehrl, L., and Nowicki, S.: Drainage of Southeast Greenland firn aquifer water through crevasses to the bed, Front. Earth Sci., 5, 5, https://doi.org/10.3389/feart.2017.00005, 2017.
Roberts, D. R., Bahn, V., Ciuti, S., Boyce, M. S., Elith, J., Guillera-Arroita, G., Hauenstein, S., Lahoz-Monfort, J. J., Schröder, B., Thuiller, W., Warton, D. I., Wintle, B. A., Hartig, F., and Dormann, C. F.: Cross-validation strategies for data with temporal, spatial, hierarchical, or phylogenetic structure, Ecography, 40, 913-929, https://doi.org/10.1111/ecog.02881, 2017.
Sarofim, M. C., Smith, C. J., Malek, P., McDuffie, E. E., Hartin, C. A., Lay, C. R., and McGrath, S.: High radiative forcing climate scenario relevance analyzed with a ten-million-member ensemble, Nat. Commun., 15, 8185, https://doi.org/10.1038/s41467-024-52437-9, 2024.
Scambos, T., Fricker, H. A., Liu, C.-C., Bohlander, J., Fastook, J., Sargent, A., Massom, R., and Wu, A.-M.: Ice shelf disintegration by plate bending and hydro-fracture: Satellite observations and model results of the 2008 Wilkins ice shelf break-ups, Earth Planet. Sc. Lett., 280, 51-60, https://doi.org/10.1016/j.epsl.2008.12.027, 2009.
Scambos, T. A., Hulbe, C., Fahnestock, M., and Bohlander, J.: The link between climate warming and break-up of ice shelves in the Antarctic Peninsula, J. Glaciol., 46, 516-530, https://doi.org/10.3189/172756500781833043, 2000.
Shepherd, A., Gilbert, L., Muir, A. S., Konrad, H., McMillan, M., Slater, T., Briggs, K. H., Sundal, A. V., Hogg, A. E., and Engdahl, M. E.: Trends in Antarctic Ice Sheet elevation and mass, Geophys. Res. Lett., 46, 8174-8183, https://doi.org/10.1029/2019GL082182, 2019.
Smith, B., Fricker, H. A., Gardner, A. S., Medley, B., Nilsson, J., Paolo, F. S., Holschuh, N., Adusumilli, S., Brunt, K., Csatho, B., Harbeck, K., Markus, T., Neumann, T., Siegfried, M. R., and Zwally, H. J.: Pervasive ice sheet mass loss reflects competing ocean and atmosphere processes, Science, 368, 1239-1242, https://doi.org/10.1126/science.aaz5845, 2020.
Sun, L., Zhang, X., Xiao, P., Wang, H., Wang, Y., and Zheng, Z.: Fusing daily snow water equivalent from 1980 to 2020 in China using a spatiotemporal XGBoost model, J. Hydrol., 632, 130876, https://doi.org/10.1016/j.jhydrol.2024.130876, 2024.
Turner, J., Phillips, T., Thamban, M., Rahaman,W., Marshall, G. J., Wille, J. D., Favier, V., Winton, V. H. L., Thomas, E., Wang, Z., van den Broeke, M., Hosking, J. S., and Lachlan-Cope, T.: The dominant role of extreme precipitation events in Antarctic snowfall variability, Geophys. Res. Lett., 46, 3502-3511, https://doi.org/10.1029/2018GL081517, 2019.
van Dalum, C. T., van de Berg, W. J., Gadde, S. N., van Tiggelen, M., van der Drift, T., van Meijgaard, E., van Ulft, L. H., and van den Broeke, M. R.: First results of the polar regional climate model RACMO2.4, The Cryosphere, 18, 4065-4088, https://doi.org/10.5194/tc-18-4065-2024, 2024.
Van Katwyk, P., Fox-Kemper, B., Seroussi, H., Nowicki, S., and Bergen, K. J.: A variational LSTM emulator of sea level contribution from the Antarctic ice sheet, J. Adv. Model. Earth Sy., 15, e2023MS003899, https://doi.org/10.1029/2023MS003899, 2023.
van Wessem, J. M., Ligtenberg, S. R. M., Reijmer, C. H., van de Berg, W. J., van den Broeke, M. R., Barrand, N. E., Thomas, E. R., Turner, J., Wuite, J., Scambos, T. A., and van Meijgaard, E.: The modelled surface mass balance of the Antarctic Peninsula at 5.5 km horizontal resolution, The Cryosphere, 10, 271-285, https://doi.org/10.5194/tc-10-271-2016, 2016.
van Wessem, J. M., Steger, C. R., Wever, N., and van den Broeke, M. R.: An exploratory modelling study of perennial firn aquifers in the Antarctic Peninsula for the period 1979-2016, The Cryosphere, 15, 695-714, https://doi.org/10.5194/tc-15-695-2021, 2021.
van Wessem, J. M., van den Broeke, M. R., Wouters, B., and Lhermitte, S.: Variable temperature thresholds of melt pond formation on Antarctic ice shelves, Nat. Clim. Change, 13, 161-166, https://doi.org/10.1038/s41558-022-01577-1, 2023.
Vandecrux, B., Mottram, R., Langen, P. L., Fausto, R. S., Olesen, M., Stevens, C. M., Verjans, V., Leeson, A., Ligtenberg, S., Kuipers Munneke, P., Marchenko, S., van Pelt, W., Meyer, C. R., Simonsen, S. B., Heilig, A., Samimi, S., Marshall, S., Machguth, H., MacFerrin, M., Niwano, M., Miller, O., Voss, C. I., and Box, J. E.: The firn meltwater Retention Model Intercomparison Project (RetMIP): evaluation of nine firn models at four weather station sites on the Greenland ice sheet, The Cryosphere, 14, 3785-3810, https://doi.org/10.5194/tc-14-3785-2020, 2020.
Veldhuijsen, S., van de Berg, W. J., Kuipers Munneke, P., and van den Broeke, M. R.: IMAU-FDM v12AD TC release, Zenodo [code], https://doi.org/10.5281/zenodo.10723570, 2023.
Veldhuijsen, S., van de Berg, W. J., Kuipers Munneke, P., Hansen, N., Boberg, F., Kittel, C., Amory, C., and van den Broeke, M. R.: Code perennial firn aquifer emulator, Zenodo [code], https://doi.org/10.5281/zenodo.13750024, 2024a.
Veldhuijsen, S., van de Berg, W. J., Kuipers Munneke, P., Hansen, N., Boberg, F., Kittel, C., Amory, C., and van den Broeke, M. R.: Data perennial firn aquifer emulator, Zenodo [data set], https://doi.org/10.5281/zenodo.13692364, 2024b.
Veldhuijsen, S., van de Berg, W. J., Kuipers Munneke, P., Hansen, N., Boberg, F., Kittel, C., Amory, C., and van den Broeke, M. R.: IMAU-FDMv1.2AD perennial LWC (1950-2100), Zenodo [data set], https://doi.org/10.5281/zenodo.13692385, 2024c.
Veldhuijsen, S. B. M., van de Berg,W. J., Kuipers Munneke, P., and van den Broeke, M. R.: Firn air content changes on Antarctic ice shelves under three future warming scenarios, The Cryosphere, 18, 1983-1999, https://doi.org/10.5194/tc-18-1983-2024, 2024d.
Verjans, V., Leeson, A., McMillan, M., Stevens, C., van Wessem, J. M., van de Berg, W. J., van den Broeke, M. R., Kittel, C., Amory, C., Fettweis, X., Hansen, N., Boberg, F., and Mottram, R.: Uncertainty in East Antarctic firn thickness constrained using a model ensemble approach, Geophys. Res. Lett., 48, e2020GL092060, https://doi.org/10.1029/2020GL092060, 2021.
Zwally, H. J., Abdalati, W., Herring, T., Larson, K., Saba, J., and Steffen, K.: Surface melt-induced acceleration of Greenland ice-sheet flow, Science, 297, 218-222, https://doi.org/10.1126/science.1072708, 2002.