[en] [en] BACKGROUND: Idiopathic pulmonary fibrosis (IPF) is a progressive fibrosing interstitial lung disease associated with high morbidity and mortality despite specific anti-fibrotic therapies. Management of IPF is complex and relies on pulmonary function tests (PFT) to evaluate severity and monitor progression. CT provides non-invasive morphologic assessment and emerging software techniques enable quantitative analysis.
METHODS: We included 319 individuals with IPF from the OSIC dataset. A cross-sectional analysis was made for all patients, with a longitudinal evaluation for 143 of them. We used LungQ software (Thirona, The Netherlands) to quantify lung and pulmonary vessel volumes, as well as the extent of interstitial lung disease and to assess correlation with PFT and mortality.
RESULTS: Quantitative extent of fibrotic abnormalities was correlated with baseline FVC and DLCO (r -0.47, p < 0.0001 and r -0.55, p < 0.0001 respectively) and longitudinal modifications over time (r -0.48, p < 0.0001 and r-0.43 p < 0.0001, respectively). Median baseline extent of ILD, expressed as a percentage of lung volume, was 16.5% (10.8-25.5) and increased to 17.3% (11.6-29) on follow-up (p < 0.001). The median ILD progression was of 9.8% (-9.5-40.0). Vascular enlargement quantification as well as ILD quantification were predictive marker of death (p < 0.0001). However, vascular abnormalities' independent predictive value could not be assessed in multivariate models due to multicollinearity with other variables.
CONCLUSIONS: LungQ allows to quantify interstitial and vascular lung features and their changes over time in a large cohort of patients with IPF. Imaging markers were negatively correlated with PFT at baseline and follow-ups were predictive of mortality confirming their potential as disease quantifiers. Further clinical validation is needed to specify the potential clinical use.
Disciplines :
Cardiovascular & respiratory systems
Author, co-author :
Guiot, Julien ; Université de Liège - ULiège > Département des sciences cliniques > Pneumologie - Allergologie
Engelberts, Jonne; Thirona, Nijmegen, The Netherlands
Henket, Monique ; Centre Hospitalier Universitaire de Liège - CHU > > Service de pneumologie - allergologie
G. Raghu M. Remy-Jardin L. Richeldi C.C. Thomson Y. Inoue T. Johkoh et al. Idiopathic pulmonary fibrosis (an Update) and progressive pulmonary fibrosis in adults: an official ATS/ERS/JRS/ALAT clinical practice guideline Am J Respir Crit Care Med 205 9 e18 47 10.1164/rccm.202202-0399ST 35486072 9851481
Guiot J, Duysinx B, Seidel L, Henket M, Gester F, Bonhomme O, et al. Clinical experience in idiopathic pulmonary fibrosis: a retrospective study. Acta Clin Belgica Int J Clin Lab Med. 2017. https://doi.org/10.1080/17843286.2017.1399228.
J. Widell M. Lidén Interobserver variability in high-resolution CT of the lungs Eur J Radiol Open 7 100228 10.1016/j.ejro.2020.100228 32258248 7115039
J. Guiot A. Vaidyanathan L. Deprez F. Zerka D. Danthine A.N. Frix et al. A review in radiomics: making personalized medicine a reality via routine imaging Med Res Rev. 42 426 40 10.1002/med.21846 34309893
Frix A-N, Cousin F, Refaee T, Bottari F, Vaidyanathan A, Desir C, et al. Personalized medicine review radiomics in lung diseases imaging: state-of-the-art for clinicians. 2021. https://doi.org/10.3390/jpm11070602.
Y. Nan J. Del Ser S. Walsh C. Schönlieb M. Roberts I. Selby et al. Data harmonisation for information fusion in digital healthcare: a state-of-the-art systematic review, meta-analysis and future research directions Inf Fusion 82 99 122 10.1016/j.inffus.2022.01.001 35664012 8878813
G. Raghu B. Ley K.K. Brown V. Cottin K.F. Gibson R.J. Kaner et al. Risk factors for disease progression in idiopathic pulmonary fibrosis Thorax 75 1 78 80 10.1136/thoraxjnl-2019-213620 31611341
B. Ley C.J. Ryerson E. Vittinghoff J.H. Ryu S. Tomassetti J.S. Lee et al. A multidimensional index and staging system for idiopathic pulmonary fibrosis Ann Intern Med 156 10 684 10.7326/0003-4819-156-10-201205150-00004 22586007
T. Refaee Z. Salahuddin A.N. Frix C. Yan G. Wu H.C. Woodruff et al. Diagnosis of idiopathic pulmonary fibrosis in high-resolution computed tomography scans using a combination of handcrafted radiomics and deep learning Front Med 10.3389/fmed.2022.915243
S.L.F. Walsh J.A. Mackintosh L. Calandriello M. Silva N. Sverzellati A.R. Larici et al. Deep learning-based outcome prediction in progressive fibrotic lung disease using high-resolution computed tomography Am J Respir Crit Care Med 206 7 883 91 10.1164/rccm.202112-2684OC 35696341
A.C. Best J. Meng A.M. Lynch C.M. Bozic D. Miller G.K. Grunwald et al. Idiopathic pulmonary fibrosis: physiologic tests, quantitative CT indexes, and CT visual scores as predictors of mortality Radiology 246 3 935 40 10.1148/radiol.2463062200 18235106
H.J. Kim M.S. Brown D. Chong D.W. Gjertson P. Lu H.J. Kim et al. Comparison of the quantitative CT imaging biomarkers of idiopathic pulmonary fibrosis at baseline and early change with an interval of 7Months Acad Radiol 22 1 70 80 10.1016/j.acra.2014.08.004 25262954
B.J. Bartholmai S. Raghunath R.A. Karwoski T. Moua S. Rajagopalan F. Maldonado et al. Quantitative computed tomography imaging of interstitial lung diseases J Thorac Imaging 10.1097/RTI.0b013e3182a21969 23966094 3850512
A. Waxman R. Restrepo-Jaramillo T. Thenappan A. Ravichandran P. Engel A. Bajwa et al. Inhaled treprostinil in pulmonary hypertension due to interstitial lung disease N Engl J Med 384 4 325 34 1:CAS:528:DC%2BB3MXjs1WmsbY%3D 10.1056/NEJMoa2008470 33440084
J. Guiot N. Maes M. Winandy M. Henket B. Ernst M. Thys et al. Automatized lung disease quantification in patients with COVID-19 as a predictive tool to assess hospitalization severity Front Med 9 10.3389/fmed.2022.930055 930055
Baraghoshi D, Strand M, Humphries SM, José Estépar RS, Sanchez-Ferrero GV, Charbonnier JP, et al. Quantitative CT evaluation of emphysema progression over 10 years in the COPDGene study. Radiology. 2023;307(4). https://doi.org/10.1148/radiol.222786.
Jacob J, Bartholmai BJ, van Moorsel CHM, Rajagopalan S, Devaraj A, van Es HW, et al. Longitudinal prediction of outcome in idiopathic pulmonary fibrosis using automated CT analysis. Eur Respir J. 2019; 54. https://doi.org/10.1183/13993003.02341-2018. European Respiratory Society.
J. Jacob L. Aksman N. Mogulkoc A.J. Procter B. Gholipour G. Cross et al. Serial CT analysis in idiopathic pulmonary fibrosis: comparison of visual features that determine patient outcome Thorax 75 8 648 54 10.1136/thoraxjnl-2019-213865 32345689
Guiot J, Walsh SLF. The ERS PROFILE.net clinical research collaboration is dedicated to the set-up of an academic network to enhance imaging-based management of progressive pulmonary fibrosis. Eur Respir J. 2023;62. https://doi.org/10.1183/13993003.00577-2023. European Respiratory Society.
Wu X, Kim GH, Salisbury ML, Barber D, Bartholmai BJ, Brown KK, et al. Computed tomographic biomarkers in idiopathic pulmonary fibrosis: the future of quantitative analysis. Am J Respir Crit Care Med. 2019; 199: 12–21. https://doi.org/10.1164/rccm.201803-0444PP. American Thoracic Society.
J. Jacob B.J. Bartholmai S. Rajagopalan C.H.M. Van Moorsel H.W. Van Es F.T. Van Beek et al. Predicting outcomes in idiopathic pulmonary fibrosis using automated computed tomographic analysis Am J Respir Crit Care Med 198 6 767 76 10.1164/rccm.201711-2174OC 29684284 6222463
Shi Y, Wong WK, Goldin JG, Brown MS, Kim GHJ. Prediction of progression in idiopathic pulmonary fibrosis using CT scans at baseline: a quantum particle swarm optimization - random forest approach. Artif Intell Med. 2019;100. https://doi.org/10.1016/j.artmed.2019.101709.
P. Spagnolo R. Tonelli E. Cocconcelli A. Stefani L. Richeldi Idiopathic pulmonary fibrosis: diagnostic pitfalls and therapeutic challenges Multidiscip Respir Med 7 1 42 10.1186/2049-6958-7-42 23146172 3537555
F. Maldonado T. Moua S. Rajagopalan R.A. Karwoski S. Raghunath P.A. Decker et al. Automated quantification of radiological patterns predicts survival in idiopathic pulmonary fibrosis Eur Respir J 43 204 12 10.1183/09031936.00071812 23563264
S.M. Humphries J.A. Mackintosh H.E. Jo S.L.F. Walsh M. Silva L. Calandriello et al. Quantitative computed tomography predicts outcomes in idiopathic pulmonary fibrosis Respirology 27 12 1045 53 10.1111/resp.14333 35875881 9796832
S.M. Humphries J.J. Swigris K.K. Brown M. Strand Q. Gong J.S. Sundy et al. Quantitative high-resolution computed tomography fibrosis score: performance characteristics in idiopathic pulmonary fibrosis Eur Respir J 10.1183/13993003.01384-2018 30139770
A.S. Oh D.A. Lynch J.J. Swigris D. Baraghoshi D.S. Dyer V.A. Hale et al. Deep Learning–based fibrosis extent on computed tomography predicts outcome of fibrosing interstitial lung disease independent of visually assessed computed tomography pattern Annals Am Thorac Soc 21 2 218 27 10.1513/AnnalsATS.202301-084OC
J. Jacob B.J. Bartholmai S. Rajagopalan M. Kokosi A. Nair R. Karwoski et al. Mortality prediction in idiopathic pulmonary fibrosis: evaluation of computer-based CT analysis with conventional severity measures Eur Respir J 10.1183/13993003.01011-2016 28679612
J. Jacob N. Hirani C.H.M. Van Moorsel S. Rajagopalan J.T. Murchison H.W. Van Es et al. Predicting outcomes in rheumatoid arthritis related interstitial lung disease Eur Respir J 10.1183/13993003.00869-2018 31196945 6860992
Moss BJ, Ryter SW, Rosas IO. Pathogenic mechanisms underlying idiopathic pulmonary Fibrosis. Vol. 17, annual review of pathology: mechanisms of disease. Annual Reviews Inc.; 2021. pp. 515–46.
George PM, Rennison-Jones C, Benvenuti G, Gupta G, Joly O, Gerry S, et al. The automated E-ILD CT algorithm is more prognostic than FVC in the serial assessment of patients with non-IPF fibrotic interstitial lung disease. A23. Leveraging imaging and biosamples to improve diagnosis and risk prediction in ILA and ILD. American Thoracic Society; 2023. pp. A1120–1120. https://doi.org/10.1164/ajrccm-conference.2023.207.1_MeetingAbstracts.A1120.
Thillai M, Oldham JM, Ruggiero A, Kanavati F, McLellan T, Saini G, et al. Deep learning-based segmentation of CT scans predicts disease progression and mortality in IPF. Am J Respir Crit Care Med. 2024. https://doi.org/10.1164/rccm.202311-2185OC.