Andersson, J.L.R., Sotiropoulos, S.N., 2016. An integrated approach to correction for off-resonance effects and subject movement in diffusion MR imaging. NeuroImage 125, 1063–1078. https://doi.org/10.1016/j.neuroimage.2015.10.019
Avants, B.B., Tustison, N.J., Song, G., Cook, P.A., Klein, A., Gee, J.C., 2011. A reproducible evaluation of ANTs similarity metric performance in brain image registration. NeuroImage 54, 2033–2044. https://doi.org/10.1016/j.neuroimage.2010.09.025
Behrens, T.E.J., Berg, H.J., Jbabdi, S., Rushworth, M.F.S., Woolrich, M.W., 2007. Probabilistic diffusion tractography with multiple fibre orientations: what can we gain? NeuroImage 34, 144–155. https://doi.org/10.1016/j.neuroimage.2006.09.018
Behrens, T.E.J., Woolrich, M.W., Jenkinson, M., Johansen-Berg, H., Nunes, R.G., Clare, S., Matthews, P.M., Brady, J.M., Smith, S.M., 2003. Characterization and propagation of uncertainty in diffusion-weighted MR imaging. Magn. Reson. Med. 50, 1077–1088. https://doi.org/10.1002/mrm.10609
Bonilha, L., Gleichgerrcht, E., Fridriksson, J., Rorden, C., Breedlove, J.L., Nesland, T., Paulus, W., Helms, G., Focke, N.K., 2015. Reproducibility of the structural brain connectome derived from diffusion tensor imaging. PLoS. ONE 10, e0135247. https://doi.org/10.1371/journal.pone.0135247
Camp, C.C., Noble, S., Scheinost, D., Stringaris, A., Nielson, D.M., 2024. Test-retest reliability of functional connectivity in adolescents with depression. Biol. Psychiatry. Cogn. Neurosci. Neuroimag. 9, 21–29. https://doi.org/10.1016/j.bpsc.2023.09.002
Carmon, J., Heege, J., Necus, J.H., Owen, T.W., Pipa, G., Kaiser, M., Taylor, P.N., Wang, Y., 2020. Reliability and comparability of human brain structural covariance networks. NeuroImage 220, 117104. https://doi.org/10.1016/j.neuroimage.2020.117104
Chamberland, M., Girard, G., Bernier, M., Fortin, D., Descoteaux, M., Whittingstall, K., 2017. On the origin of individual functional connectivity variability: the role of white matter architecture. Brain. Conn. 7, 491–503. https://doi.org/10.1089/brain.2017.0539
Chou, Y.h., Panych, L.P., Dickey, C.C., Petrella, J.R., Chen, N.k., 2012. Investigation of long-term reproducibility of Intrinsic connectivity network mapping: a resting-State fMRI study. AJNR. Am. J. Neuroradiol. 33, 833–838. https://doi.org/10.3174/ajnr.A2894
Di X., Gohel S., Thielcke A., Wehrl H.F., Biswal BB. Do all roads lead to Rome? A comparison of brain networks derived from inter-subject volumetric and metabolic covariance and moment-to-moment hemodynamic correlations in old individuals. Brain. Struct. Funct.. 2017; 222(8): 3833–3845. doi: 10.1007/s00429-017-1438-7.
Drew, P.J., 2019. Vascular and neural basis of the BOLD signal. Curr. Opin. Neurobiol 58, 61–69. https://doi.org/10.1016/j.conb.2019.06.004
Geerligs, L., Cam-CAN, Henson, R.N., 2016. Functional connectivity and structural covariance between regions of interest can be measured more accurately using multivariate distance correlation. NeuroImage 135, 16–31. https://doi.org/10.1016/j.neuroimage.2016.04.047
Gnörich, J., Reifschneider, A., Wind, K., Zatcepin, A., Kunte, S.T., Beumers, P., Bartos, L.M., Wiedemann, T., Grosch, M., Xiang, X., Fard, M.K., Ruch, F., Werner, G., Koehler, M., Slemann, L., Hummel, S., Briel, N., Blume, T., Shi, Y., Biechele, G., Beyer, L., Eckenweber, F., Scheifele, M., Bartenstein, P., Albert, N.L., Herms, J., Tahirovic, S., Haass, C., Capell, A., Ziegler, S., Brendel, M., 2023. Depletion and activation of microglia impact metabolic connectivity of the mouse brain. J. Neuroinflamm. 20, 47. https://doi.org/10.1186/s12974-023-02735-8
Horwitz, B., Duara, R., Rapoport, S.I., 1984. Intercorrelations of glucose metabolic rates between brain regions: application to healthy males in a State of reduced sensory input. J. Cereb. Blood. Flow. Metab. 4, 484–499. https://doi.org/10.1038/jcbfm.1984.73
Jenkinson, M., Bannister, P., Brady, M., Smith, S., 2002. Improved optimization for the robust and accurate linear registration and motion correction of brain images. NeuroImage 17, 825–841. https://doi.org/10.1006/nimg.2002.1132
Korponay C., Janes A.C., Frederick B.B. Brain-wide functional connectivity artifactually inflates throughout functional magnetic resonance imaging scans. Nat. Hum. Behav. 2024; 8(8): 1568–1580. doi: 10.1038/s41562-024-01908-6.
Liégeois, R., Li, J., Kong, R., Orban, C., Van De Ville, D., Ge, T., Sabuncu, M.R., Yeo, B.T.T., 2019. Resting brain dynamics at different timescales capture distinct aspects of human behavior. Nat. Commun. 10, 2317. https://doi.org/10.1038/s41467-019-10317-7
Lin, Q., Dai, Z., Xia, M., Han, Z., Huang, R., Gong, G., Liu, C., Bi, Y., He, Y., 2015. A connectivity-based test-retest dataset of multi-modal magnetic resonance imaging in young healthy adults. Sci. Data 2, 150056. https://doi.org/10.1038/sdata.2015.56
Lizarraga, A., Ripp, I., Sala, A., Shi, K., Düring, M., Koch, K., Yakushev, I., 2023. Similarity between structural and proxy estimates of brain connectivity. J. Cereb. Blood. Flow. Metab. 0271678X231204769. https://doi.org/10.1177/0271678X231204769
Ma, Y., Tang, C., Spetsieris, P.G., Dhawan, V., Eidelberg, D., 2007. Abnormal metabolic network activity in Parkinson’s disease: test-retest reproducibility. J. Cereb. Blood. Flow. Metab 27, 597–605. https://doi.org/10.1038/sj.jcbfm.9600358
Mahadevan, A.S., Tooley, U.A., Bertolero, M.A., Mackey, A.P., Bassett, D.S., 2021. Evaluating the sensitivity of functional connectivity measures to motion artifact in resting-state fMRI data. NeuroImage 241, 118408. https://doi.org/10.1016/j.neuroimage.2021.118408
Mertens N., Sunaert S., Van Laere K., Koole M. The effect of aging on brain glucose metabolic connectivity revealed by [18F]FDG PET-MR and individual brain networks. Front. Aging. Neurosci.. 2022; 13:798410. doi: 10.3389/fnagi.2021.798410
Messaritaki, E., Dimitriadis, S.I., Jones, D.K., 2019. Optimization of graph construction can significantly increase the power of structural brain network studies. NeuroImage 199, 495–511. https://doi.org/10.1016/j.neuroimage.2019.05.052
Mukaka, M.M., 2012. Statistics Corner: a guide to appropriate use of correlation coefficient in medical research. Sci. Data 24, 69–71.
Nicastro, N., Stripeikyte, G., Assal, F., Garibotto, V., Blanke, O., 2021. Premotor and fronto-striatal mechanisms associated with presence hallucinations in dementia with lewy bodies. Neuroimage. Clin. 32, 102791. https://doi.org/10.1016/j.nicl.2021.102791
Osmanlıoğlu, Y., Alappatt, J.A., Parker, D., Verma, R., 2020. Connectomic consistency: a systematic stability analysis of structural and functional connectivity. J. Neural. Eng. 17, 045004. https://doi.org/10.1088/1741-2552/ab947b
Perovnik, M., Rus, T., Schindlbeck, K.A., Eidelberg, D., 2023. Functional brain networks in the evaluation of patients with neurodegenerative disorders. Nat. Rev. Neurol 19, 73–90. https://doi.org/10.1038/s41582-022-00753-3
Ripp, I., Emch, M., Wu, Q., Lizarraga, A., Udale, R., von Bastian, C.C., Koch, K., Yakushev, I., 2022. Adaptive working memory training does not produce transfer effects in cognition and neuroimaging. Transl. Psychiatry 12, 512. https://doi.org/10.1038/s41398-022-02272-7
Ripp, I., Wallenwein, L.A., Wu, Q., Emch, M., Koch, K., Cumming, P., Yakushev, I., 2021. Working memory task induced neural activation: a simultaneous PET/fMRI study. NeuroImage 237, 118131. https://doi.org/10.1016/j.neuroimage.2021.118131
Rolls, E.T., Joliot, M., Tzourio-Mazoyer, N., 2015. Implementation of a new parcellation of the orbitofrontal cortex in the automated anatomical labeling atlas. NeuroImage 122, 1–5. https://doi.org/10.1016/j.neuroimage.2015.07.075
Romero-Garcia, R., Whitaker, K.J., Váša, F., Seidlitz, J., Shinn, M., Fonagy, P., Dolan, R.J., Jones, P.B., Goodyer, I.M., Bullmore, E.T., Vértes, P.E., 2018. Structural covariance networks are coupled to expression of genes enriched in supragranular layers of the human cortex. NeuroImage 171, 256–267. https://doi.org/10.1016/j.neuroimage.2017.12.060
Sala, A., Lizarraga, A., Caminiti, S.P., Calhoun, V.D., Eickhoff, S.B., Habeck, C., Jamadar, S.D., Perani, D., Pereira, J.B., Veronese, M., Yakushev, I., 2023. Brain connectomics: time for a molecular imaging perspective? Trends. Cogn. Sci.) S136466132200300X. https://doi.org/10.1016/j.tics.2022.11.015
Sala, A., Lizarraga, A., Ripp, I., Cumming, P., Yakushev, I., 2022. Static versus Functional PET: Making Sense of Metabolic Connectivity. Cereb. Cortex 32 (5), 1125–1129. doi:10.1093/cercor/bhab271.
Seghier M.L., Price C.J. Interpreting and utilising intersubject variability in brain function. Trends. Cogn. Sci.. 2018 Jun;22(6):517–530. doi: 10.1016/j.tics.2018.03.003
Smith, R., Raffelt, D., Tournierc, J.D., Connelly, A., 2022. Quantitative streamlines tractography: methods and inter-subject normalisation. Aperture. Neuro. 1–25. https://doi.org/10.52294/apertureneuro.2022.2.neod9565
Somandepalli, K., Kelly, C., Reiss, P.T., Zuo, X.N., Craddock, R.C., Yan, C.G., Petkova, E., Castellanos, F.X., Milham, M.P., Di Martino, A., 2015. Short-term test–retest reliability of resting state fMRI metrics in children with and without attention-deficit/hyperactivity disorder. Dev. Cogn. Neurosci. 15, 83–93. https://doi.org/10.1016/j.dcn.2015.08.003
Sporns, O., 2010. Networks of the brain: quantitative analysis and modeling. Analysis and Function of Large-Scale Brain Networks, 7. pp. 7–13.
Stoessl, A.J., 2017. Glucose utilization: still in the synapse. Nat. Neurosci. 20, 382–384. https://doi.org/10.1038/nn.4513
Tozzi, L., Fleming, S.L., Taylor, Z.D., Raterink, C.D., Williams, L.M., 2020. Test-retest reliability of the human functional connectome over consecutive days: identifying highly reliable portions and assessing the impact of methodological choices. Netw. Neurosci. 4, 925–945. https://doi.org/10.1162/netn_a_00148
Tsai, S.Y., 2018. Reproducibility of structural brain connectivity and network metrics using probabilistic diffusion tractography. Sci. Rep. 8, 11562. https://doi.org/10.1038/s41598-018-29943-0
van den Heuvel, M.P., Sporns, O., 2011. Rich-Club Organization of the Human Connectome. J. Neurosci. 31, 15775–15786. https://doi.org/10.1523/JNEUROSCI.3539-11.2011
Wu, K., Taki, Y., Sato, K., Kinomura, S., Goto, R., Okada, K., Kawashima, R., He, Y., Evans, A.C., Fukuda, H., 2012. Age-related changes in topological organization of structural brain networks in healthy individuals. Hum. Brain. Mapp 33, 552–568. https://doi.org/10.1002/hbm.21232
Yakushev, I., Drzezga, A., Habeck, C., 2017. Metabolic connectivity: methods and applications. Curr. Opin. Neurol. 30, 677–685. https://doi.org/10.1097/wco.0000000000000494
Yakushev, I., Ripp, I., Wang, M., Savio, A., Schutte, M., Lizarraga, A., Bogdanovic, B., Diehl-Schmid, J., Hedderich, D.M., Grimmer, T., Shi, K., 2022. Mapping covariance in brain FDG uptake to structural connectivity. Eur. J. Nucl. Med. Mol. Imaging. 49, 1288–1297. https://doi.org/10.1007/s00259-021-05590-y
Yuan, J.P., Henje Blom, E., Flynn, T., Chen, Y., Ho, T.C., Connolly, C.G., Dumont Walter, R.A., Yang, T.T., Xu, D., Tymofiyeva, O., 2019. Test–Retest reliability of graph theoretic metrics in adolescent brains. Brain. Connect. 9, 144–154. https://doi.org/10.1089/brain.2018.0580
Zhao, T., Duan, F., Liao, X., Dai, Z., Cao, M., He, Y., Shu, N., 2015. Test-retest reliability of white matter structural brain networks: a multiband diffusion MRI study. Front. Hum. Neurosci. 9. https://doi.org/10.3389/fnhum.2015.00059