[en] [en] PURPOSE: Here, we combined a longitudinal design to assess whole-brain hyper- and hypo-connectivity in the different clinical phases of Alzheimer's disease (AD) with a multimodal approach to understand how such connectivity changes were related to glucose hypometabolism.
METHODS: We selected a longitudinal cohort of N = 66 subjects with clinical, cerebrospinal fluid and FDG-PET assessments, from Alzheimer's Disease Neuroimaging Initiative (ADNI) database. N = 31 AD individuals were assessed at three stages: mild cognitive impairment (AD-MCI, T0), early phase of dementia (mild-AD, T1) and dementia (AD-D, T2). We included N = 35 age/sex-matched healthy controls. We assessed longitudinal metabolic connectivity using Pearson's correlation, clustering analysis and graph theory metrics.
RESULTS: In the MCI-AD stages, hypo- and hyper-connectivity coexisted. Data-driven, longitudinal clustering analysis identified specific pathological clusters: a default mode network cluster, with prevalent hypo-connectivity and severe, persistent hypometabolism; a limbic cluster showing hyper-connectivity and steeper metabolic decline. Metabolism in hyper-connected limbic regions showed a mediation effect on worsening of AD-like parieto-temporal hypometabolism and predicted faster conversion to dementia.
CONCLUSION: Hypo- and hyper-connectivity, especially in early stages, may have different roles in AD neurodegenerative processes, with metabolism in hyper-connected regions acting as a mediator on the neurodegeneration of core regions of AD pathology.
Disciplines :
Radiology, nuclear medicine & imaging
Author, co-author :
Galli, Alice; Neurology Unit, Department of clinical and experimental sciences, University of Brescia, Brescia, 25123, Italy ; Laboratory of Digital Neurology and Biosensors, University of Brescia, Brescia, 25123, Italy
Inglese, Marianna; Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, 0133, Italy
Presotto, Luca; Università degli Studi Milano-Bicocca, Milan, 20126, Italy
Di, Xin; Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, 07102, USA
Toschi, Nicola; Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, 0133, Italy
Pilotto, Andrea; Neurology Unit, Department of clinical and experimental sciences, University of Brescia, Brescia, 25123, Italy ; Laboratory of Digital Neurology and Biosensors, University of Brescia, Brescia, 25123, Italy
Padovani, Alessandro; Neurology Unit, Department of clinical and experimental sciences, University of Brescia, Brescia, 25123, Italy ; Laboratory of Digital Neurology and Biosensors, University of Brescia, Brescia, 25123, Italy
Tassorelli, Cristina; IRCCS Mondino Foundation, 27100, Pavia, Italy ; Department of Brain and Behavioral Sciences, University of Pavia, 27100, Pavia, Italy
Perani, Daniela; IRCCS San Raffaele Scientific Institute, Milan, 20132, Italy
Sala, Arianna ✱; Université de Liège - ULiège > Département des sciences cliniques
Caminiti, Silvia Paola ✱; Department of Brain and Behavioral Sciences, University of Pavia, 27100, Pavia, Italy. silviapaola.caminiti@unipv.it ; University of Pavia, Viale Golgi 19, 27100, Pavia, Italy. silviapaola.caminiti@unipv.it
✱ These authors have contributed equally to this work.
Language :
English
Title :
Glucose metabolism in hyper-connected regions predicts neurodegeneration and speed of conversion in Alzheimer's disease.
Publication date :
October 2025
Journal title :
European Journal of Nuclear Medicine and Molecular Imaging
MIUR - Ministry of Education, University and Research
Funding text :
Study supported by #NEXTGENERATIONEU (NGEU) funded by the Ministry of University and Research (MUR), National Recovery and Resilience Plan (NRRP), project MNESYS (PE0000006) \u2013 A multiscale integrated approach to the study of the nervous system in health and disease (DN. 1553 11.10.2022), by the Belgian National Fund for Scientific Research (grant number 40001328 to A.S., Charg\u00E9e de Recherches F.R.S.-FNRS/Universit\u00E9 de Li\u00E8ge/Coma Science Group GIGA).CT has received personal fees for participating in advisory boards for Eli Lilly. APi has been supported by grants of Airalzh Foundation AGYR2021 Life-Bio Grant, The LIMPE-DISMOV Foundation Segala Grant 2021, the Italian Ministry of University and Research PRIN COCOON (2017MYJ5 TH) and PRIN 2021 RePlast (PRIN202039 WMFP), the H2020 IMI IDEA-FAST(ID853981), Italian Ministry of Health, Grant/Award Number: RF-2018-12366209 and PNRR-Health PNRR-MAD-2022-12376110. APa received grant support from the Italian Ministry of University and Research PRIN COCOON (2017MYJ5 TH) and PRIN 2021 RePlast (PRIN202039 WMFP), the H2020 IMI IDEA-FAST (ID853981), Italian Ministry of Health, Grant/Award Number: RF-2018-12366209, PNRR-Health PNRR-MAD-2022-12376110 and from CARIPLO Foundation.
C.R. Jack D.A. Bennett K. Blennow et al. NIA-AA research framework: toward a biological definition of Alzheimer’s disease Alzheimer’s Dement 14 535 62 10.1016/j.jalz.2018.02.018
L. Iaccarino G. Tammewar N. Ayakta et al. Local and distant relationships between amyloid, Tau and neurodegeneration in Alzheimer’s disease Neuroimage Clin 17 452 64 10.1016/j.nicl.2017.09.016 29159058
J.B. Pereira S. Janelidze R. Ossenkoppele et al. Untangling the association of amyloid-β and Tau with synaptic and axonal loss in Alzheimer’s disease Brain 144 310 24 10.1093/brain/awaa395 33279949
T. Vogels A. Leuzy C. Cicognola et al. Propagation of Tau pathology: integrating insights from postmortem and in vivo studies Biol Psychiatry 87 808 18 1:CAS:528:DC%2BC1MXitFOrtLvO 10.1016/j.biopsych.2019.09.019 31735253
R.F. Buckley A.P. Schultz T. Hedden et al. Functional network integrity presages cognitive decline in preclinical alzheimer disease Neurology 89 29 37 1:CAS:528:DC%2BC2sXhtV2htbbF 10.1212/WNL.0000000000004059 28592457 5496516
Carli G, Tondo G, Boccalini C, Perani D. Brain molecular connectivity in neurodegenerative conditions. Brain Sci. 2021;11. https://doi.org/10.3390/brainsci11040433.
Roemer-Cassiano SN, Wagner F, Evangelista L, et al. Amyloid-associated hyperconnectivity drives Tau spread across connected brain regions in Alzheimer’s disease. Sci Transl Med. 2025;17. https://doi.org/10.1126/scitranslmed.adp2564.
D. Berron D. van Westen R. Ossenkoppele et al. Medial Temporal lobe connectivity and its associations with cognition in early Alzheimer’s disease Brain 143 1233 48 10.1093/brain/awaa068 32252068 7174043
S.R. Das J. Pluta L. Mancuso et al. Increased functional connectivity within medial Temporal lobe in mild cognitive impairment Hippocampus 23 1 6 10.1002/hipo.22051 22815064
L. Pasquini M. Scherr M. Tahmasian et al. Link between hippocampus’ Raised local and eased global intrinsic connectivity in AD Alzheimer’s Dement 11 475 84 10.1016/j.jalz.2014.02.007
S. Delli Pizzi M. Punzi S.L. Sensi Functional signature of conversion of patients with mild cognitive impairment Neurobiol Aging 74 21 37 10.1016/j.neurobiolaging.2018.10.004 30408719
S. Dautricourt R. de Flores B. Landeau et al. Longitudinal changes in hippocampal network connectivity in Alzheimer’s disease Ann Neurol 90 391 406 1:CAS:528:DC%2BB3MXis1Ojt7vP 10.1002/ana.26168 34279043 9291910
L. Pasquini F. Rahmani S. Maleki-Balajoo et al. Medial Temporal lobe Disconnection and hyperexcitability across Alzheimer’s disease stages J Alzheimers Dis Rep 3 103 12 10.3233/ADR-190121 31259307 6597961
Chauveau L, Landeau B, Dautricourt S et al. (2025) Anterior-temporal network hyperconnectivity is key to Alzheimer’s disease: from ageing to dementia. Brain. https://doi.org/10.1093/brain/awaf008.
D.T. Jones D.S. Knopman J.L. Gunter et al. Cascading network failure across the Alzheimer’s disease spectrum Brain 139 547 62 10.1093/brain/awv338 26586695
F. Rocchi C. Canella S. Noei et al. Increased fMRI connectivity upon chemogenetic Inhibition of the mouse prefrontal cortex Nat Commun 13 1056 1:CAS:528:DC%2BB38XltFWhsrg%3D 10.1038/s41467-022-28591-3 35217677 8881459
P.K. Crane A. Carle L.E. Gibbons et al. Development and assessment of a composite score for memory in the Alzheimer’s disease neuroimaging initiative (ADNI) Brain Imaging Behav 6 502 16 10.1007/s11682-012-9186-z 22782295 3806057
S.P. Caminiti A. Sala L. Presotto et al. Validation of FDG-PET datasets of normal controls for the extraction of SPM-based brain metabolism maps Eur J Nucl Med Mol Imaging 48 2486 99 1:CAS:528:DC%2BB3MXhsVejurY%3D 10.1007/s00259-020-05175-1 33423088
F. Agosta M. Pievani C. Geroldi et al. Resting state fMRI in Alzheimer’s disease: beyond the default mode network Neurobiol Aging 33 1564 78 10.1016/j.neurobiolaging.2011.06.007 21813210
A. Sala A. Lizarraga S.P. Caminiti et al. Brain connectomics: time for a molecular imaging perspective? Trends Cogn Sci 27 353 66 10.1016/j.tics.2022.11.015 36621368 10432882
P.A. Della Rosa C. Cerami F. Gallivanone et al. A standardized [18F]-FDG-PET template for Spatial normalization in statistical parametric mapping of dementia Neuroinformatics 12 575 93 10.1007/s12021-014-9235-4 24952892
D. Perani P.A. Della Rosa C. Cerami et al. Validation of an optimized SPM procedure for FDG-PET in dementia diagnosis in a clinical setting Neuroimage Clin 6 445 54 10.1016/j.nicl.2014.10.009 25389519 4225527
F. Gallivanone P. Anthony Della Rosa I. Castiglioni Statistical Voxel-Based methods and [18F]FDG PET brain imaging: frontiers for the diagnosis of AD Curr Alzheimer Res 13 682 94 1:CAS:528:DC%2BC28XmvFCrsLY%3D 10.2174/1567205013666151116142039 26567733
D. Perani C. Cerami S.P. Caminiti et al. Cross-validation of biomarkers for the early differential diagnosis and prognosis of dementia in a clinical setting Eur J Nucl Med Mol Imaging 43 499 508 1:CAS:528:DC%2BC2MXhsVOmtr7M 10.1007/s00259-015-3170-y 26341365
K. Adamczuk A.-S. De Weer N. Nelissen et al. Polymorphism of brain derived neurotrophic factor influences Β amyloid load in cognitively intact Apolipoprotein E Ε4 carriers Neuroimage Clin 2 512 20 10.1016/j.nicl.2013.04.001 24179803 3777754
N. Tzourio-Mazoyer B. Landeau D. Papathanassiou et al. Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI Single-Subject brain NeuroImage 15 273 89 1:STN:280:DC%2BD38%2FltFCntw%3D%3D 10.1006/nimg.2001.0978 11771995
N.M. Laird J.H. Ware Random-Effects models for longitudinal data Biometrics 38 963 1:STN:280:DyaL3s7nvFWlsg%3D%3D 10.2307/2529876 7168798
D. Titov J. Diehl-Schmid K. Shi et al. Metabolic connectivity for differential diagnosis of dementing disorders J Cereb Blood Flow Metabolism 37 252 62 1:CAS:528:DC%2BC2sXhsVOgt7bK 10.1177/0271678X15622465
H. Zhao Design and implementation of an improved K-Means clustering algorithm Mob Inform Syst 2022 1 10 10.1155/2022/6041484
A. Sala C. Caprioglio R. Santangelo et al. Brain metabolic signatures across the Alzheimer’s disease spectrum Eur J Nucl Med Mol Imaging 47 256 69 10.1007/s00259-019-04559-2 31811345
R.M. Baron D.A. Kenny The moderator–mediator variable distinction in social psychological research: conceptual, strategic, and statistical considerations J Pers Soc Psychol 51 1173 82 1:STN:280:DyaL2s7ht1SrsQ%3D%3D 10.1037/0022-3514.51.6.1173 3806354
B.T. Thomas Yeo F.M. Krienen J. Sepulcre et al. The organization of the human cerebral cortex estimated by intrinsic functional connectivity J Neurophysiol 106 1125 65 10.1152/jn.00338.2011 3174820
M. Mijalkov E. Kakaei J.B. Pereira et al. BRAPH: A graph theory software for the analysis of brain connectivity PLoS ONE 12 e0178798 1:CAS:528:DC%2BC1cXnsVShs7g%3D 10.1371/journal.pone.0178798 28763447 5538719
Y. Wang S.L. Risacher J.D. West et al. Altered default mode network connectivity in older adults with cognitive complaints and amnestic mild cognitive impairment J Alzheimer’s Disease 35 751 60 1:CAS:528:DC%2BC3sXotFynuro%3D 10.3233/JAD-130080
Y. Zhou J.H. Dougherty K.F. Hubner et al. Abnormal connectivity in the posterior cingulate and hippocampus in early Alzheimer’s disease and mild cognitive impairment Alzheimer’s Dement 4 265 70 10.1016/j.jalz.2008.04.006
D.C. Zhu S. Majumdar I.O. Korolev et al. Alzheimer’s disease and amnestic mild cognitive impairment weaken connections within the Default-Mode network: A Multi-Modal imaging study J Alzheimer’s Disease 34 969 84 1:CAS:528:DC%2BC3sXktFOht7w%3D 10.3233/JAD-121879
R. Esposito A. Mosca V. Pieramico et al. Characterization of resting state activity in MCI individuals PeerJ 1 e135 10.7717/peerj.135 24010015 3757508
S. Gardini A. Venneri F. Sambataro et al. Increased functional connectivity in the default mode network in mild cognitive impairment: A maladaptive compensatory mechanism associated with poor semantic memory performance J Alzheimer’s Disease 45 457 70 10.3233/JAD-142547
Z. Zhang Y. Liu T. Jiang et al. Altered spontaneous activity in Alzheimer’s disease and mild cognitive impairment revealed by regional homogeneity NeuroImage 59 1429 40 10.1016/j.neuroimage.2011.08.049 21907292
J. Sepulcre M.R. Sabuncu Q. Li et al. Tau and amyloid Β proteins distinctively associate to functional network changes in the aging brain Alzheimer’s Dement 13 1261 9 10.1016/j.jalz.2017.02.011
A.P. Schultz J.P. Chhatwal T. Hedden et al. Phases of hyperconnectivity and hypoconnectivity in the default mode and salience networks track with amyloid and Tau in clinically normal individuals J Neurosci 37 4323 31 1:CAS:528:DC%2BC2sXhtFOqt7nL 10.1523/JNEUROSCI.3263-16.2017 28314821 5413178
C.A. Fredericks V.E. Sturm J.A. Brown et al. Early affective changes and increased connectivity in preclinical Alzheimer’s disease Alzheimer’s Dementia: Diagnosis Assess Disease Monit 10 471 9 10.1016/j.dadm.2018.06.002
Guzmán-Vélez E, Diez I, Schoemaker D, et al. Amyloid-β and Tau pathologies relate to distinctive brain dysconnectomics in preclinical autosomal-dominant Alzheimer’s disease. Proc Natl Acad Sci. 2022;119. https://doi.org/10.1073/pnas.2113641119.
A.J. Stoessl Glucose utilization: still in the synapse Nat Neurosci 20 382 4 1:CAS:528:DC%2BC2sXjsVSmsrg%3D 10.1038/nn.4513 28230843
A. Savio S. Fünger M. Tahmasian et al. Resting-State networks as simultaneously measured with functional MRI and PET J Nucl Med 58 1314 7 1:CAS:528:DC%2BC1cXitVags7fJ 10.2967/jnumed.116.185835 28254868 6944183
N. Gour J.-P. Ranjeva M. Ceccaldi et al. Basal functional connectivity within the anterior Temporal network is associated with performance on declarative memory tasks NeuroImage 58 687 97 10.1016/j.neuroimage.2011.05.090 21722740
P.A. Reuter-Lorenz K.A. Cappell Neurocognitive aging and the compensation hypothesis Curr Dir Psychol Sci 17 177 82 10.1111/j.1467-8721.2008.00570.x
J. Giorgio J.N. Adams A. Maass et al. Amyloid induced hyperexcitability in default mode network drives medial Temporal hyperactivity and early Tau accumulation Neuron 112 676 e6864 1:CAS:528:DC%2BB3sXis1Wiu7nP 10.1016/j.neuron.2023.11.014 38096815
W.J. Lee J.A. Brown H.R. Kim et al. Regional Aβ-tau interactions promote onset and acceleration of Alzheimer’s disease Tau spreading Neuron 110 1932 e19435 1:CAS:528:DC%2BB38XhtVeqs7nF 10.1016/j.neuron.2022.03.034 35443153 9233123
Hojjati SH, Butler TA, de Leon M et al. (2024) Between-networks hyperconnectivity is induced by beta-amyloid and may facilitate tau spread.
Tomasi DG, Shokri-Kojori E, Volkow ND. Brain network dynamics adhere to a power law. Front Neurosci. 2017;11. https://doi.org/10.3389/fnins.2017.00072.
C.A. Sanchez-Catasus M.L.T.M. Müller P.P. De Deyn et al. Use of nuclear medicine molecular neuroimaging to model brain molecular connectivity PET and SPECT in neurology Cham Springer International Publishing 181 207 10.1007/978-3-030-53168-3_8
K. Murphy R.M. Birn D.A. Handwerker et al. The impact of global signal regression on resting state correlations: are anti-correlated networks introduced? NeuroImage 44 893 905 10.1016/j.neuroimage.2008.09.036 18976716
F. Agosta P. Valsasina M. Absinta et al. Sensorimotor functional connectivity changes in amyotrophic lateral sclerosis Cereb Cortex 21 2291 8 1:STN:280:DC%2BC3MfitVOqug%3D%3D 10.1093/cercor/bhr002 21368084
N. Gour O. Felician M. Didic et al. Functional connectivity changes differ in early and late-onset Alzheimer’s disease Hum Brain Mapp 35 2978 94 10.1002/hbm.22379 24123475
C. Boccalini D.E. Peretti G. Mathoux et al. Early-phase 18F-Flortaucipir tau-PET as a proxy of brain metabolism in Alzheimer’s disease: a comparison with 18F-FDG-PET and early-phase amyloid-PET Eur J Nucl Med Mol Imaging 10.1007/s00259-024-07063-4 40681899 12014785
J.J. Palop L. Mucke Network abnormalities and interneuron dysfunction in alzheimer disease Nat Rev Neurosci 17 777 92 1:CAS:528:DC%2BC28XhvVagsLfM 10.1038/nrn.2016.141 27829687 8162106
R. Cacciaglia G. Operto C. Falcón et al. Genotypic effects of APOE-ε4 on resting-state connectivity in cognitively intact individuals support functional brain compensation Cereb Cortex 33 2748 60 10.1093/cercor/bhac239 35753703
N. Mattsson C. Groot W.J. Jansen et al. Prevalence of the Apolipoprotein E Ε4 allele in amyloid Β positive subjects across the spectrum of Alzheimer’s disease Alzheimer’s Dement 14 913 24 10.1016/j.jalz.2018.02.009
M.D. Paranjpe X. Chen M. Liu et al. The effect of ApoE Ε4 on longitudinal brain region-specific glucose metabolism in patients with mild cognitive impairment: a FDG-PET study Neuroimage Clin 22 101795 10.1016/j.nicl.2019.101795 30991617 6449776
D.S. Knopman C.R. Jack H.J. Wiste et al. 18F-fluorodeoxyglucose positron emission tomography, aging, and Apolipoprotein E genotype in cognitively normal persons Neurobiol Aging 35 2096 106 1:CAS:528:DC%2BC2cXlsF2ltLk%3D 10.1016/j.neurobiolaging.2014.03.006 24702820 4053507