B cells; Equine; Gestation; Hormones; Immunomodulation; T cells
Abstract :
[en] Associations between the immune and endocrine systems during equine pregnancy remain poorly understood. Based on the hypothesis that distinct phases of the equine healthy gestation are characterized by specific associations between circulating immunological and hormonal parameters, contributing to pregnancy maintenance, this investigation aimed to: (i) evaluate how circulating immunological and hormonal parameters change across different phases of pregnancy; (ii) investigate associations between changes in circulating immunological and hormonal parameters; and (iii) propose potential hormonal drivers of immunological modulation during pregnancy. Peripheral blood samples were prospectively collected from mares (n = 8) before ovulation and during pregnancy at 30, 90, 150, 210, 240, 270, 300, and 330 days of their healthy gestations. An immunological panel included the distribution of circulating T cell (CD3, CD4, and CD8) and B cell subpopulations, complete blood counts (CBC), and serum protein profile. Hormonal analyses included equine chorionic gonadotropin (eCG), progestogens, androgens, estrogens, corticosteroids, and thyroid hormones. At 90 days, a statistically significant increase in peripheral blood CD4 T cell distribution was accompanied by a concomitant reduction in B cell distribution. This immunological modulation correlated positively with eCG, progesterone (P4), 5α-dihydroprogesterone (DHP), and estrone sulfate, and inversely with B cell levels. In contrast, at 210 days, B cell distribution peaked significantly while CD4 T cell distribution declined, concomitant with a rise in albumin levels. These changes positively correlated with cortisone and hematocrit. Mid-gestation was characterized by associations between different androgens and circulating T cell and B cell distributions. Consistent negative associations were observed between progesterone, DHP, and estradiol-17β with glucocorticoid metabolites throughout gestation. Estradiol-17β and IgM concentrations showed a positive correlation in late gestation. Immune-hormone and hormone-hormone associations were more pronounced during early and mid-gestation, while the final 100 days of pregnancy were characterized by relatively constant levels. Collectively, our findings suggest immune-hormone associations that potentially orchestrate immunomodulation, fetal development, successful pregnancy maintenance, and parturition in the mare.
Disciplines :
Veterinary medicine & animal health
Author, co-author :
Feijo, Lorena S; Equine Immunology Laboratory, Department of Clinical Sciences, College of Veterinary, Cornell University, Ithaca, NY, USA
Ledeck, Joy ; Université de Liège - ULiège > Fundamental and Applied Research for Animals and Health (FARAH) > FARAH: Médecine vétérinaire comparée
Wolfsdorf, Karen; Hagyard Equine Medical Institute, Lexington, KY, USA
Ponthier, Jérôme ; Université de Liège - ULiège > Fundamental and Applied Research for Animals and Health (FARAH) > FARAH: Médecine vétérinaire comparée
Parry, Stephen; Cornell Statistical Consulting Unit, Cornell University, Ithaca, NY, USA
Felippe, M Julia B; Equine Immunology Laboratory, Department of Clinical Sciences, College of Veterinary, Cornell University, Ithaca, NY, USA. Electronic address: mbf6@cornell.edu
Language :
English
Title :
Associations between immunological and hormonal parameters during healthy pregnancy in mares.
Abu-Raya B, Michalski C, Sadarangani M, Lavoie PM. Maternal immunological adaptation during normal pregnancy. Front Immunol, 11 (2020), pp. 575197. doi: 10.3389/fimmu.2020.575197.
Aluvihare VR, Kallikourdis M, Betz AG. Regulatory T cells mediate maternal tolerance to the fetus. Nat. Immunol, 5 (2004), pp. 266-271. doi: 10.1038/ni1037.
Somerset DA, Zheng Y, Kilby MD, Sansom DM, Drayson MT. Normal human pregnancy is associated with an elevation in the immune suppressive CD25+ CD4+ regulatory T-cell subset. Immunology, 112 (2004), pp. 38-43. doi: 10.1111/j.1365-2567.2004.01869.x.
Robinson DP, Klein SL. Pregnancy and pregnancy-associated hormones alter immune responses and disease pathogenesis. Horm Behav, 62 (2012), pp. 263-271. doi: 10.1016/j.yhbeh.2012.02.023.
Agricola, R.; Carvalho, H.; Barbosa, M.; Pereira, M.; Medeiros, J.; Ferreira-Dias, G. Blood lymphocyte subpopulations, neutrophil phagocytosis and proteinogram during late pregnancy and postpartum in mares. Reprod. Domest. Anim, 43, (2008), pp.212-217. doi: 10.1111/j.1439-0531.2007.00879.x.
Aoki T, Honda H, Ishii M. immunologic profiles of peripheral blood leukocytes and serum immunoglobulin g concentrations in perinatal mares and neonatal foals (Heavy Draft Horse). Journal of Equine Veterinary Sciences, 33 (2013), pp. 989-995. doi: 10.1016/j.jevs.2013.03.179.
Allen WR, Moor RM: The origin of the equine endometrial cups. I. Production of PMSG by fetal trophoblast cells. J Reprod Fertil, 29 (1972), pp. 313-316. doi: 10.1530/jrf.0.0290313
Ginther OJ. Equine fetal kinetics: Allantoic-fluid shifts and uterine-horn closures. Theriogenology, 40 (1993), pp. 241-256. doi: 10.1016/0093-691x(93)90262-4
Hoffmann B, Gentz F, Failing K. Investigations into the course of progesterone, oestrogen and eCG concentrations during normal and impaired pregnancy in the mare. Reproduction in Domestic Animals, 31 (1996), pp. 717-723. doi: 10.1111/j.1439-0531.1996.tb01444.x
Nett TM, Holtan DW, Estergreen VL. Oestrogens, LH, PMSG, and prolactin in serum of pregnant mares. J Reprod Fertil Suppl, 23 (1975), pp. 457-462.
Ousey J. Endocrinology of pregnancy. In: Equine Reproduction. Second Edition. McKinnon AO, EL Squires, WE Vaala, DD Varner (Eds). Wiley-Blackwell, Ames, Iowa. 2011, pp 2222-2233.
Conley AJ. Review of the reproductive endocrinology of the pregnant and parturient mare. Theriogenology, 86 (2016), pp. 355-365. doi: 10.1016/j.theriogenology.2016.04.049.
Daels PF, DeMoraes JJ, Stabenfeldt GH, Hughes JP, Lasley BL. The corpus luteum: source of oestrogen during early pregnancy in the mare. J Reprod Fertil Suppl, 44 (1991), pp. 501-508.
Raeside JI, Christie HL, Renaud RL, Waelchli RO, Betteridge KJ. Estrogen metabolism in the equine conceptus and endometrium during early pregnancy in relation to estrogen concentrations in yolk-sac fluid. Biol Reprod, 71 (2004), pp. 1120-1127. doi: 10.1095/biolreprod.104.028712.
Pashen RL, Allen WR. The role of the fetal gonads and placenta in steroid production, maintenance of pregnancy and parturition in the mare. J Reprod Fertil Suppl, 27 (1979), pp.499-509.
Abd-Elnaeim MM, Derar IR, Wilsher S, Allen WR, Leiser R, Schuler G. Immunohistochemical localization of oestrogen receptors alpha and beta, progesterone receptor and aromatase in the equine placenta. Reprod Domest Anim, 44 (2009), pp. 312-319. doi: 10.1111/j.1439-0531.2008.01073.x.
Grossman, C. J. Regulation of the immune system by sex steroids. Endocr. Rev, 5 (1984), pp. 435-455. doi: 10.1210/edrv-5-3-435.
Kanda N, Tsuchida T, Tamaki K. Testosterone inhibits immunoglobulin production by human peripheral blood mononuclear cells. Clin Exp Immunol, 106 (1996), pp. 410-415. doi: 10.1046/j.1365-2249.1996.d01-842.x.
Kanda N, Tamaki K. Estrogen enhances immunoglobulin production by human PBMCs. J Allergy Clin Immunol, 103 (1999), pp. 282-288. doi: 10.1016/s0091-6749(99)70503-8.
Hierweger AM, Engler JB, Friese MA, Reichardt HM, Lydon J, DeMayo F, et al. Progesterone modulates the T-cell response via glucocorticoid receptor-dependent pathways. Am J Reprod Immunol, (2019) 81:e13084. doi: 10.1111/aji.13084.
Monteiro C, Kasahara T, Sacramento PM, Dias A, Leite S, Silva VG, et al. Human pregnancy levels of estrogen and progesterone contribute to humoral immunity by activating T(Fh)/B cell axis. Eur J Immunol, 51 (2021), pp. 167-179. doi: 10.1002/eji.202048658.
Motomura K, Miller D, Galaz J, Liu TN, Romero R, Gomez-Lopez N. The effects of progesterone on immune cellular function at the maternal-fetal interface and in maternal circulation. J Steroid Biochem Mol Biol, 229 (2023), 106254. doi: 10.1016/j.jsbmb.2023.106254.
Ainslie RJ, Simitsidellis I, Kirkwood PM, et al. RISING STARS: Androgens and immune cell function. J Endocrinol (2024), 261:e230398. doi: 10.1530/JOE-23-0398.
Flaminio MJ, Rush BR, Davis EG, Hennessy K, Shuman W, Wilkerson MJ. Characterization of peripheral blood and pulmonary leukocyte function in healthy foals. Vet Immunol Immunopathol, 73 (2000), pp. 267-285. doi: 10.1016/s0165-2427(00)00149-5.
Flaminio MJ, Rush BR, Shuman W. Peripheral blood lymphocyte subpopulations and immunoglobulin concentrations in healthy foals and foals with Rhodococcus equi pneumonia. J Vet Intern Med, 13 (1999), pp. 206-212. doi: 10.1892/0891-6640(1999)013<0206:pblsai>2.3.co;2.
Flaminio MJ, Tallmadge RL, Salles-Gomes CO, Matychak MB. Common variable immunodeficiency in horses is characterized by B cell depletion in primary and secondary lymphoid tissues. J Clin Immunol, 29 (2009), pp. 107-116. doi: 10.1007/s10875-008-9221-4.
Mayall S, Siedek E, Hamblin AS. The anti-human CD21 antibody, BU33, identifies equine B cells. J Comp Pathol, 124 (2001), pp. 83-87. doi: 10.1053/jcpa.2000.0425.
Prieto JMB, Tallmadge RL, Felippe MJB. Developmental expression of B cell molecules in equine lymphoid tissues. Vet Immunol Immunopathol, 183 (2017), pp. 60-71. doi: 10.1016/j.vetimm.2016.12.004.
Wagner B, Freer H. Development of a bead-based multiplex assay for simultaneous quantification of cytokines in horses. Vet Immunol Immunopathol, 15 (2009), pp. 242-248. doi: 10.1016/j.vetimm.2008.10.313.
Secor EJ, Matychak MB, Felippe MJ. Transfer of tumor necrosis factor-α via colostrum to foals. Vet Rec, 70 (2012), pp. 51-54. doi: 10.1136/vr.100220.
Anderson MJ, Ibrahim AS, Cooper BR, Woolcock AD, Moore GE, Taylor SD. Effects of administration of ascorbic acid and low-dose hydrocortisone after infusion of sublethal doses of lipopolysaccharide to horses. J Vet Intern Med, 34 (2020), pp. 2710-2718. doi: 10.1111/jvim.15896.
Feijo LS, Wolfsdorf KE, Canisso IF, Parry S, Felippe MJB. Application of blood parameters for the early diagnosis of natural ascending placentitis in pregnant mares. Theriogenology, 228 (2024), pp. 37-53. doi: 10.1016/j.theriogenology.2024.07.025.
Dufour P, Courtois J, Seynaeve Y, Peeters S, Le Goff C, Cavalier E, Ponthier J. Development and validation of a liquid chromatography coupled to mass spectrometer (LC-MS) method for the simultaneous quantification of estrone-3-sulfate, progesterone, estrone and estradiol in serum of mares and American bisons. Res Vet Sci, 136 (2021), pp. 343-350. doi: 10.1016/j.rvsc.2021.03.014.
Ledeck J, Dufour P, Evrard E, Le Goff C, Peeters S, Brutinel F, Egyptien S, Deleuze S, Cavalier E, Ponthier J. Evolution of 17-β-estradiol, estrone and estrone-sulfate concentrations in late pregnancy of different breeds of mares using Liquid Chromatography and Mass Spectrometry. Theriogenology, 189 (2022), pp. 86-91. doi: 10.1016/j.theriogenology.2022.06.004.
Canisso IF, Ball BA, Esteller-Vico A, Williams NM, Squires EL, Troedsson MH. Changes in maternal androgens and oestrogens in mares with experimentally-induced ascending placentitis. Equine Vet J, 49 (2017), pp. 244-249. doi: 10.1111/evj.12556.
Norman AW, Litwack G. Hormones. 2nd ed., Academic Press, 1997.
Legacki EL, Scholtz EL, Ball BA, Stanley SD, Berger T, Conley AJ. The dynamic steroid landscape of equine pregnancy mapped by mass spectrometry. Reproduction, 151 (2016), pp. 421-430. doi: 10.1530/REP-15-0547.
Bousfield GR, Butnev VY, Gotschall RR, Baker VL, Moore WT. Structural features of mammalian gonadotropins. Mol Cell Endocrinol, 125 (1996), pp. 3-19. doi: 10.1016/s0303-7207(96)03945-7.
Huang X, Cai Y, Ding M, Zheng B, Sun H, Zhou J. Human chorionic gonadotropin promotes recruitment of regulatory T cells in endometrium by inducing chemokine CCL2. J Reprod Immunol, 137 (2020). doi: 10.1016/j.jri.2019.102856.
Lentz LS, Stutz AJ, Meyer N, Schubert K, Karkossa I, von Bergen M, Zenclussen AC, Schumacher A. Human chorionic gonadotropin promotes murine Treg cells and restricts pregnancy-harmful proinflammatory Th17 responses. Front Immunol, 13 (2022) 989247. doi: 10.3389/fimmu.2022.989247.
Raghupathy R, Szekeres-Bartho J. Progesterone: A unique hormone with immunomodulatory roles in pregnancy. Int J Mol Sci, 23 (2022) pp. 1333. doi: 10.3390/ijms23031333.
Oliveira LJ, Hansen PJ. Deviations in populations of peripheral blood mononuclear cells and endometrial macrophages in the cow during pregnancy. Reproduction, 136 (2008), pp. 481-490. doi: 10.1530/REP-08-0218.
Flaminio MJ, Antczak DF. Inhibition of lymphocyte proliferation and activation: a mechanism used by equine invasive trophoblast to escape the maternal immune response. Placenta, 26 (2005), pp. 148-159. doi: 10.1016/j.placenta.2004.05.008.
de Mestre A, Noronha L, Wagner B, Antczak DF. Split immunological tolerance to trophoblast. Int J Dev Biol, 54 (2010), pp. 445-455. doi: 10.1387/ijdb.082795ad.
Engler JB, Kursawe N, Solano ME, Patas K, Wehrmann S, Heckmann N, et al. Glucocorticoid receptor in T cells mediates protection from autoimmunity in pregnancy. Proc Natl Acad Sci USA, 114 (2017), pp. 181-190. doi: 10.1073/pnas.1617115114.
McLachlan, J.A. and Newbold, R.R. Estrogens and development. Environ. Health Perspect, 75 (1987), pp. 25-27. doi: 10.1289/ehp.877525.
Paavonen T, Andersson LC, Adlercreutz H. Sex hormone regulation of in vitro immune response. Estradiol enhances human B cell maturation via inhibition of suppressor T cells in pokeweed mitogen-stimulated cultures. J Exp Med, 154 (1981), pp. 1935-1945. doi: 10.1084/jem.154.6.1935.
Straub RH. The complex role of estrogens in inflammation. Endocr Rev, 28 (2007), pp. 521-574. doi: 10.1210/er.2007-0001.
Wang C, Dehghani B, Li Y, Kaler LJ, Vandenbark AA, Offner H. Oestrogen modulates experimental autoimmune encephalomyelitis and interleukin-17 production via programmed death 1. Immunology, 126 (2009), pp. 329-335. doi: 10.1111/j.1365-2567.2008.03051.x.
Chen RY, Fan YM, Zhang Q, Liu S, Li Q, Ke GL, Li C, You Z. Estradiol inhibits Th17 cell differentiation through inhibition of RORgammaT transcription by recruiting the ERalpha/REA complex to estrogen response elements of the RORgammaT promoter. J. Immunol, 194 (2015), pp. 4019-4028. doi: 10.4049/jimmunol.1400806.
Cheng SB, Dong J, Pang Y, LaRocca J, Hixon M, Thomas P, Filardo EJ. Anatomical location and redistribution of G protein-coupled estrogen receptor-1 during the estrus cycle in mouse kidney and specific binding to estrogens but not aldosterone. Mol Cell Endocrinol, 382 (2014), pp. 950-959. doi: 10.1016/j.mce.2013.11.005.
Muzzio DO, Soldati R, Ehrhardt J, Utpatel K, Evert M, Zenclussen AC, et al. B cell development undergoes profound modifications and adaptations during pregnancy in mice. Biol Reprod, 91 (2014), pp. 115. doi: 10.1095/biolreprod.114.122366.
Drehmer MN, Suterio DG, Muniz YCN, de Souza IR, Lofgren SE. BAFF expression is modulated by female hormones in human immune cells. Biochem Genet, 54 (2016), pp. 722-730. doi: 10.1007/s10528-016-9752-y.
Liu JC, Zeng Q, Duan YG, Yeung WSB, Li RHW, Ng EHY, Cheung KW, Zhang Q, Chiu PCN. B cells: roles in physiology and pathology of pregnancy. Front Immunol, 15 (2024) doi: 10.3389/fimmu.2024.1456171.
Medina KL, Kincade PW. Pregnancy-related steroids are potential negative regulators of B lymphopoiesis. Proc Natl Acad Sci USA, 91 (1994), pp. 5382-5386. doi: 10.1073/pnas.91.12.5382.
Bhat NM, Mithal A, Bieber MM, Herzenberg LA, Teng NN. Human CD5+ B lymphocytes (B-1 cells) decrease in peripheral blood during pregnancy. J Reprod Immunol, 28 (1995), pp. 53-60. doi: 10.1016/0165-0378(94)00907-o.
Watanabe M, Iwatani Y, Kaneda T, et al. Changes in T, B, and NK lymphocyte subsets during and after normal pregnancy. Am J Reprod Immunol, 37 (1997), pp. 368-377. doi: 10.1111/j.1600-0897.1997.tb00246.x.
Nguyen TG, Ward CM, Morris JM. To B or not to B cells-mediate a healthy start to life. Clin Exp Immunol, 171 (2013), pp. 124-134. doi: 10.1111/cei.12001.
Crump A, Donaldson WL, Miller J, Kydd JH, Allen WR, Antczak DF: Expression of major histocompatibility complex (MHC) antigens on horse trophoblast. J Reprod Fertil Suppl, 35 (1987), pp. 379-388.
Antczak DF, Miller JM, Remick LH: Lymphocyte alloantigens of the horse. II. Antibodies to ELA antigens produced during equine pregnancy. J Reprod Immunol, 6 (1984), pp. 283-297. doi: 10.1016/0165-0378(84)90028-7.
Noronha LE, Antczak DF. Maternal immune responses to trophoblast: the contribution of the horse to pregnancy immunology. Am J Reprod Immunol, 64 (2010), pp. 231-244. doi: 10.1111/j.1600-0897.2010.00895.x.
Marcilla M, Munoz A, Satue K. Longitudinal changes in serum catecholamines, dopamine, serotonin, ACTH and cortisol in pregnant Spanish mares. Res Vet Sci, 115 (2017), pp. 29-33. doi: 10.1016/j.rvsc.2017.01.020.
Goland RS, Conwell IM, Warren WB, Wardlaw SL. Placental corticotropin-releasing hormone and pituitary-adrenal function during pregnancy. Neuroendocrinology, 56 (1992), pp. 742-749. doi: 10.1159/000126302.
Pepe GJ, Burch MG, Albrecht ED. Expression of the 11beta-hydroxysteroid dehydrogenase types 1 and 2 proteins in human and baboon placental syncytiotrophoblast. Placenta, 20 (1999), pp. 575-582. doi: 10.1053/plac.1999.0416.
Ziegler TE, Tardif SD, Ross CN, Snowdon CT, Kapoor A, Rutherford JN. Timing of the luteal-placental shift is delayed with additional fetuses in litter-bearing callitrichid monkeys, Saguinus oedipus and Callithrix jacchus. Gen Comp Endocrinol, 333 (2023) doi: https://doi.org/10.1016/j.ygcen.2022.114195
Martin PA, Crump MH. The adrenal gland. In: Pineda, M.H., Dooley, M.P. (Eds.), McDonald's Veterinary Endocrinology and Reproduction. Iowa State Press, Ames, Iowa, 2003, pp. 165-200.
Kosicka K, Siemiatkowska A, Szpera-Gozdziewicz A, Krzyscin M, Breborowicz GH, Glowka FK. Increased cortisol metabolism in women with pregnancy-related hypertension. Endocrine, 61 (2018), pp. 125-133. doi: 10.1007/s12020-018-1586-4.
Borzsonyi B, Demendi C, Pajor A, Rigo J Jr, Marosi K, Agota A, Nagy ZB, Joo JG. Gene expression patterns of the 11β-hydroxysteroid dehydrogenase 2 enzyme in human placenta from intrauterine growth restriction: the role of impaired feto-maternal glucocorticoid metabolism. Eur J Obstet Gynecol Reprod Biol, 161 (2012), pp. 12-17. doi: 10.1016/j.ejogrb.2011.12.013.
Gong H, Jarzynka MJ, Cole TJ, Lee JH, Wada T, Zhang B, Gao J, Song WC, DeFranco DB, Cheng SY, Xie W. Glucocorticoids antagonize estrogens by glucocorticoid receptor-mediated activation of estrogen sulfotransferase. Cancer Res, 68 (2008), pp. 7386-7393. doi: 10.1158/0008-5472.CAN-08-1545.
Aguilar-Pimentel JA, Cho YL, Gerlini R, Calzada-Wack J, Wimmer M, Mayer-Kuckuk P, Adler T, Schmidt-Weber CB, Busch DH, Fuchs H, Gailus-Durner V, Ollert M, Hrabe de Angelis M, Ohlsson C, Poutanen M, Teperino R, Strauss L. Increased estrogen to androgen ratio enhances immunoglobulin levels and impairs B cell function in male mice. Sci Rep, 10 (2020) 18334. doi: https://doi.org/10.1038/s41598-020-75059-9.
Busse M, Campe KJ, Redlich A, Oettel A, Hartig R, Costa SD, Zenclussen AC. Regulatory B Cells Are Decreased and Impaired in Their Function in Peripheral Maternal Blood in Pre-term Birth. Front Immunol, 11 (2020) pp. 386. doi: 10.3389/fimmu.2020.00386.
Blackmer JM, Sellon DC, Hines MT. Failure of passive transfer. In: Smith BP (ed.) Large Animal Internal Medicine, 3rd edn. St. Louis: Mosby, 2002; pp. 1592-1595.
Knottenbelt DC, Holdstock N. Methods of assessing colostrum quality. In: Knottenbelt DC (ed.) Equine Neonatology Medicine and Surgery. Edinburgh: Saunders, 2004; pp. 393-394.
Hurley WL, Theil PK. Perspectives on immunoglobulins in colostrum and milk. Nutrients, 3 (2011), pp. 442-474. doi:10.3390/nu3040442.
Harvey JW, Asquith RL, Pate MG, Kivipelto J, Chen CL, Ott EA. Haematological findings in pregnant, postparturient and nursing mares. Comp Hematol Int, 4 (1994), pp. 25-29.
Milinkovic-Tur, S.; Peric, V.; Stojevic, Z.; ZdelarTuk, M. and Pirsljin, J. Concentrations of total proteins and albumins, and AST, ALT and GGT activities in the blood plasma of mares during pregnancy and early lactation. Vet. Arhiv, 75 (2005), pp. 195-202.
Bazzano M, Giannetto C, Fazio F, Arfuso F, Giudice E, Piccione G. Metabolic profile of broodmares during late pregnancy and early post-partum. Reprod Domest Anim, 49 (2014), pp. 947-953. doi: 10.1111/rda.12411.
Nagel C, Trenk L, Aurich J, Wulf M, Aurich C. Changes in blood pressure, heart rate, and blood profile in mares during the last 3 months of gestation and the peripartum period. Theriogenology, 86 (2016), pp. 1856-1864. doi: 10.1016/j.theriogenology.2016.06.001.
Westphal U. Steroid-protein interactions II. In Monographs on Endocrinology, 1986; 59-83. Berlin, Germany: Springer Verlag.
Dunn JF, Nisula BC, Rodbard D. Transport of steroid hormones: binding of 21 endogenous steroids to both testosterone-binding globulin and corticosteroid-binding globulin in human plasma. Journal of Clinical Endocrinology and Metabolism, 53 (1981), pp. 58-68. doi: 10.1210/jcem-53-1-58.
Chavatte P, Rossdale PD, Tait AD. 11-Hydroxysteroid dehydrogenase (11_-HSD) in equine placenta. American Association of Equine Practitioners, 41 (1995), pp. 264-265. doi: 10.1111/j.2042-3306.1995.tb04068.x.
Benediktsson R, Calder AA, Edwards CR, Seckl JR. Placental 11 beta-hydroxysteroid dehydrogenase: a key regulator of fetal glucocorticoid exposure. Clin Endocrinol (Oxf), 46 (1997), pp. 161-166. doi: 10.1046/j.1365-2265.1997.1230939.x.
Satue K, Domingo R. Longitudinal study of the renin angiotensin aldosterone system in purebred Spanish broodmares during pregnancy. Theriogenology, 75 (2011), pp. 1185-1194. doi: 10.1016/j.theriogenology.2010.11.029.
Hewitt DP, Mark PJ, Waddell BJ. Glucocorticoids prevent the normal increase in placental vascular endothelial growth factor expression and placental vascularity during late pregnancy in the rat. Endocrinology, 147 (2006), pp. 5568-5574. doi: 10.1210/en.2006-0825.
Ozmen A, Unek G, Korgun ET. Effect of glucocorticoids on mechanisms of placental angiogenesis. Placenta, 52 (2017), pp. 41-48. doi: 10.1016/j.placenta.2017.02.015.
Guillemot-Legris O, Mutemberezi V, Muccioli GG. Oxysterols in metabolic syndrome: From bystander molecules to bioactive lipids. Trends Mol Med, 22 (2016), pp. 594-614. doi: 10.1016/j.molmed.2016.05.006.
Aye IL, Waddell BJ, Mark PJ, Keelan JA. Oxysterols exert proinflammatory effects in placental trophoblasts via TLR4-dependent, cholesterol-sensitive activation of NF-κB. Mol Hum Reprod, 18 (2012), pp. 341-353. doi: 10.1093/molehr/gas001.