[en] Negative energy balance (NEB) during early lactation is a critical physiological challenge in high-producing dairy cows, affecting both their health and production performance. The objectives of this study were: (1) to compare the genetic architecture of logit-transformed predicted NEB (LPNEB), a logit-transformed novel energy deficiency score (LEDS), 15 biomarkers, and 3 production traits using SNP-based genomic correlation analysis; (2) to extend this study to a chromosomal level to identify specific genomic regions involved in the regulation of energy metabolism; and (3) to compare the independent contributions of 8 traits to the underlying genetic architecture of LPNEB and LEDS. The SNP effects estimated from single-trait models can be used to quickly calculate genomic correlations for 20 traits. The results indicate strong genomic correlations between LPNEB and LEDS, as well as with key metabolic biomarkers, particularly blood nonesterified fatty acids (NEFA), highlighting their importance in energy metabolism. Furthermore, NEFA was a strong independent contributor to both LPNEB and LEDS. Chromosome regions located on BTA19 and BTA25 were identified as potentially associated with NEB. By combining genomic correlation and contribution analyses, this study provides valuable insights into the genetic basis of NEB and related traits in dairy cows.
Disciplines :
Zoology
Author, co-author :
Hu, Hongqing ; Université de Liège - ULiège > TERRA Research Centre
Aernouts, B., Adriaens, I., Diaz-Olivares, J., Saeys, W., Mäntysaari, P., Kokkonen, T., Mehtiö, T., Kajava, S., Lidauer, P., Lidauer, M.H., Pastell, M., Mid-infrared spectroscopic analysis of raw milk to predict the blood nonesterified fatty acid concentrations in dairy cows. J. Dairy Sci. 103 (2020), 6422–6438 https://doi.org/10.3168/jds.2019-17952 32389474.
Aguilar, I., Misztal, I., Johnson, D.L., Legarra, A., Tsuruta, S., Lawlor, T.J., Hot topic: A unified approach to utilize phenotypic, full pedigree, and genomic information for genetic evaluation of Holstein final score. J. Dairy Sci. 93 (2010), 743–752 https://doi.org/10.3168/jds.2009-2730 20105546.
Aguilar, I., Misztal, I., Tsuruta, S., Legarra, A., Wang, H., PREGSF90–POSTGSF90: Computational tools for the implementation of single-step genomic selection and genome-wide association with ungenotyped individuals in BLUPF90 programs. Proceedings of the 10th world congress of genetics applied to livestock production, Vancouver, BC, Canada. http://www.ainfo.inia.uy/digital/bitstream/item/15445/1/Aguilar-et-al.-2014.-WCGALP.pdf, 2014. (Accessed 10 April 2025)
Andjelić, B., Djoković, R., Cincović, M., Bogosavljević-Bošković, S., Petrović, M., Mladenović, J., Čukić, A., Relationships between milk and blood biochemical parameters and metabolic status in dairy cows during lactation. Metabolites, 12, 2022, 733 https://doi.org/10.3390/metabo12080733 36005606.
Atashi, H., Chen, Y., Vanderick, S., Hubin, X., Gengler, N., Single-step genome-wide association analyses for milk urea concentration in Walloon Holstein cows. J. Dairy Sci. 107 (2024), 3020–3031 https://doi.org/10.3168/jds.2023-23902 38056570.
Atashi, H., Chen, Y., Wilmot, H., Vanderick, S., Hubin, X., Soyeurt, H., Gengler, N., Single-step genome-wide association for selected milk fatty acids in Dual-Purpose Belgian Blue cows. J. Dairy Sci. 106 (2023), 6299–6315 https://doi.org/10.3168/jds.2022-22432 37479585.
Bastin, C., Berry, D.P., Soyeurt, H., Gengler, N., Genetic correlations of days open with production traits and contents in milk of major fatty acids predicted by mid-infrared spectrometry. J. Dairy Sci. 95 (2012), 6113–6121 https://doi.org/10.3168/jds.2012-5361 22863102.
Bastin, C., Gengler, N., Soyeurt, H., Phenotypic and genetic variability of production traits and milk fatty acid contents across days in milk for Walloon Holstein first-parity cows. J. Dairy Sci. 94 (2011), 4152–4163 https://doi.org/10.3168/jds.2010-4108 21787950.
Becker, V.A.E., Stamer, E., Spiekers, H., Thaller, G., Residual energy intake, energy balance, and liability to diseases: Genetic parameters and relationships in German Holstein dairy cows. J. Dairy Sci. 104 (2021), 10970–10978 https://doi.org/10.3168/jds.2021-20382 34334207.
Benedet, A., Costa, A., De Marchi, M., Penasa, M., Heritability estimates of predicted blood β-hydroxybutyrate and nonesterified fatty acids and relationships with milk traits in early-lactation Holstein cows. J. Dairy Sci. 103 (2020), 6354–6363 https://doi.org/10.3168/jds.2019-17916 32359995.
Billa, P.A., Faulconnier, Y., Larsen, T., Leroux, C., Pires, J.A.A., Milk metabolites as noninvasive indicators of nutritional status of mid-lactation Holstein and Montbéliarde cows. J. Dairy Sci. 103 (2020), 3133–3146 https://doi.org/10.3168/jds.2019-17466 32059860.
Buttchereit, N., Stamer, E., Junge, W., Thaller, G., Short communication: Genetic relationships among daily energy balance, feed intake, body condition score, and fat to protein ratio of milk in dairy cows. J. Dairy Sci. 94 (2011), 1586–1591 https://doi.org/10.3168/jds.2010-3396 21338824.
Chen, Y., Hu, H., Atashi, H., Grelet, C., Wijnrocx, K., Lemal, P., Gengler, N., Genetic analysis of milk citrate predicted by milk mid-infrared spectra of Holstein cows in early lactation. J. Dairy Sci. 107 (2024), 3047–3061 https://doi.org/10.3168/jds.2023-23903 38056571.
Churakov, M., Karlsson, J., Edvardsson Rasmussen, A., Holtenius, K., Milk fatty acids as indicators of negative energy balance of dairy cows in early lactation. Animal, 15, 2021, 100253 https://doi.org/10.1016/j.animal.2021.100253 34090089.
Esposito, G., Irons, P.C., Webb, E.C., Chapwanya, A., Interactions between negative energy balance, metabolic diseases, uterine health, and immune response in transition dairy cows. Anim. Reprod. Sci. 144 (2014), 60–71 https://doi.org/10.1016/j.anireprosci.2013.11.007 24378117.
Franceschini, S., Gengler, N., Soyeurt, H., Combining high throughput phenotypes to study complex traits: A case-study of negative energy balance using milk mid-infrared based predictions. The 1st meeting European Network on Livestock Phenomics. https://hdl.handle.net/2268/329610, 2024. (Accessed 20 September 2025)
Franceschini, S., Grelet, C., Leblois, J., Gengler, N., Soyeurt, H., Can unsupervised learning methods applied to milk recording big data provide new insights into dairy cow health?. J. Dairy Sci. 105 (2022), 6760–6772 https://doi.org/10.3168/jds.2022-21975 35773033.
Gardner, K.M., Latta, R.G., Shared quantitative trait loci underlying the genetic correlation between continuous traits. Mol. Ecol. 16 (2007), 4195–4209 https://doi.org/10.1111/j.1365-294X.2007.03499.x 17850272.
Gohary, K., Overton, M.W., von Massow, M., LeBlanc, S.J., Lissemore, K.D., Duffield, T.F., The cost of a case of subclinical ketosis in Canadian dairy herds. Can. Vet. J. 57 (2016), 728–732 27429460.
Grelet, C., Fernández Pierna, J.A., Dardenne, P., Baeten, V., Dehareng, F., Standardization of milk mid-infrared spectra from a European dairy network. J. Dairy Sci. 98 (2015), 2150–2160 https://doi.org/10.3168/jds.2014-8764 25682131.
Grelet, C., Vanlierde, A., Dehareng, F., Froidmont, E., E. Gplus. Consortium. Prediction of energy status of dairy cows using MIR milk spectra. Book of Abstracts of the 68th Annual Meeting of the European Federation of Animal Science, Tallin, 2017, Wageningen Academic Publishers, 403 https://hdl.handle.net/2268/224000. (Accessed 20 September 2025)
Grelet, C., Vanlierde, A., Hostens, M., Foldager, L., Salavati, M., Ingvartsen, K.L., Crowe, M., Sorensen, M.T., Froidmont, E., Ferris, C.P., Marchitelli, C., Becker, F., Larsen, T., Carter, F., E. Gplus. Consortium. Dehareng, F., Potential of milk mid-IR spectra to predict metabolic status of cows through blood components and an innovative clustering approach. Animal 13 (2019), 649–658 https://doi.org/10.1017/S1751731118001751.
Guliński, P., Ketone bodies – causes and effects of their increased presence in cows' body fluids: A review. Vet. World 14 (2021), 1492–1503 https://doi.org/10.14202/vetworld.2021.1492-1503 34316197.
Ha, N.-T., Gross, J.J., van Dorland, A., Tetens, J., Thaller, G., Schlather, M., Bruckmaier, R., Simianer, H., Gene-based mapping and pathway analysis of metabolic traits in dairy cows. PLoS One, 10, 2015, e0122325 https://doi.org/10.1371/journal.pone.0122325 25789767.
Hammon, D.S., Evjen, I.M., Dhiman, T.R., Goff, J.P., Walters, J.L., Neutrophil function and energy status in Holstein cows with uterine health disorders. Vet. Immunol. Immunopathol. 113 (2006), 21–29 https://doi.org/10.1016/j.vetimm.2006.03.022 16740320.
Heringstad, B., Klemetsdal, G., Ruane, J., Selection for mastitis resistance in dairy cattle: A review with focus on the situation in the Nordic countries. Livest. Prod. Sci. 64 (2000), 95–106 https://doi.org/10.1016/S0301-6226(99)00128-1.
Ho, P.N., Marett, L.C., Wales, W.J., Axford, M., Oakes, E.M., Pryce, J.E., Predicting milk fatty acids and energy balance of dairy cows in Australia using milk mid-infrared spectroscopy. Anim. Prod. Sci. 60 (2019), 164–168 https://doi.org/10.1071/AN18532.
Hu, H., Franceschini, S., Lemal, P., Grelet, C., Chen, Y., Atashi, H., Wijnrocx, K., Soyeurt, H., Gengler, N., Exploring the relationship between predicted negative energy balance and its biomarkers of Holstein cows in first-parity early lactation. J. Dairy Sci. 108 (2025), 5433–5447 https://doi.org/10.3168/jds.2024-25932 40049402.
ICAR (International Committee for Animal Recording). Procedure 2 of Section 2 of ICAR Guidelines - Computing of Accumulated Lactation Yield. https://www.icar.org/Guidelines/02-Procedure-2-Computing-Lactation-Yield.pdf, 2022. (Accessed 29 December 2023)
Knob, D.A., Thaler Neto, A., Schweizer, H., Weigand, A.C., Kappes, R., Scholz, A.M., Energy balance indicators during the transition period and early lactation of purebred Holstein and Simmental cows and their crosses. Animals (Basel), 11, 2021, 309 https://doi.org/10.3390/ani11020309 33530414.
Knutsen, T.M., Olsen, H.G., Ketto, I.A., Sundsaasen, K.K., Kohler, A., Tafintseva, V., Svendsen, M., Kent, M.P., Lien, S., Genetic variants associated with two major bovine milk fatty acids offer opportunities to breed for altered milk fat composition. Genet. Sel. Evol., 54, 2022, 35 https://doi.org/10.1186/s12711-022-00731-9 35619070.
Koeck, A., Jamrozik, J., Schenkel, F.S., Moore, R.K., Lefebvre, D.M., Kelton, D.F., Miglior, F., Genetic analysis of milk β-hydroxybutyrate and its association with fat-to-protein ratio, body condition score, clinical ketosis, and displaced abomasum in early first lactation of Canadian Holsteins. J. Dairy Sci. 97 (2014), 7286–7292 https://doi.org/10.3168/jds.2014-8405 25218753.
Krattenmacher, N., Thaller, G., Tetens, J., Analysis of the genetic architecture of energy balance and its major determinants dry matter intake and energy-corrected milk yield in primiparous Holstein cows. J. Dairy Sci. 102 (2019), 3241–3253 https://doi.org/10.3168/jds.2018-15480 30772025.
Lisuzzo, A., Laghi, L., Faillace, V., Zhu, C., Contiero, B., Morgante, M., Mazzotta, E., Gianesella, M., Fiore, E., Differences in the serum metabolome profile of dairy cows according to the BHB concentration revealed by proton nuclear magnetic resonance spectroscopy (1H-NMR). Sci. Rep., 12, 2022, 2525 https://doi.org/10.1038/s41598-022-06507-x 35169190.
Macrae, A.I., Burrough, E., Forrest, J., Corbishley, A., Russell, G., Shaw, D.J., Prevalence of excessive negative energy balance in commercial United Kingdom dairy herds. Vet. J. 248 (2019), 51–57 https://doi.org/10.1016/j.tvjl.2019.04.001 31113563.
Mansour, U.M., Belal, H.E., Dohreig, R.M., Biomarkers for negative energy balance and fertility in early lactating dairy cows. Ger. J. Vet. Res. 2 (2022), 11–16 https://doi.org/10.51585/gjvr.2022.2.0031.
Martens, H., Invited review: Increasing milk yield and negative energy balance: A Gordian knot for dairy cows?. Animals (Basel), 13, 2023, 3097 https://doi.org/10.3390/ani13193097 37835703.
Mehtiö, T., Mäntysaari, P., Negussie, E., Leino, A.M., Pösö, J., Mäntysaari, E.A., Lidauer, M.H., Genetic correlations between energy status indicator traits and female fertility in primiparous Nordic Red Dairy cattle. Animal 14 (2020), 1588–1597 https://doi.org/10.1017/S1751731120000439 32167447.
Mekuriaw, Y., Negative energy balance and its implication on productive and reproductive performance of early lactating dairy cows: Review paper. J. Appl. Anim. Res. 51 (2023), 220–228 https://doi.org/10.1080/09712119.2023.2176859.
Miglior, F., Fleming, A., Malchiodi, F., Brito, L.F., Martin, P., Baes, C.F., A 100-Year Review: Identification and genetic selection of economically important traits in dairy cattle. J. Dairy Sci. 100 (2017), 10251–10271 https://doi.org/10.3168/jds.2017-12968 29153164.
Miles, J., Tolerance and variance inflation factor. Encyclopedia of Statistics in Behavioral Science. 2005, Wiley https://doi.org/10.1002/0470013192.bsa683.
Misztal, I., Tsuruta, S., Lourenco, D.A.L., Masuda, Y., Aguilar, I., Legarra, A., Vitezica, Z., Manual for BLUPF90 family programs. 2018, University of Georgia http://nce.ads.uga.edu/wiki/lib/exe/fetch.php?media=blupf90_all7.pdf. (Accessed 9 April 2025)
Oikonomou, G., Valergakis, G.E., Arsenos, G., Roubies, N., Banos, G., Genetic profile of body energy and blood metabolic traits across lactation in primiparous Holstein cows. J. Dairy Sci. 91 (2008), 2814–2822 https://doi.org/10.3168/jds.2007-0965 18565939.
Ospina, P.A., Nydam, D.V., Stokol, T., Overton, T.R., Association between the proportion of sampled transition cows with increased nonesterified fatty acids and β-hydroxybutyrate and disease incidence, pregnancy rate, and milk production at the herd level. J. Dairy Sci. 93 (2010), 3595–3601 https://doi.org/10.3168/jds.2010-3074 20655428.
Paiva, J.T., Mota, R.R., Lopes, P.S., Hammami, H., Vanderick, S., Oliveira, H.R., Veroneze, R., Fonseca e Silva, F., Gengler, N., Random regression test-day models to describe milk production and fatty acid traits in first lactation Walloon Holstein cows. J. Anim. Breed. Genet. 139 (2022), 398–413 https://doi.org/10.1111/jbg.12673 35201644.
Sargolzaei, M., Chesnais, J.P., Schenkel, F.S., A new approach for efficient genotype imputation using information from relatives. BMC Genomics, 15, 2014, 478 https://doi.org/10.1186/1471-2164-15-478 24935670.
Smith, S.L., Denholm, S.J., Coffey, M.P., Wall, E., Energy profiling of dairy cows from routine milk mid-infrared analysis. J. Dairy Sci. 102 (2019), 11169–11179 https://doi.org/10.3168/jds.2018-16112 31587910.
Spurlock, D.M., Dekkers, J.C.M., Fernando, R., Koltes, D.A., Wolc, A., Genetic parameters for energy balance, feed efficiency, and related traits in Holstein cattle. J. Dairy Sci. 95 (2012), 5393–5402 https://doi.org/10.3168/jds.2012-5407 22916946.
Tetens, J., Seidenspinner, T., Buttchereit, N., Thaller, G., Whole-genome association study for energy balance and fat/protein ratio in German Holstein bull dams. Anim. Genet. 44 (2013), 1–8 https://doi.org/10.1111/j.1365-2052.2012.02357.x 22497605.
VanRaden, P.M., Efficient methods to compute genomic predictions. J. Dairy Sci. 91 (2008), 4414–4423 https://doi.org/10.3168/jds.2007-0980 18946147.
Wang, H., Misztal, I., Aguilar, I., Legarra, A., Muir, W.M., Genome-wide association mapping including phenotypes from relatives without genotypes. Genet. Res. 94 (2012), 73–83 https://doi.org/10.1017/S0016672312000274 22624567.
Wathes, D.C., Fenwick, M., Cheng, Z., Bourne, N., Llewellyn, S., Morris, D.G., Kenny, D., Murphy, J., Fitzpatrick, R., Influence of negative energy balance on cyclicity and fertility in the high producing dairy cow. Theriogenology 68 (2007), S232–S241 https://doi.org/10.1016/j.theriogenology.2007.04.006.
Wiggans, G.R., Sonstegard, T.S., VanRaden, P.M., Matukumalli, L.K., Schnabel, R.D., Taylor, J.F., Schenkel, F.S., van Tassell, C.P., Selection of single-nucleotide polymorphisms and quality of genotypes used in genomic evaluation of dairy cattle in the United States and Canada. J. Dairy Sci. 92 (2009), 3431–3436 https://doi.org/10.3168/jds.2008-1758 19528621.