Using single-step genome-wide association analyses to compare predicted negative energy balance and a novel energy deficiency score in early-lactation Holstein cows
Lemal, Pauline ; Université de Liège - ULiège > TERRA Research Centre
Grelet, Clément
Chen, Yansen ; Université de Liège - ULiège > Département GxABT > Animal Sciences (AS)
Wijnrocx, Katrien ; Université de Liège - ULiège > Département GxABT > Animal Sciences (AS)
Soyeurt, Hélène ; Université de Liège - ULiège > Département GxABT > Modélisation et développement
Gengler, Nicolas ; Université de Liège - ULiège > Département GxABT > Animal Sciences (AS)
Language :
English
Title :
Using single-step genome-wide association analyses to compare predicted negative energy balance and a novel energy deficiency score in early-lactation Holstein cows
Aguilar I., Misztal I., Johnson D. L., Legarra A., Tsuruta S., Lawlor T. J., Hot topic: A unified approach to utilize phenotypic, full pedigree, and genomic information for genetic evaluation of Holstein final score. J. Dairy Sci. 93 (2010), 743–752 https://doi.org/10.3168/jds.2009-2730 20105546.
Aguilar I., Misztal I., Tsuruta S., Legarra A., Wang H., PREGSF90–POSTGSF90: Computational tools for the implementation of single-step genomic selection and genome-wide association with ungenotyped individuals in BLUPF90 programs. Proc. 10th World Congr. Genet. Appl. Livest. Prod. http://www.ainfo.inia.uy/digital/bitstream/item/15445/1/Aguilar-et-al.-2014.-WCGALP.pdf, 2014. (Accessed 21 August 2022)
Buitenhuis B., Poulsen N. A., Gebreyesus G., Larsen L. B., Estimation of genetic parameters and detection of chromosomal regions affecting the major milk proteins and their post translational modifications in Danish Holstein and Danish Jersey cattle. BMC Genet., 17, 2016, 114 https://doi.org/10.1186/s12863-016-0421-2 27485317.
Chen Y., Hu H., Atashi H., Grelet C., Wijnrocx K., Lemal P., Gengler N., Genetic analysis of milk citrate predicted by milk mid-infrared spectra of Holstein cows in early lactation. J. Dairy Sci. 107 (2024), 3047–3061 https://doi.org/10.3168/jds.2023-23903 38056571.
Churakov M., Karlsson J., Edvardsson Rasmussen A., Holtenius K., Milk fatty acids as indicators of negative energy balance of dairy cows in early lactation. Animal, 15, 2021, 100253 https://doi.org/10.1016/j.animal.2021.100253 34090089.
Cole J. B., Wiggans G. R., Ma L., Sonstegard T. S., Lawlor T. J., Crooker B. A., Van Tassell C., Yang J., Wang S., Matukumalli L., Da Y., Genome-wide association analysis of thirty-one production, health, reproduction and body conformation traits in contemporary U.S. Holstein cows. BMC Genomics, 12, 2011, 408 https://doi.org/10.1186/1471-2164-12-408 21831322.
Esposito G., Irons P. C., Webb E. C., Chapwanya A., Interactions between negative energy balance, metabolic diseases, uterine health and immune response in transition dairy cows. Anim. Reprod. Sci. 144 (2014), 60–71 https://doi.org/10.1016/j.anireprosci.2013.11.007 24378117.
Fonseca P. A. S., Suárez-Vega A., Marras G., Cánovas Á., GALLO: An R package for genomic annotation and integration of multiple data sources in livestock for positional candidate loci. Gigascience, 9, 2020, giaa149 https://doi.org/10.1093/gigascience/giaa149 33377911.
Franceschini S., Gengler N., Soyeurt H., Combining high throughput phenotypes to study complex traits: A case-study of negative energy balance using milk mid-infrared based predictions. 1st Meeting, European Network on Livestock Phenomics. https://hdl.handle.net/2268/329610, 2024. (Accessed 5 August 2025)
Franceschini S., Grelet C., Leblois J., Gengler N., Soyeurt H., Can unsupervised learning methods applied to milk recording big data provide new insights into dairy cow health?. J. Dairy Sci. 105 (2022), 6760–6772 https://doi.org/10.3168/jds.2022-21975 35773033.
Gohary K., Overton M. W., Von Massow M., LeBlanc S. J., Lissemore K. D., Duffield T. F., The cost of a case of subclinical ketosis in Canadian dairy herds. Can. Vet. J. 57 (2016), 728–732 27429460.
Grelet C., Vanlierde A., Dehareng F., Froidmont E., E. Gplus. Consortium. Prediction of energy status of dairy cows using MIR milk spectra. Book of Abstracts of the 68th Annual Meeting of the European Federation of Animal Science, Tallin, Estonia. 2017, Wageningen Academic Publishers.
Hammon D. S., Evjen I. M., Dhiman T. R., Goff J. P., Walters J. L., Neutrophil function and energy status in Holstein cows with uterine health disorders. Vet. Immunol. Immunopathol. 113 (2006), 21–29 https://doi.org/10.1016/j.vetimm.2006.03.022 16740320.
Hawken R. J., Zhang Y. D., Fortes M. R. S., Collis E., Barris W. C., Corbet N. J., Williams P. J., Fordyce G., Holroyd R. G., Walkley J. R. W., Barendse W., Johnston D. J., Prayaga K. C., Tier B., Reverter A., Lehnert S. A., Genome-wide association studies of female reproduction in tropically adapted beef cattle. J. Anim. Sci. 90 (2012), 1398–1410 https://doi.org/10.2527/jas.2011-4410 22100599.
Hu H., Franceschini S., Lemal P., Grelet C., Chen Y., Atashi H., Wijnrocx K., Soyeurt H., Gengler N., Exploring the relationship between predicted negative energy balance and its biomarkers of Holstein cows in first-parity early lactation. J. Dairy Sci. 108 (2025), 5433–5447 https://doi.org/10.3168/jds.2024-25932 40049402.
Hu Z. L., Park C. A., Reecy J. M., Building a livestock genetic and genomic information knowledge base through integrative developments of Animal QTLdb and CorrDB. Nucleic Acids Res. 47:D1 (2019), D701–D710 https://doi.org/10.1093/nar/gky1084 30407520.
Kolberg L., Raudvere U., Kuzmin I., Adler P., Vilo J., Peterson H., g:Profiler—Interoperable web service for functional enrichment analysis and gene identifier mapping (2023 update). Nucleic Acids Res. 51:W1 (2023), W207–W212 https://doi.org/10.1093/nar/gkad347 37144459.
Krattenmacher N., Thaller G., Tetens J., Analysis of the genetic architecture of energy balance and its major determinants dry matter intake and energy-corrected milk yield in primiparous Holstein cows. J. Dairy Sci. 102 (2019), 3241–3253 https://doi.org/10.3168/jds.2018-15480 30772025.
Mateescu R. G., Garrick D. J., Reecy J. M., Network analysis reveals putative genes affecting meat quality in Angus cattle. Front. Genet., 8, 2017, 171 https://doi.org/10.3389/fgene.2017.00171 29163638.
Miglior F., Fleming A., Malchiodi F., Brito L. F., Martin P., Baes C. F., A 100-Year Review: Identification and genetic selection of economically important traits in dairy cattle. J. Dairy Sci. 100 (2017), 10251–10271 https://doi.org/10.3168/jds.2017-12968 29153164.
Misztal I., Tsuruta S., Lourenco D., Masuda Y., Aguilar I., Legarra A., Vitezica Z., Manual for BLUPF90 family of programs. http://nce.ads.uga.edu/wiki/lib/exe/fetch.php?media=blupf90_all8.pdf, 2014. (Accessed 3 March 2025)
Pedrosa V. B., Schenkel F. S., Chen S. Y., Oliveira H. R., Casey T. M., Melka M. G., Brito L. F., Genomewide association analyses of lactation persistency and milk production traits in Holstein cattle based on imputed whole-genome sequence data. Genes (Basel), 12, 2021, 1830 https://doi.org/10.3390/genes12111830 34828436.
Pérez-Báez J., Risco C. A., Chebel R. C., Gomes G. C., Greco L. F., Tao S., Thompson I. M., do Amaral B. C., Zenobi M. G., Martinez N., Staples C. R., Dahl G. E., Hernández J. A., Santos J. E. P., Galvão K. N., Association of dry matter intake and energy balance prepartum and postpartum with health disorders postpartum: Part I. Calving disorders and metritis. J. Dairy Sci. 102 (2019), 9138–9150 https://doi.org/10.3168/jds.2018-15878 31326177.
Smith S. L., Denholm S. J., Coffey M. P., Wall E., Energy profiling of dairy cows from routine milk mid-infrared analysis. J. Dairy Sci. 102 (2019), 11169–11179 https://doi.org/10.3168/jds.2018-16112 31587910.
Tetens J., Seidenspinner T., Buttchereit N., Thaller G., Whole-genome association study for energy balance and fat/protein ratio in German Holstein bull dams. Anim. Genet. 44 (2013), 1–8 https://doi.org/10.1111/j.1365-2052.2012.02357.x 22497605.
van den Berg I., Xiang R., Jenko J., Pausch H., Boussaha M., Schrooten C., Tribout T., Gjuvsland A., Boichard D., Nordb⊘ Ø., Sanchez M., Goddard M., Meta-analysis for milk fat and protein percentage using imputed sequence variant genotypes in 94,321 cattle from eight cattle breeds. Genet. Sel. Evol., 52, 2020, 37 https://doi.org/10.1186/s12711-020-00556-4 32635893.
Wang H., Misztal I., Aguilar I., Legarra A., Muir W. M., Genome-wide association mapping including phenotypes from relatives without genotypes. Genet. Res. (Camb.) 94 (2012), 73–83 https://doi.org/10.1017/S0016672312000274 22624567.
Wathes D. C., Fenwick M., Cheng Z., Bourne N., Llewellyn S., Morris D. G., Kenny D., Murphy J., Fitzpatrick R., Influence of negative energy balance on cyclicity and fertility in the high producing dairy cow. Theriogenology 68 (2007), S232–S241 https://doi.org/10.1016/j.theriogenology.2007.04.006 17475319.
Zachut M., Šperanda M., de Almeida A. M., Gabai G., Mobasheri A., Hernández-Castellano L. E., Biomarkers of fitness and welfare in dairy cattle: Healthy productivity. J. Dairy Res. 87 (2020), 4–13 https://doi.org/10.1017/S0022029920000084 32114995.