[en] ABSTRACTAimGlobal climate projections identify tropical regions as hotspots of climate change during the 21st century. The few ground data in tropical Africa confirm significant warming and drying over the last decades, but how plant communities will tolerate these new climate conditions remains vastly uncertain. In this study, we assess the climatic vulnerability of tropical moist forests across Africa.LocationTropical Africa.MethodsWe mapped climate change exposure across the tropical moist forest biome, focusing on mean annual temperature (MAT), mean annual precipitation (MAP) and climatological water deficit (CWD) using climate projections for 2085 from five regional models under RCP4.5 and RCP8.5. Using occurrence records for 3,536 tree and shrub species, we estimated species' climatic limits and safety margins, then averaged these margins at the community level. Finally, we combined exposure and safety margins to assess species‐ and community‐level risk by 2085.ResultsUnder RCP4.5, corresponding to an average warming of 2.4°C by 2085, 92% of species (3,256) could be at risk in at least one community where they occur. This rate increases to 96% (3,405 species) under RCP8.5, with an average warming of 4.3°C. In all scenarios, the most at‐risk communities are concentrated in low‐elevation regions, where species have few opportunities to migrate if their climatic limits are exceeded. The high risk across the forest biome results from the combination of significant and widespread temperature increases and the relatively narrow safety margins of the species. Specifically, 50% of species have an average safety margin below 1.6°C above baseline temperatures, suggesting they are already near their observed climatic limits.Main ConclusionsBeyond refining our understanding of the vulnerability of tropical moist forests across Africa, our results have far‐reaching implications for conservation, allowing us to target species and communities of interest for further monitoring and conservation efforts.
Disciplines :
Environmental sciences & ecology
Author, co-author :
Madingou, Mady ; Université de Liège - ULiège > TERRA Research Centre
Fayolle, Adeline ; Université de Liège - ULiège > TERRA Research Centre > Gestion des ressources forestières ; UPR Forêts et Sociétés, CIRAD, Campus International de Baillarguet Montpellier Cedex 5 France ; Forêts et Sociétés, CIRAD, Université Montpellier Montpellier France
Gorel, Anaïs‐Pasiphaé; Forest is Life Gembloux Agro‐Bio Tech, Université de Liège Gembloux Belgium
Language :
English
Title :
Vulnerability to Climate Changes of Tropical Forests Across Africa
Adler, P. B., E. P. White, and M. H. Cortez. 2020. “Matching the Forecast Horizon With the Relevant Spatial and Temporal Processes and Data Sources.” Ecography 43, no. 11: 1729–1739. https://doi.org/10.1111/ecog.05271.
Aguirre-Gutiérrez, J., Y. Malhi, S. L. Lewis, et al. 2020. “Long-Term Droughts May Drive Drier Tropical Forests Towards Increased Functional, Taxonomic and Phylogenetic Homogeneity.” Nature Communications 11, no. 1: 1. https://doi.org/10.1038/s41467-020-16973-4.
Aguirre-Gutiérrez, J., I. Oliveras, S. Rifai, et al. 2019. “Drier Tropical Forests Are Susceptible to Functional Changes in Response to a Long-Term Drought.” Ecology Letters 22, no. 5: 855–865. https://doi.org/10.1111/ele.13243.
Aleman, J. C., A. Fayolle, C. Favier, et al. 2020. “Floristic Evidence for Alternative Biome States in Tropical Africa.” Proceedings of the National Academy of Sciences of the United States of America 117, no. 45: 28183–28190. https://doi.org/10.1073/pnas.2011515117.
Almazroui, M., F. Saeed, S. Saeed, et al. 2020. “Projected Change in Temperature and Precipitation Over Africa From CMIP6.” Earth Systems and Environment 4, no. 3: 455–475. https://doi.org/10.1007/s41748-020-00161-x.
Aloysius, N. R., J. Sheffield, J. E. Saiers, H. Li, and E. F. Wood. 2016. “Evaluation of Historical and Future Simulations of Precipitation and Temperature in Central Africa From CMIP5 Climate Models.” Journal of Geophysical Research: Atmospheres 121, no. 1: 130–152. https://doi.org/10.1002/2015JD023656.
Anderegg, W. R. L., A. T. Trugman, G. Badgley, A. G. Konings, and J. Shaw. 2020. “Divergent Forest Sensitivity to Repeated Extreme Droughts.” Nature Climate Change 10, no. 12: 12. https://doi.org/10.1038/s41558-020-00919-1.
Baccini, A., S. J. Goetz, W. S. Walker, et al. 2012. “Estimated Carbon Dioxide Emissions From Tropical Deforestation Improved by Carbon-Density Maps.” Nature Climate Change 2, no. 3: 182–185. https://doi.org/10.1038/nclimate1354.
Beer, C., M. Reichstein, E. Tomelleri, et al. 2010. “Terrestrial Gross Carbon Dioxide Uptake: Global Distribution and Covariation With Climate.” Science 329, no. 5993: 834–838. https://doi.org/10.1126/science.1184984.
Bennett, A. C., N. G. McDowell, C. D. Allen, and K. J. Anderson-Teixeira. 2015. “Larger Trees Suffer Most During Drought in Forests Worldwide.” Nature Plants 1, no. 10: 10. https://doi.org/10.1038/nplants.2015.139.
Brice, M.-H., K. Cazelles, P. Legendre, and M.-J. Fortin. 2019. “Disturbances Amplify Tree Community Responses to Climate Change in the Temperate–Boreal Ecotone.” Global Ecology and Biogeography 28, no. 11: 1668–1681. https://doi.org/10.1111/geb.12971.
Bush, E. R., K. Jeffery, N. Bunnefeld, et al. 2020. “Rare Ground Data Confirm Significant Warming and Drying in Western Equatorial Africa.” PeerJ 8, no. avril: e8732. https://doi.org/10.7717/peerj.8732.
Carr, M. H., S. P. Robinson, C. Wahle, et al. 2017. “The Central Importance of Ecological Spatial Connectivity to Effective Coastal Marine Protected Areas and to Meeting the Challenges of Climate Change in the Marine Environment.” Aquatic Conservation: Marine and Freshwater Ecosystems 27, no. S1: 6–29. https://doi.org/10.1002/aqc.2800.
Ceccarelli, V., M. Ekué, T. Fremout, et al. 2022. “Vulnerability Mapping of 100 Priority Tree Species in Central Africa to Guide Conservation and Restoration Efforts.” Biological Conservation 270, no. juin: 109554. https://doi.org/10.1016/j.biocon.2022.109554.
Choat, B., T. J. Brodribb, C. R. Brodersen, R. A. Duursma, R. López, and B. E. Medlyn. 2018. “Triggers of Tree Mortality Under Drought.” Nature 558, no. 7711: 531–539. https://doi.org/10.1038/s41586-018-0240-x.
Cuni-Sanchez, A., E. H. Martin, E. Uzabaho, et al. 2024. “Evidence of Thermophilization in Afromontane Forests.” Nature Communications 15, no. 1: 5554. https://doi.org/10.1038/s41467-024-48520-w.
Dauby, G., R. Zaiss, A. Blach-Overgaard, et al. 2016. “RAINBIO: A Mega-Database of Tropical African Vascular Plants Distributions.” Phytokeys 74, no. novembre: 1–18. https://doi.org/10.3897/phytokeys.74.9723.
Dawson, T. P., S. T. Jackson, J. I. House, I. C. Prentice, and G. M. Mace. 2011. “Beyond Predictions: Biodiversity Conservation in a Changing Climate.” Science 332, no. 6025: 53–58. https://doi.org/10.1126/science.1200303.
Dosio, A. 2017. “Projection of Temperature and Heat Waves for Africa With an Ensemble of CORDEX Regional Climate Models.” Climate Dynamics 49, no. 1–2: 493–519. https://doi.org/10.1007/s00382-016-3355-5.
Dosio, A., R. G. Jones, C. Jack, C. Lennard, G. Nikulin, and B. Hewitson. 2019. “What Can We Know About Future Precipitation in Africa? Robustness, Significance and Added Value of Projections From a Large Ensemble of Regional Climate Models.” Climate Dynamics 53, no. 9: 5833–5858. https://doi.org/10.1007/s00382-019-04900-3.
Dosio, A., C. Lennard, and J. Spinoni. 2022. “Projections of Indices of Daily Temperature and Precipitation Based on Bias-Adjusted CORDEX-Africa Regional Climate Model Simulations.” Climatic Change 170, no. 1–2: 13. https://doi.org/10.1007/s10584-022-03307-0.
Dosio, A., and H.-J. Panitz. 2016. “Climate Change Projections for CORDEX-Africa With COSMO-CLM Regional Climate Model and Differences With the Driving Global Climate Models.” Climate Dynamics 46, no. 5–6: 1599–1625. https://doi.org/10.1007/s00382-015-2664-4.
Doughty, C. E., J. M. Keany, B. C. Wiebe, et al. 2023. “Tropical Forests Are Approaching Critical Temperature Thresholds.” Nature 621, no. 7977: 105–111. https://doi.org/10.1038/s41586-023-06391-z.
Droissart, V., G. Dauby, O. J. Hardy, et al. 2018. “Beyond Trees: Biogeographical Regionalization of Tropical Africa.” Journal of Biogeography 45, no. 5: 1153–1167. https://doi.org/10.1111/jbi.13190.
Droogers, P., and R. G. Allen. 2002. Estimating Reference Evapotranspiration Under Inaccurate Data Conditions. Kluwer Academic Publishers.
Dunnington, D., and E. Pebesma. 2020. “Geos: Open Source Geometry Engine (‘GEOS’) R API.” https://doi.org/10.32614/CRAN.package.geos.
Edler, D., T. Guedes, A. Zizka, M. Rosvall, and A. Antonelli. 2016. “Infomap Bioregions: Interactive Mapping of Biogeographical Regions From Species Distributions.” Systematic Biology 66, no. 2: 197–204. https://doi.org/10.1093/sysbio/syw087.
Esperon-Rodriguez, M., C. Ordoñez, N. S. van Doorn, A. Hirons, and C. Messier. 2022. “Using Climate Analogues and Vulnerability Metrics to Inform Urban Tree Species Selection in a Changing Climate: The Case for Canadian Cities.” Landscape and Urban Planning 228, no. décembre: 104578. https://doi.org/10.1016/j.landurbplan.2022.104578.
Esperon-Rodriguez, M., P. D. Rymer, S. A. Power, et al. 2022. “Assessing Climate Risk to Support Urban Forests in a Changing Climate.” Plants, People, Planet 4, no. 3: 201–213. https://doi.org/10.1002/ppp3.10240.
Esperon-Rodriguez, M., M. G. Tjoelker, J. Lenoir, et al. 2022. “Climate Change Increases Global Risk to Urban Forests.” Nature Climate Change 12, no. 10: 10. https://doi.org/10.1038/s41558-022-01465-8.
Fauset, S., T. R. Baker, S. L. Lewis, et al. 2012. “Drought-Induced Shifts in the Floristic and Functional Composition of Tropical Forests in Ghana.” Ecology Letters 15, no. 10: 1120–1129. https://doi.org/10.1111/j.1461-0248.2012.01834.x.
Fayolle, A., M. D. Swaine, J. Aleman, et al. 2019. “A Sharp Floristic Discontinuity Revealed by the Biogeographic Regionalization of African Savannas.” Journal of Biogeography 46, no. 2: 454–465. https://doi.org/10.1111/jbi.13475.
Fayolle, A., M. D. Swaine, J.-F. Bastin, et al. 2014. “Patterns of Tree Species Composition Across Tropical African Forests.” Journal of Biogeography 41, no. 12: 2320–2331. https://doi.org/10.1111/jbi.12382.
Feeley, K., J. Martinez-Villa, T. Perez, A. S. Duque, D. T. Gonzalez, and A. Duque. 2020. “The Thermal Tolerances, Distributions, and Performances of Tropical Montane Tree Species.” Frontiers in Forests and Global Change 3: e00025. https://doi.org/10.3389/ffgc.2020.00025.
Feser, F., B. Rockel, H. von Storch, J. Winterfeldt, and M. Zahn. 2011. “Regional Climate Models Add Value to Global Model Data: A Review and Selected Examples.” Bulletin of the American Meteorological Society 92: 1181–1192. https://doi.org/10.1175/2011BAMS3061.1.
Foden, W. B., S. H. M. Butchart, S. N. Stuart, et al. 2013. “Identifying the World's Most Climate Change Vulnerable Species: A Systematic Trait-Based Assessment of All Birds, Amphibians and Corals.” PLoS One 8, no. 6: e65427. https://doi.org/10.1371/journal.pone.0065427.
Foden, W. B., B. E. Young, H. R. Akçakaya, et al. 2019. “Climate Change Vulnerability Assessment of Species.” Wiley Interdisciplinary Reviews: Climate Change 10, no. 1: e551. https://doi.org/10.1002/wcc.551.
Fonteyn, D., C. Vermeulen, A.-P. Gorel, P. L. de Silva Miranda, S. Lhoest, and A. Fayolle. 2023. “Biogeography of Central African Forests: Determinants, Ongoing Threats and Conservation Priorities of Mammal Assemblages.” Diversity and Distributions 29, no. 6: 698–712. https://doi.org/10.1111/ddi.13677.
Gallagher, R. V., S. Allen, and I. J. Wright. 2019. “Safety Margins and Adaptive Capacity of Vegetation to Climate Change.” Scientific Reports 9, no. 1: 8241. https://doi.org/10.1038/s41598-019-44483-x.
García-Robledo, C., E. K. Kuprewicz, C. L. Staines, T. L. Erwin, and W. J. Kress. 2016. “Limited Tolerance by Insects to High Temperatures Across Tropical Elevational Gradients and the Implications of Global Warming for Extinction.” Proceedings of the National Academy of Sciences of the United States of America 113, no. 3: 680–685. https://doi.org/10.1073/pnas.1507681113.
Gorel, A.-P., J. Duminil, J.-L. Doucet, and A. Fayolle. 2019. “Ecological Niche Divergence Associated With Species and Populations Differentiation in Erythrophleum (Fabaceae, Caesalpinioideae).” Plant Ecology and Evolution 152, no. 1: 1. https://doi.org/10.5091/plecevo.2019.1543.
Gorel, A.-P., O. J. Hardy, G. Dauby, et al. 2022. “Climatic Niche Lability but Growth Form Conservatism in the African Woody Flora.” Ecology Letters 25, no. 5: 1164–1176. https://doi.org/10.1111/ele.13985.
Greve, M., B. Reyers, A. M. Lykke, and J.-C. Svenning. 2013. “Spatial Optimization of Carbon-Stocking Projects Across Africa Integrating Stocking Potential With co-Benefits and Feasibility.” Nature Communications 4, no. 1: 2975. https://doi.org/10.1038/ncomms3975.
Guan, K., M. Pan, H. Li, et al. 2015. “Mal.” Nature Geoscience 8, no. 4: 4. https://doi.org/10.1038/ngeo2382.
Guisan, A., W. Thuiller, and N. E. Zimmermann. 2017. Habitat Suitability and Distribution Models: With Applications in R. Ecology, Biodivesity and Conservation. Cambridge University Press.
Hampe, A., and R. J. Petit. 2005. “Conserving Biodiversity Under Climate Change: The Rear Edge Matters.” Ecology Letters 8, no. 5: 461–467. https://doi.org/10.1111/j.1461-0248.2005.00739.x.
Hubau, W., S. L. Lewis, O. L. Phillips, et al. 2020. “Asynchronous Carbon Sink Saturation in African and Amazonian Tropical Forests.” Nature 579, no. 7797: 80–87. https://doi.org/10.1038/s41586-020-2035-0.
IPCC. 2023. Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. AR6 SYR. Intergovernmental Panel on Climate Change (IPCC). https://hdl.handle.net/10568/138481.
IUCN. 2024. “The IUCN Red List of Threatened Species.” Version 2024-1. https://www.iucnredlist.org.
Jirinec, V., P. F. Rodrigues, B. R. Amaral, and P. C. Stouffer. 2022. “Light and Thermal Niches of Ground-Foraging Amazonian Insectivorous Birds.” Ecology 103, no. 4: e3645. https://doi.org/10.1002/ecy.3645.
Kasongo Yakusu, E., J. Van Acker, H. Van De Vyver, et al. 2023. “Ground-Based Climate Data Show Evidence of Warming and Intensification of the Seasonal Rainfall Cycle During the 1960–2020 Period in Yangambi, Central Congo Basin.” Climatic Change 176, no. 10: 142. https://doi.org/10.1007/s10584-023-03606-0.
Kirschbaum, M. U. F. 2000. “Forest Growth and Species Distribution in a Changing Climate.” Tree Physiology 20, no. 5_6: 309–322. https://doi.org/10.1093/treephys/20.5-6.309.
Kremer, A., J. Chen, and M. Lascoux. 2025. “‘Chimes of Resilience’: What Makes Forest Trees Genetically Resilient?” New Phytologist 246, no. 5: 1934–1951. https://doi.org/10.1111/nph.70108.
Kremer, A., B. M. Potts, and S. Delzon. 2014. “Genetic Divergence in Forest Trees: Understanding the Consequences of Climate Change.” Functional Ecology 28, no. 1: 22–36. https://doi.org/10.1111/1365-2435.12169.
Kremer, A., O. Ronce, J. J. Robledo-Arnuncio, et al. 2012. “Long-Distance Gene Flow and Adaptation of Forest Trees to Rapid Climate Change.” Ecology Letters 15, no. 4: 378–392. https://doi.org/10.1111/j.1461-0248.2012.01746.x.
Lapola, D. M., J. M. C. da Silva, D. R. Braga, et al. 2020. “A Climate-Change Vulnerability and Adaptation Assessment for Brazil's Protected Areas.” Conservation Biology 34, no. 2: 427–437. https://doi.org/10.1111/cobi.13405.
Li, Y., P. M. Brando, D. C. Morton, D. M. Lawrence, H. Yang, and J. T. Randerson. 2022. “Deforestation-Induced Climate Change Reduces Carbon Storage in Remaining Tropical Forests.” Nature Communications 13, no. 1: 1964. https://doi.org/10.1038/s41467-022-29601-0.
Lörz, A.-N., J. Oldeland, and S. Kaiser. 2022. “Niche Breadth and Biodiversity Change Derived From Marine Amphipoda Species Off Iceland.” Ecology and Evolution 12, no. 4: e8802. https://doi.org/10.1002/ece3.8802.
Luo, Z., J. Fan, M'a. Shao, Q. Yang, X. Yang, and S. Zhang. 2024. “Evaluating Soil Water Dynamics and Vegetation Growth Characteristics Under Different Soil Depths in Semiarid Loess Areas.” Geoderma 442: 116791. https://doi.org/10.1016/j.geoderma.2024.116791.
Malakoutikhah, S., S. Fakheran, M.-R. Hemami, M. Tarkesh, and J. Senn. 2020. “Assessing Future Distribution, Suitability of Corridors and Efficiency of Protected Areas to Conserve Vulnerable Ungulates Under Climate Change.” Diversity and Distributions 26, no. 10: 1383–1396. https://doi.org/10.1111/ddi.13117.
Marchin, R. M., D. Backes, A. Ossola, M. R. Leishman, M. G. Tjoelker, and D. S. Ellsworth. 2022. “Extreme Heat Increases Stomatal Conductance and Drought-Induced Mortality Risk in Vulnerable Plant Species.” Global Change Biology 28, no. 3: 1133–1146. https://doi.org/10.1111/gcb.15976.
Meinzer, F. C., D. M. Johnson, B. Lachenbruch, K. A. McCulloh, and D. R. Woodruff. 2009. “Xylem Hydraulic Safety Margins in Woody Plants: Coordination of Stomatal Control of Xylem Tension With Hydraulic Capacitance.” Functional Ecology 23, no. 5: 922–930. https://doi.org/10.1111/j.1365-2435.2009.01577.x.
Merenlender, A. M., A. T. H. Keeley, and J. A. Hilty. 2022. “Ecological Corridors for Which Species?” Therya 13, no. 1: 45–55. https://doi.org/10.12933/therya-22-1162.
Miles, L., A. Grainger, and O. Phillips. 2004. “The Impact of Global Climate Change on Tropical Forest Biodiversity in Amazonia.” Global Ecology and Biogeography 13, no. 6: 553–565. https://doi.org/10.1111/j.1466-822X.2004.00105.x.
Morelli, T. L., C. Daly, S. Z. Dobrowski, et al. 2016. “Managing Climate Change Refugia for Climate Adaptation.” PLoS One 11, no. 8: e0159909. https://doi.org/10.1371/journal.pone.0159909.
Ouédraogo, D.-Y., F. Mortier, S. Gourlet-Fleury, V. Freycon, and N. Picard. 2013. “Slow-Growing Species Cope Best With Drought: Evidence From Long-Term Measurements in a Tropical Semi-Deciduous Moist Forest of Central Africa.” Journal of Ecology 101, no. 6: 1459–1470. https://doi.org/10.1111/1365-2745.12165.
Pacifici, M., W. B. Foden, P. Visconti, et al. 2015. “Assessing Species Vulnerability to.” Climate Change (London, United States) 5, no. 3: 215–224. https://doi.org/10.1038/nclimate2448.
Parmentier, I., Y. Malhi, B. Senterre, et al. 2007. “The Odd Man Out? Might Climate Explain the Lower Tree α-Diversity of African Rain Forests Relative to Amazonian Rain Forests?” Journal of Ecology 95, no. 5: 1058–1071. https://doi.org/10.1111/j.1365-2745.2007.01273.x.
Pennington, P. T., Q. C. B. Cronk, J. A. Richardson, F. I. Woodward, M. R. Lomas, and C. K. Kelly. 2004. “Global Climate and the Distribution of Plant Biomes.” Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 359, no. 1450: 1465–1476. https://doi.org/10.1098/rstb.2004.1525.
Perret, D. L., M. E. K. Evans, and D. F. Sax. 2024. “A Species' Response to Spatial Climatic Variation Does Not Predict Its Response to Climate Change.” Proceedings of the National Academy of Sciences of the United States of America 121, no. 1: e2304404120. https://doi.org/10.1073/pnas.2304404120.
Phillips, O. L., L. E. O. C. Aragão, S. L. Lewis, et al. 2009. “Drought Sensitivity of the Amazon Rainforest.” Science 323, no. 5919: 1344–1347. https://doi.org/10.1126/science.1164033.
Phillips, O. L., G. van der Heijden, S. L. Lewis, et al. 2010. “Drought–Mortality Relationships for Tropical Forests.” New Phytologist 187, no. 3: 631–646. https://doi.org/10.1111/j.1469-8137.2010.03359.x.
Pillay, R., M. Venter, J. Aragon-Osejo, et al. 2022. “Tropical Forests Are Home to Over Half of the World's Vertebrate Species.” Frontiers in Ecology and the Environment 20, no. 1: 10–15. https://doi.org/10.1002/fee.2420.
Platts, P. J., P. A. Omeny, and R. Marchant. 2015. “AFRICLIM: High-Resolution Climate Projections for Ecological Applications in Africa.” African Journal of Ecology 53, no. 1: 103–108. https://doi.org/10.1111/aje.12180.
Réjou-Méchain, M., F. Mortier, J.-F. Bastin, et al. 2021. “Unveiling African Rainforest Composition and Vulnerability to Global Change.” Nature 593, no. 7857: 90–94. https://doi.org/10.1038/s41586-021-03483-6.
Rogelj, J., M. Meinshausen, and R. Knutti. 2012. “Global Warming Under Old and New Scenarios Using IPCC Climate Sensitivity Range Estimates.” Nature Climate Change 2, no. 4: 248–253. https://doi.org/10.1038/nclimate1385.
Savolainen, O., T. Pyhäjärvi, and T. Knürr. 2007. “Gene Flow and Local Adaptation in Trees.” Annual Review of Ecology, Evolution, and Systematics 38, no. 1: 595–619. https://doi.org/10.1146/annurev.ecolsys.38.091206.095646.
Scherrer, D., M. Esperon-Rodriguez, L. J. Beaumont, V. L. Barradas, and A. Guisan. 2021. “National Assessments of Species Vulnerability to Climate Change Strongly Depend on Selected Data Sources.” Diversity and Distributions 27, no. 8: 1367–1382. https://doi.org/10.1111/ddi.13275.
Tabor, K., and J. W. Williams. 2010. “Globally Downscaled Climate Projections for Assessing the Conservation Impacts of Climate Change.” Ecological Applications 20, no. 2: 554–565. https://doi.org/10.1890/09-0173.1.
Tavares, J. V., R. S. Oliveira, M. Mencuccini, et al. 2023. “Basin-Wide Variation in Tree Hydraulic Safety Margins Predicts the Carbon Balance of Amazon Forests.” Nature 617, no. 7959: 111–117. https://doi.org/10.1038/s41586-023-05971-3.
Teskey, R., T. Wertin, I. Bauweraerts, M. Ameye, M. A. Mcguire, and K. Steppe. 2015. “Responses of Tree Species to Heat Waves and Extreme Heat Events.” Plant, Cell & Environment 38, no. 9: 1699–1712. https://doi.org/10.1111/pce.12417.
Thuiller, W., S. Lavorel, and M. B. Araújo. 2005. “Niche Properties and Geographical Extent as Predictors of Species Sensitivity to Climate Change.” Global Ecology and Biogeography 14, no. 4: 347–357. https://doi.org/10.1111/j.1466-822X.2005.00162.x.
Trew, B. T., D. P. Edwards, A. C. Lees, et al. 2024. “Novel Temperatures Are Already Widespread Beneath the World's Tropical Forest Canopies.” Nature Climate Change 14, no. 7: 753–759. https://doi.org/10.1038/s41558-024-02031-0.
Trew, B. T., and I. M. D. Maclean. 2021. “Vulnerability of Global Biodiversity Hotspots to Climate Change.” Global Ecology and Biogeography 30, no. 4: 768–783. https://doi.org/10.1111/geb.13272.
Veloz, S. D., J. W. Williams, J. L. Blois, F. He, B. Otto-Bliesner, and Z. Liu. 2012. “No-Analog Climates and Shifting Realized Niches During the Late Quaternary: Implications for 21st-Century Predictions by Species Distribution Models.” Global Change Biology 18, no. 5: 1698–1713. https://doi.org/10.1111/j.1365-2486.2011.02635.x.
Vira, B., C. Wildburger, S. Mansourian, and International Union of Forestry Research Organizations, eds. 2015. Forests, Trees and Landscapes for Food Security and Nutrition: A Global Assessment Report. IUFRO World Series 33. IUFRO.
Williams, J. W., and S. T. Jackson. 2007. “Novel Climates, No-Analog Communities, and Ecological Surprises.” Frontiers in Ecology and the Environment 5, no. 9: 475–482. https://doi.org/10.1890/070037.
Worth, J. R. P., G. J. Williamson, S. Sakaguchi, P. G. Nevill, and G. J. Jordan. 2014. “Environmental Niche Modelling Fails to Predict Last Glacial Maximum Refugia: Niche Shifts, Microrefugia or Incorrect Palaeoclimate Estimates.” Global Ecology and Biogeography 23, no. 11: 1186–1197. https://doi.org/10.1111/geb.12239.
Zellweger, F., D. Coomes, J. Lenoir, et al. 2019. “Seasonal Drivers of Understorey Temperature Buffering in Temperate Deciduous Forests Across Europe.” Global Ecology and Biogeography 28, no. 12: 1774–1786. https://doi.org/10.1111/geb.12991.
Zellweger, F., P. De Frenne, J. Lenoir, et al. 2020. “Forest Microclimate Dynamics Drive Plant Responses to Warming.” Science 368, no. 6492: 772–775. https://doi.org/10.1126/science.aba6880.
Zhou, L., Y. Tian, R. B. Myneni, et al. 2014. “Widespread Decline of Congo Rainforest Greenness in the Past Decade.” Nature 509, no. 7498: 86–90. https://doi.org/10.1038/nature13265.