Emission rate; Indoor pollutant; PM2.5; Source; TVOC; VOC; ACCESS database; Emissions rates; Indoor air quality; Indoor pollutants; Indoor sources; OpenAccess; PM 2.5; Pollutant emission rates; Architecture; Civil and Structural Engineering; Building and Construction; Safety, Risk, Reliability and Quality; Mechanics of Materials
Abstract :
[en] Modeling indoor air quality requires reliable data on pollutant emission rates (ERs) from indoor sources. While many studies focus on measuring indoor pollutant concentrations, far fewer provide the source-specific ERs needed for predictive modeling, and those that do often report fragmented and non-standardized formats that limit their use. This paper addresses this gap by introducing PANDORA (a comPilAtioN of inDOor aiR pollutAnt emissions), an internet-based open-access database designed to improve consistency and transparency in indoor air quality assessments. PANDORA systematically compiles ERs data for gaseous and particulate pollutants from a wide range of indoor sources. It classifies 747 sources into comprehensive categories such as construction and decoration materials (354), furniture (38), cleaning products and air fresheners (123), occupants and occupant activities (134), heating and cooking appliances (48), electrical equipment (40), whole room or building (6) and others (4). In this paper, we summarize key experimental methods used to assess the pollutants. To aid in informed decision-making, statistical analyses are provided for selected indoor pollutants of interest, including PM2.5, formaldehyde, benzene, and TVOC. Additionally, we compare the impact of using three different modeling approaches and assumptions through a case study that uses the PANDORA data to evaluate indoor pollutant ERs in a room. This application shows how PANDORA supports more transparent and consistent use of emission rate data. Our findings highlight that, despite compiling 9968 emission rate entries, expanding PANDORA with new measurements will further strengthen the accuracy and reliability of indoor air quality modeling and exposure assessments.
Abadie, Marc ; LaSIE (UMR CNRS 7356) - La Rochelle University, La Rochelle, France ; RUPEE Lab, a LaSIE-TIPEE Common Laboratory, La Rochelle/Lagord, France
Geffre, Eol; LaSIE (UMR CNRS 7356) - La Rochelle University, La Rochelle, France
Picard, Charles-Florian; TIPEE Plateforme Technologique du Bâtiment Durable, Lagord, France ; RUPEE Lab, a LaSIE-TIPEE Common Laboratory, La Rochelle/Lagord, France
Loomans, Marcel; Eindhoven University of Technology, Eindhoven, Netherlands
Babich, Francesco; Institute for Renewable Energy, Eurac Research, Bolzano, Italy
Monge-Barrio, Aurora; School of Architecture, Universidad de Navarra, Pamplona, Spain
Licina, Dusan; Human-Oriented Built Environment Lab, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
McGill, Gráinne; Department of Architecture, University of Strathclyde, Glasgow, United Kingdom
Toledo, Linda; Department of Architecture, University of Strathclyde, Glasgow, United Kingdom
Coggins, Ann Marie; School of Natural Sciences & Ryan Institute, University of Galway, Galway City, Ireland
Pourkiaei, Seyed Mohsen ; Université de Liège - ULiège > Sphères ; Department of Physics, Maynooth University, Maynooth, Ireland
Casquero-Modrego, Núria; Residential Building Systems Group, Lawrence Berkeley National Laboratory, Berkeley, United States
Molina, Constanza; Escuela de Construcción Civil, Pontificia Universidad Católica de Chile, Santiago de Chile, Chile
Sadrizadeh, Sasan; Department of Civil and Architectural Engineering, KTH Royal Institute of Technology, Stockholm, Sweden
McGrath, James; Department of Physics, Maynooth University, Maynooth, Ireland
Rojas-Kopeinig, Gabriel; University of Innsbruck, Innsbruck, Austria
PANDORA: An open-access database of indoor pollutant emission rates for IAQ modeling
Publication date :
2025
Journal title :
Journal of Building Engineering
eISSN :
2352-7102
Publisher :
Elsevier
Volume :
114
Pages :
114216
Peer reviewed :
Peer Reviewed verified by ORBi
Funding text :
The authors would like to thank ADEME, the French ecological transition agency, for its financial support via the Smart\u2019Air project (convention #2004C0014), Walloon Region of Belgium and the University of Li\u00E8ge \u201CActions de Recherche Concert\u00E9es 2019 (ARC 19/23-05)\u201D, Rijksdienst voor Ondernemend Nederland (EGOI123012). Authors would also like to acknowledge the financial support provided by the Scottish Building Standards Division, Directorate for Local Government and Housing (UK) - research to identify if changes to guidance in standard 3.14 (Ventilation) in 2015 have been effective in improving ventilation and indoor air quality.
Reed, C.H., Polidoro, B., Database tools for modeling emissions and control of air pollutants from consumer products, cooking, and combustion. NIST Intera./Intern. Rep. (NISTIR), 2021, 10.6028/NIST.IR.7364.
Abadie, M.O., Blondeau, P., PANDORA database: a compilation of indoor air pollutant emissions. HVAC R Res. 17 (2011), 602–613, 10.1080/10789669.2011.579877.
Oliveira Fernandes, E., Materials for healthy indoor spaces and more energy efficient buildings. Final report of EEC project MATHIS, Non-Nuclear Energy Programme JOULE III, 2001.
Alevantis, L., Building Material Emissions Study, Report for the Integrated Waste Management Board., 2003.
Won, D., Shaw, C.Y., Investigation of Building Materials as VOC Sources in Indoor Air. 2004, NRCC.
Barrero, J., BUMA project: prioritization of building materials as indoor pollution sources. www.buma-project.eu, 2009.
Zhu, J., Cao, X.-L., Beauchamp, R., Determination of 2-butoxyethanol emissions from selected consumer products and its application in assessment of inhalation exposure associated with cleaning tasks. Environ. Int. 26 (2001), 589–597, 10.1016/S0160-4120(01)00046-0.
Bluyssen, P., Evaluation of VOC Emissions from Building Products: Solid Flooring Materials. 1997, Office for Official Publ. of the European Communities.
Afshari, A., Lundgren, B., Ekberg, L.E., Comparison of three small chamber test methods for the measurement of VOC emission rates from paint. Indoor Air, 13, 2003, 10.1034/j.1600-0668.2003.00146.x.
Berrios, I.T., Zhang, J.S., Guo, B., Smith, J., Zhang, Z., Volatile organic compounds (VOCs) emissions from sources in a partitioned office environment and their impact on IAQ. 10th Int. Conf. Indoor Air Qual. Clim. Indoor Air 2005, 2005, Beijing China Tsinghua Univ. Press.
Bartekova, A., Lungu, C., Shmulsky, R., Huelman, P., Park, J.Y., Laboratory evaluation of volatile organic compounds emissions from coated and uncoated oriented strandboard. For. Prod. J. 56 (2006), 85–90.
Plaisance, H., Blondel, A., Desauziers, V., Mocho, P., Hierarchical cluster analysis of carbonyl compounds emission profiles from building and furniture materials. Build. Environ. 75 (2014), 40–45, 10.1016/j.buildenv.2014.01.014.
Maupetit, F., Evaluation de la contribution des matériaux de construction à la qualité de l'air intérieur (étude préalable). Rapport CSTB N° SC-14-044, Convention DHUP 2012 - Action N°11, 2014.
Kozicki, M., Piasecki, M., Goljan, A., Deptuła, H., Niesłochowski, A., Emission of volatile organic compounds (VOCs) from dispersion and cementitious waterproofing products. Sustainability, 10, 2018, 2178, 10.3390/su10072178.
Kozicki, M., Guzik, K., Comparison of VOC emissions produced by different types of adhesives based on test chambers. Materials, 14, 2021, 1924, 10.3390/ma14081924.
Caudron, C., LeMaitre, O., Deroo, L., Gosset, S., Hallemans, E., Renaud, M., Coulbaux, G., Bugajny, C., Locoge, N., Tinel, L., Braish, T., Langlet, T., Tran Le Anh, D., Douzane, O., Antczak, E., Brachelet, F., EmiBio–Emissions Des Matériaux biosourcés–Rapport Final., 2022 ADEME report.
Jung, C., Mahmoud, N.S.A., Extracting the critical points of formaldehyde (HCHO) emission model in hot desert climate. Air Soil. Water Res., 15, 2022, 117862212211050, 10.1177/11786221221105082.
de Kort, J.M., Gauvin, F., Loomans, M.G., Brouwers, H.J.H., Emission rates of bio-based building materials, a method description for qualifying and quantifying VOC emissions. Sci. Total Environ., 905, 2023, 167158, 10.1016/j.scitotenv.2023.167158.
Gustafsson, H., Jonsson, B., Review of small scale devices for measuring chemical emission from materials. https://www.aivc.org/resource/review-small-scale-devices-measuring-chemical-emission-materials, 1991. (Accessed 15 April 2025)
Roux, M.L., Contribution de mobilier à la qualité de l'air intérieur dans les crèches (MOBAIR-C). Rapport Final D’É’tude Réalisée Pour Le Compte De La Direction Générale De La Prévention Des Risques Du MEDDTL, Convention N°Su006694, 2012.
Yan, M., Zhai, Y., Shi, P., Hu, Y., Yang, H., Zhao, H., Emission of volatile organic compounds from new furniture products and its impact on human health. Hum. Ecol. Risk Assess. 25 (2019), 1886–1906, 10.1080/10807039.2018.1476126.
Zheng, H., Csemezová, J., Loomans, M., Walker, S., Gauvin, F., Zeiler, W., Species profile of volatile organic compounds emission and health risk assessment from typical indoor events in daycare centers. Sci. Total Environ., 918, 2024, 170734, 10.1016/j.scitotenv.2024.170734.
Singer, B.C., Destaillat, H., Hodgson, A.T., Nazaroff, W.W., Cleaning products and air fresheners: emissions and resulting concentrations of glycol ethers and terpenoids. 16 179–191 https://doi.org/10.1111/j.1600-0668.2005.00414.x, 2005.
Liu, X., Mason, M., Krebs, K., Sparks, L., Full-scale chamber investigation and simulation of air freshener emissions in the presence of ozone. Environ. Sci. Technol. 38 (2004), 2802–2812, 10.1021/es030544b.
Nicolas, M., Chiappini, L., Rio, C., Nicolle, J., Rossignol, S., Danna, B., Meme, A., Household products and indoor air quality: emission, reactivity and by-products in both gaseous and particulate phases. Eur. Aerosol Conf. EAC 2013, 2013.
Afshari, A., Matson, U., Ekberg, L.E., Characterization of indoor sources of fine and ultrafine particles: a study conducted in a full-scale chamber. Indoor Air, 15, 2005, 10.1111/j.1600-0668.2005.00332.x.
Géhin, E., Ramalho, O., Kirchner, S., Size distribution and emission rate measurement of fine and ultrafine particle from indoor human activities. Atmos. Environ. 42 (2008), 8341–8352, 10.1016/j.atmosenv.2008.07.021.
Nicolas, M., Karr, G., Real, E., Maupetit, F., PEPS : Impact Des Produits D'E’ntretien Sur La Qualité De L'A’ir Intérieur., 2018 ADEME report.
He, C., Morawska, L., Hitchins, J., Gilbert, D., Contribution from indoor sources to particle number and mass concentrations in residential houses. Atmos. Environ. 38 (2004), 3405–3415, 10.1016/j.atmosenv.2004.03.027.
Wallace, L., Indoor sources of ultrafine and accumulation mode particles: size distributions, size-resolved concentrations, and source strengths. Aerosol Sci. Technol. 40 (2006), 348–360, 10.1080/02786820600612250.
Yeung, L.L., To, W.M., Size distributions of the aerosols emitted from commercial cooking processes. Indoor Built Environ. 17 (2008), 220–229, 10.1177/1420326X08092043.
Evans, G.J., Peers, A., Sabaliauskas, K., Particle dose estimation from frying in residential settings. Indoor Air, 18, 2008, 10.1111/j.1600-0668.2008.00551.x.
O'Leary, C., Kluizenaar, Y., Jacobs, P., Borsboom, W., Hall, I., Jones, B., Investigating measurements of fine particle (PM2.5) emissions from the cooking of meals and mitigating exposure using a cooker hood. Indoor Air 29 (2019), 423–438, 10.1111/ina.12542.
Moser, B., Bodrogi, F., Eibl, G., Lechner, M., Rieder, J., Lirk, P., Mass spectrometric profile of exhaled Breath—field study by PTR-MS. Respir. Physiol. Neurobiol. 145 (2005), 295–300, 10.1016/j.resp.2004.02.002.
Health Canada. Constituents in tobacco and smoke emissions from Canadian cigarettes. Tob. Control 17 (2006), 24–31, 10.1136/tc.2008.024778.
Zai, S., Zhen, H., Jia-song, W., Studies on the size distribution, number and mass emission factors of candle particles characterized by modes of burning. J. Aerosol Sci. 37 (2006), 1484–1496, 10.1016/j.jaerosci.2006.05.001.
Pagels, J., Wierzbicka, A., Nilsson, E., Isaxon, C., Dahl, A., Gudmundsson, A., Swietlicki, E., Bohgard, M., Chemical composition and mass emission factors of candle smoke particles. J. Aerosol Sci. 40 (2009), 193–208, 10.1016/j.jaerosci.2008.10.005.
Zhao, J., Birmili, W., Hussein, T., Wehner, B., Wiedensohler, A., Particle number emission rates of aerosol sources in 40 German households and their contributions to ultrafine and fine particle exposure. Indoor Air 31 (2021), 818–831, 10.1111/ina.12773.
Lee, S.-C., Wang, B., Characteristics of emissions of air pollutants from burning of incense in a large environmental chamber. Atmos. Environ. 38 (2004), 941–951, 10.1016/j.atmosenv.2003.11.002.
HKIAQO. Guidance Notes for the Management of Indoor Air Quality in Offices and Public Places. 1999, Indoor Air Quality Management Group, The Government of the Hong-Kong Special Administrative Region.
Nicolas, M., Quivet, E., Guillaume, K., Real, E., Buiron, D., Maupetit, F., Exposition aux Polluants émis par les Bougies et les Encens dans les Environnements Intérieurs – Émissions et risques Sanitaires Associés. 2017, Projet EBENE (APR ADEME CORTEA).
Kurosawa, Y., Takano, S., Tanabe, S., Morimoto, M., Measurement of chemical pollutants emitted from livingware using chamber method. Conf. Indoor Air, 2008.
Derbez, M., Solal, C., Etude Exploratoire: Caractérisation des Émissions de Fournitures Scolaires et de Produits d'entretien Utilisés dans une école et Analyse des Données de Composition. 2014, Rapport CSTB-DSC/2014-068.
Riess, U., Tegtbur, U., Fauck, C., Fuhrmann, F., Markewitz, D., Salthammer, T., Experimental setup and analytical methods for the non-invasive determination of volatile organic compounds, formaldehyde and NOx in exhaled human breath. Anal. Chim. Acta 669 (2010), 53–62, 10.1016/j.aca.2010.04.049.
Cáceres, T., Soto, H., Lissi, E., Cisternas, R., Indoor house pollution: appliance emissions and indoor ambient concentrations. Atmospher. Environ. 1967 17 (1983), 1009–1013, 10.1016/0004-6981(83)90253-6.
Borrazzo, J.E., Osborn, J.F., Fortmann, R.C., Keeper, R.L., Davidson, C.I., Modeling and monitoring of CO, NO and NO2 in a modern townhouse. Atmospher. Environ. 1967 21 (1987), 299–311, 10.1016/0004-6981(87)90005-9.
Tissari, J., Lyyränen, J., Hytönen, K., Sippula, O., Tapper, U., Frey, A., Saarnio, K., Pennanen, A.S., Hillamo, R., Salonen, R.O., Fine particle and gaseous emissions from normal and smouldering wood combustion in a conventional masonry heater. Atmos. Environ. 42 (2008), 7862–7873, 10.1016/j.atmosenv.2008.07.019.
Hetes, R., Moore, M., Northeim, C., Office Equipment: Design, Indoor Air Emissions, and Pollution Prevention Opportunities. 1995, Final report, Park, NC (United States) October 1993-January 1995, Research Triangle Inst., Research Triangle.
Black, M.S., Emissions from office equipment. Proc. Indoor Air99, 1999, 454–459.
Brown, S.K., Assessment of pollutant emissions from dry-process photocopiers. Indoor Air 9 (1999), 259–267, 10.1111/j.1600-0668.1999.00005.x.
Lam, S., Lee, S.C., Characterization of VOCs, ozone and PM10 emissions from office printers in an environmental chamber, air Distrib. Rooms vent. Health Sustain. Environ., 1, 2000, 89, 10.1016/S0360-1323(01)00009-9.
Wensing, M., Emissions from electronic devices: examinations of computer monitors and laser printers in a 1m^ 3 emission test chamber. Proc. 9 Th Int. Conf. Indoor Air Clim.-Indoor Air, 2002, 2002, 554–559.
Nakagawa, T., Wargocki, P., Tanabe, S., Weschler, C.J., Baginska, S., Bako-Biro, Z., Fanger, P.O., Chemical emission rates from personal computers. 7th Int. Conf. Healthy Build. 2003, Healthy Buildings, 2003, 468–473.
Funaki, R., Tanaka, H., Nakagawa, T., Tanabe, S., Measurements of aldehydes and VOCs from electronic appliances by using a small chamber. Proc. Healthy Build 2003 (2003), 319–324.
Offermann, F.J., Mueller, M., Spiegel, L., Koyama, K., Kelly, T., Jones, M., Ventilation and Indoor Air Quality in New Homes, California Air Resources Board and California Energy Commission. 2009, PIER Energy-Related Environmental Research Program. Collaborative Report.
Blondel, A., Plaisance, H., Screening of formaldehyde indoor sources and quantification of their emission using a passive sampler. Build. Environ. 46 (2011), 1284–1291, 10.1016/j.buildenv.2010.12.011.
Chan, W.R., Kim, Y.-S., Less, B.D., Singer, B.C., Walker, I.S., Ventilation and Indoor Air Quality in New California Homes with Gas Appliances and Mechanical Ventilation. 2020, Lawrence Berkeley National Lab.(LBNL), Berkeley, CA (United States).
Zhao, H., Walker, I.S., Sohn, M.D., Less, B., A time-varying model for predicting formaldehyde emission rates in homes. Int. J. Environ. Res. Publ. Health, 19, 2022, 6603, 10.3390/ijerph19116603.
INIES. Procedure for developing default environmental data (DED) relating to construction products and equipment for use in the method for assessing the energy and environmental performance of new buildings. Minitère De La Transition Ecologique Et De La Cohésion Des Territoires (France), 2022.
Abbass, O.A., Sailor, D.J., Gall, E.T., Effect of fiber material on ozone removal and carbonyl production from carpets. Atmos. Environ. 148 (2017), 42–48, 10.1016/j.atmosenv.2016.10.034.
Caron, F., Guichard, R., Robert, L., Verriele, M., Thevenet, F., Behaviour of individual VOCs in indoor environments: how ventilation affects emission from materials. Atmos. Environ., 243, 2020, 117713, 10.1016/j.atmosenv.2020.117713.
Xiong, J., Zhang, P., Huang, S., Zhang, Y., Comprehensive influence of environmental factors on the emission rate of formaldehyde and VOCs in building materials: correlation development and exposure assessment. Environ. Res. 151 (2016), 734–741, 10.1016/j.envres.2016.09.003.
Maupetit, F., Nicolas, M., Nicolle, J., Serafin, G., Blondeau, P., Emissions des matériaux de construction assemblés sous forme de parois: caractérisation expérimentale et modélisation simplifiée de la qualité de l'air intérieur. ADEME Rep., 2017.
Angulo-Milhem, S., Verriele, M., Nicolas, M., Thevenet, F., Indoor use of essential oils: emission rates, exposure time and impact on air quality. Atmos. Environ., 244, 2021, 117863, 10.1016/j.atmosenv.2020.117863.
Milhem, S.A., Verriele, M., Nicolas, M., Thevenet, F., Indoor use of essential oil-based cleaning products: emission rate and indoor air quality impact assessment based on a realistic application methodology. Atmos. Environ., 246, 2021, 118060, 10.1016/j.atmosenv.2020.118060.
Zhang, X., He, X., Zhang, R., Wang, L., Kong, H., Wang, K., Zilli Vieira, C.L., Koutrakis, P., Huang, S., Xiong, J., Yan, Y., Emissions of volatile organic compounds from reed diffusers in indoor environments. Cell Rep. Phys. Sci., 5, 2024, 102142, 10.1016/j.xcrp.2024.102142.
Beel, G., Langford, B., Carslaw, N., Shaw, D., Cowan, N., Temperature driven variations in VOC emissions from plastic products and their fate indoors: a chamber experiment and modelling study. Sci. Total Environ., 881, 2023, 163497, 10.1016/j.scitotenv.2023.163497.
Zou, C., Jiang, M., Huang, H., Chen, H., Sheng, L., Li, J., Yu, C., Size distribution, emission rate, and decay characteristics of particles emitted by printers. Air Qual. Atmosphere Health 15 (2022), 1427–1438, 10.1007/s11869-022-01174-3.
Davies, H.L., O'Leary, C., Dillon, T., Shaw, D.R., Shaw, M., Mehra, A., Phillips, G., Carslaw, N., A measurement and modelling investigation of the indoor air chemistry following cooking activities. Environ. Sci. Process. Impacts 25 (2023), 1532–1548, 10.1039/D3EM00167A.
Jeong, S.-G., Wallace, L., Rim, D., Size-resolved emission rates of episodic indoor sources and ultrafine particle dynamics. Environ. Pollut., 338, 2023, 122680, 10.1016/j.envpol.2023.122680.
Patra, S.S., Jiang, J., Ding, X., Huang, C., Reidy, E.K., Kumar, V., Price, P., Keech, C., Steiner, G., Stevens, P., Dynamics of nanocluster aerosol in the indoor atmosphere during gas cooking. PNAS Nexus, 3, 2024, 44, 10.1093/pnasnexus/pgae044.
Li, L., Lee, E.S., Nguyen, C., Zhu, Y., Effects of propylene glycol, vegetable glycerin, and nicotine on emissions and dynamics of electronic cigarette aerosols. Aerosol Sci. Technol. 54 (2020), 1270–1281, 10.1080/02786826.2020.1771270.
Hu, H., Ye, J., Liu, C., Yan, L., Yang, F., Qian, H., Emission and oxidative potential of PM2. 5 generated by nine indoor sources. Build. Environ., 230, 2023, 110021, 10.1016/j.buildenv.2023.110021.
Li, M., Weschler, C.J., Bekö, G., Wargocki, P., Lucic, G., Williams, J., Human ammonia emission rates under various indoor environmental conditions. Environ. Sci. Technol. 54 (2020), 5419–5428, 10.1021/acs.est.0c00094.
Yang, S., Bekö, G., Wargocki, P., Zhang, M., Merizak, M., Nenes, A., Williams, J., Licina, D., Physiology or psychology: what drives human emissions of carbon dioxide and ammonia?. Environ. Sci. Technol. 58 (2024), 1986–1997, 10.1021/acs.est.3c07659.
Wu, T., Müller, T., Wang, N., Byron, J., Langer, S., Williams, J., Licina, D., Indoor emission, oxidation, and new particle formation of personal care product related volatile organic compounds. Environ. Sci. Technol. Lett. 11 (2024), 1053–1061, 10.1021/acs.estlett.4c00353.
Bekö, G., Wargocki, P., Wang, N., Li, M., Weschler, C.J., Morrison, G., Langer, S., Ernle, L., Licina, D., Yang, S., Zannoni, N., Williams, J., The indoor chemical human emissions and reactivity (ICHEAR) project: overview of experimental methodology and preliminary results. Indoor Air 30 (2020), 1213–1228, 10.1111/ina.12687.
Yang, S., Bekö, G., Wargocki, P., Williams, J., Licina, D., Human emissions of size-resolved fluorescent aerosol particles: influence of personal and environmental factors. Environ. Sci. Technol. 55 (2021), 509–518, 10.1021/acs.est.0c06304.
Wisthaler, A., Weschler, C.J., Reactions of ozone with human skin lipids: sources of carbonyls, dicarbonyls, and hydroxycarbonyls in indoor air. Proc. Natl. Acad. Sci. 107 (2010), 6568–6575, 10.1073/pnas.0904498106.
Huangfu, Y., Lima, N.M., O'Keeffe, P.T., Kirk, W.M., Lamb, B.K., Walden, V.P., Jobson, B.T., Whole-house emission rates and loss coefficients of formaldehyde and other volatile organic compounds as a function of the air change rate. Environ. Sci. Technol. 54 (2020), 2143–2151, 10.1021/acs.est.9b05594.
Huang, L., Wei, Y., Zhang, L., Ma, Z., Zhao, W., Estimates of emission strengths of 43 VOCs in wintertime residential indoor environments, Beijing. Sci. Total Environ., 793, 2021, 148623, 10.1016/j.scitotenv.2021.148623.
Poppendieck, D., Robertson, R., Link, M.F., Jingle bells, what are those smells? Indoor VOC emissions from a live Christmas tree. Indoor Environ., 1, 2024, 100002, 10.1016/j.indenv.2023.100002.