DFT; Electronic structure; Post-processing; Density-functional theory calculations; Density-functional-theory; Electronic.structure; Material science; materials science
Abstract :
[en] This paper presents a comprehensive update to PyProcar, a versatile Python package for analyzing and visualizing density functional theory (DFT) calculations in materials science. The latest version introduces a modularized codebase, a centralized example data repository, and a robust testing framework, offering a more reliable, maintainable, and scalable platform. Expanded support for various DFT codes broadens its applicability across research environments. Enhanced documentation and an example gallery make the package more accessible to new and experienced users. Incorporating advanced features such as band unfolding, noncollinear calculations, and derivative calculations of band energies enriches its analytic capabilities, providing deeper insights into electronic and structural properties. The package also incorporates PyPoscar, a specialized toolkit for manipulating POSCAR files, broadening its utility in computational materials science. These advancements solidify PyProcar's position as a comprehensive and highly adaptable tool, effectively serving the evolving needs of the materials science community. New version program summary: Program title: PyProcar CPC Library link to program files: https://doi.org/10.17632/d4rrfy3dy4.2 Developer's repository link: https://github.com/romerogroup/pyprocar Licensing provisions: GPLv3 Programming language: Python Supplementary material: Pyprocar-Supplementary Information Journal reference of previous version: Comput. Phys. Commun. 251 (2020) 107080, https://doi.org/10.1016/j.cpc.2019.107080 Does the new version supersede the previous version?: Yes Reasons for the new version: Changes in the directory structure, the addition of new features, enhancement of the manual and user documentation, and generation of interfaces with other electronic structure packages. Summary of revisions: These updates enhance its capabilities and ensure developers' and users' maintainability, reliability, and ease of use. Nature of problem: To automate, simplify, and serialize the analysis of band structure and Fermi surface, especially for high throughput calculations. Solution method: Implement a Python library able to handle, combine, parse, extract, plot, and even repair data from density functional calculations from diverse electronic structure packages. PyProcar uses color maps on the band structures or Fermi surfaces to give a simple representation of the relevant characteristics of the electronic structure. Additional comments including restrictions and unusual features: PyProcar can produce high-quality figures of band structures and Fermi surfaces (2D and 3D), projection of atomic orbitals, atoms, and/or spin components.
Research Center/Unit :
Q-MAT - Quantum Materials - ULiège
Disciplines :
Physics
Author, co-author :
Lang, Logan ; Department of Physics and Astronomy, West Virginia University, Morgantown, United States
Tavadze, Pedram; Department of Physics and Astronomy, West Virginia University, Morgantown, United States
Tellez, Andres; Department of Physics and Astronomy, West Virginia University, Morgantown, United States
Bousquet, Eric ; Université de Liège - ULiège > Département de physique
He, Xu ; Université de Liège - ULiège > Département de physique > Physique théorique des matériaux
Muñoz, Francisco; Departamento de Física & CEDENNA, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
Vasquez, Nicolas; Departamento de Física & CEDENNA, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
Herath, Uthpala; Department of Mechanical Engineering and Materials Science, Duke University, Durham, United States
Romero, Aldo ; Université de Liège - ULiège > Département de physique > Physique des matériaux et nanostructures ; Department of Physics and Astronomy, West Virginia University, Morgantown, United States
Language :
English
Title :
Expanding PyProcar for new features, maintainability, and reliability
Publication date :
April 2024
Journal title :
Computer Physics Communications
ISSN :
0010-4655
eISSN :
1879-2944
Publisher :
Elsevier
Volume :
297
Pages :
109063
Peer reviewed :
Peer Reviewed verified by ORBi
Tags :
CÉCI : Consortium des Équipements de Calcul Intensif Tier-1 supercomputer
FWB - Fédération Wallonie-Bruxelles FWO - Fonds Wetenschappelijk Onderzoek Vlaanderen Waalse Gewest F.R.S.-FNRS - Fonds de la Recherche Scientifique NSF - National Science Foundation CONICYT - Comisión Nacional de Investigación Científica y Tecnológica DOE - United States. Department of Energy FONDECYT - Chile Fondo Nacional de Desarrollo Científico y Tecnológico
Funding text :
This was supported by the U.S. Department of Energy (DOE), Office of Science, Basic Energy Sciences (BES), under Award DE-SC0021375 . This work used Bridges2 and Expanse at the Pittsburgh Supercomputer and the San Diego Supercomputer Center through allocation DMR140031 from the Advanced Cyberinfrastructure Coordination Ecosystem: Services & Support (ACCESS) program, which National Science Foundation supports grants 2138259 , 2138286 , 2138307 , 2137603 , and 2138296 . Some of the computational resources were provided by the WVU Research Computing Dolly Sods HPC cluster, which is funded in part by NSF OAC-2117575 . E.B. and X.H. acknowledge the FNRS and the Excellence of Science program (EOS “ShapeME”, No. 40007525 ) funded by the FWO and F.R.S.-FNRS (theory and algorithm development) and the CECI supercomputer facilities funded by the F.R.S-FNRS (Grant No. 2.5020.1 ) and the Tier-1 supercomputer of the Fédération Wallonie-Bruxelles funded by the Walloon Region (Grant No. 1117545 ). This work was also partially supported by Fondecyt Grants No. 1231487 and 1220715 , by the Center for the Development of Nanoscience and Nanotechnology CEDENNA AFB220001 , from Conicyt PIA/Anillo ACT192023 and by the supercomputing infrastructure of the NLHPC ( ECM-02 ).
Gonze, X., Jollet, F., Araujo, F.A., Adams, D., Amadon, B., Applencourt, T., Audouze, C., Beuken, J.-M., Bieder, J., Bokhanchuk, A., et al. Recent developments in the abinit software package. Comput. Phys. Commun. 205 (2016), 106–131.
Gonze, X., Amadon, B., Antonius, G., Arnardi, F., Baguet, L., Beuken, J.-M., Bieder, J., Bottin, F., Bouchet, J., Bousquet, E., et al. The abinit project: impact, environment and recent developments. Comput. Phys. Commun., 248, 2020, 107042.
Romero, A.H., Allan, D.C., Amadon, B., Antonius, G., Applencourt, T., Baguet, L., Bieder, J., Bottin, F., Bouchet, J., Bousquet, E., Bruneval, F., Brunin, G., Caliste, D., Côté, M., Denier, J., Dreyer, C., Ghosez, P., Giantomassi, M., Gillet, Y., Gingras, O., Hamann, D.R., Hautier, G., Jollet, F., Jomard, G., Martin, A., Miranda, H.P.C., Naccarato, F., Petretto, G., Pike, N.A., Planes, V., Prokhorenko, S., Rangel, T., Ricci, F., Rignanese, G.-M., Royo, M., Stengel, M., Torrent, M., van Setten, M.J., Van Troeye, B., Verstraete, M.J., Wiktor, J., Zwanziger, J.W., Gonze, X., Abinit: overview and focus on selected capabilities. J. Chem. Phys., 152(12), 2020, 124102, 10.1063/1.5144261.
Kresse, G., Hafner, J., Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47 (1993), 558–561.
Kresse, G., Hafner, J., Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. Phys. Rev. B 49 (1994), 14251–14269.
Kresse, G., Furthmüller, J., Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6:1 (1996), 15–50.
Kresse, G., Furthmüller, J., Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54 (1996), 11169–11186.
García, A., Papior, N., Akhtar, A., Artacho, E., Blum, V., Bosoni, E., Brandimarte, P., Brandbyge, M., Cerdá, J.I., Corsetti, F., et al. Siesta: recent developments and applications. J. Chem. Phys., 152(20), 2020.
Giannozzi, P., Andreussi, O., Brumme, T., Bunau, O., Nardelli, M.B., Calandra, M., Car, R., Cavazzoni, C., Ceresoli, D., Cococcioni, M., Colonna, N., Carnimeo, I., Corso, A.D., de Gironcoli, S., Delugas, P., Jr, R.A.D., Ferretti, A., Floris, A., Fratesi, G., Fugallo, G., Gebauer, R., Gerstmann, U., Giustino, F., Gorni, T., Jia, J., Kawamura, M., Ko, H.-Y., Kokalj, A., Küçükbenli, E., Lazzeri, M., Marsili, M., Marzari, N., Mauri, F., Nguyen, N.L., Nguyen, H.-V., de-la Roza, A.O., Paulatto, L., Poncé, S., Rocca, D., Sabatini, R., Santra, B., Schlipf, M., Seitsonen, A.P., Smogunov, A., Timrov, I., Thonhauser, T., Umari, P., Vast, N., Wu, X., Baroni, S., Advanced capabilities for materials modelling with quantum espresso. J. Phys. Condens. Matter, 29(46), 2017, 465901 http://stacks.iop.org/0953-8984/29/i=46/a=465901.
Giannozzi, P., Baroni, S., Bonini, N., Calandra, M., Car, R., Cavazzoni, C., Ceresoli, D., Chiarotti, G.L., Cococcioni, M., Dabo, I., Dal Corso, A., de Gironcoli, S., Fabris, S., Fratesi, G., Gebauer, R., Gerstmann, U., Gougoussis, C., Kokalj, A., Lazzeri, M., Martin-Samos, L., Marzari, N., Mauri, F., Mazzarello, R., Paolini, S., Pasquarello, A., Paulatto, L., Sbraccia, C., Scandolo, S., Sclauzero, G., Seitsonen, A.P., Smogunov, A., Umari, P., Wentzcovitch, R.M., Quantum espresso: a modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter, 21(39), 2009, 395502 http://www.quantum-espresso.org.
Ong, S.P., Richards, W.D., Jain, A., Hautier, G., Kocher, M., Cholia, S., Gunter, D., Chevrier, V.L., Persson, K.A., Ceder, G., Python materials genomics (pymatgen): a robust, open-source python library for materials analysis. Comput. Mater. Sci. 68 (2013), 314–319, 10.1016/j.commatsci.2012.10.028 https://www.sciencedirect.com/science/article/pii/S0927025612006295.
Pizzi, G., Cepellotti, A., Sabatini, R., Marzari, N., Kozinsky, B., Aiida: automated interactive infrastructure and database for computational science. Comput. Mater. Sci. 111 (2016), 218–230.
Curtarolo, S., Setyawan, W., Hart, G.L., Jahnatek, M., Chepulskii, R.V., Taylor, R.H., Wang, S., Xue, J., Yang, K., Levy, O., et al. Aflow: an automatic framework for high-throughput materials discovery. Comput. Mater. Sci. 58 (2012), 218–226.
Wang, V., Xu, N., Liu, J.-C., Tang, G., Geng, W.-T., Vaspkit: a user-friendly interface facilitating high-throughput computing and analysis using vasp code. Comput. Phys. Commun., 267, 2021, 108033.
Ganose, A.M., Searle, A., Jain, A., Griffin, S.M., Ifermi: a python library for Fermi surface generation and analysis. J. Open Sour. Softw., 6(59), 2021, 3089.
Rutter, M.J., C2x: a tool for visualisation and input preparation for castep and other electronic structure codes. Comput. Phys. Commun. 225 (2018), 174–179.
Boguslawski, K., Leszczyk, A., Nowak, A., Brzęk, F., Żuchowski, P.S., Kędziera, D., Tecmer, P., Pythonic black-box electronic structure tool (pybest). An open-source python platform for electronic structure calculations at the interface between chemistry and physics. Comput. Phys. Commun., 264, 2021, 107933.
Choudhary, K., Garrity, K.F., Reid, A.C., DeCost, B., Biacchi, A.J., Hight Walker, A.R., Trautt, Z., Hattrick-Simpers, J., Kusne, A.G., Centrone, A., et al. The joint automated repository for various integrated simulations (jarvis) for data-driven materials design. npj Comput. Mater., 6(1), 2020, 173.
Choudhary, K., DeCost, B., Atomistic line graph neural network for improved materials property predictions. npj Comput. Mater., 7(1), 2021, 185.
Elk, http://elk.sourceforge.net/, 2023. (Accessed 26 November 2023)
Hourahine, B., Aradi, B., Blum, V., Bonafé, F., Buccheri, A., Camacho, C., Cevallos, C., Deshaye, M., Dumitrică, T., Dominguez, A., et al. Dftb+, a software package for efficient approximate density functional theory based atomistic simulations. J. Chem. Phys., 152(12), 2020.
Dugdale, S.B., Life on the edge: a beginner's guide to the Fermi surface. Phys. Scr., 91(5), 2016, 053009, 10.1088/0031-8949/91/5/053009 https://dx.doi.org/10.1088/0031-8949/91/5/053009.
Kokalj, A., Xcrysden—a new program for displaying crystalline structures and electron densities. J. Mol. Graph. Model. 17:3 (1999), 176–179, 10.1016/S1093-3263(99)00028-5 https://www.sciencedirect.com/science/article/pii/S1093326399000285.
Herath, U., Tavadze, P., He, X., Bousquet, E., Singh, S., Muñoz, F., Romero, A.H., Pyprocar: a python library for electronic structure pre/post-processing. Comput. Phys. Commun., 251, 2020, 107080, 10.1016/j.cpc.2019.107080 http://www.sciencedirect.com/science/article/pii/S0010465519303935.
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E., Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12 (2011), 2825–2830.
Miu, E.V., McKone, J.R., Mpourmpakis, G., Global and local connectivities describe hydrogen intercalation in metal oxides. Phys. Rev. Lett., 131, 2023, 108001, 10.1103/PhysRevLett.131.108001 https://link.aps.org/doi/10.1103/PhysRevLett.131.108001.
Sullivan, C.B., Kaszynski, A.A., Pyvista: 3d plotting and mesh analysis through a streamlined interface for the visualization toolkit (vtk). J. Open Sour. Softw., 4(37), 2019, 1450, 10.21105/joss.01450.
Pinilla, F., Vásquez, N., Chacón, I., Maze, J.R., Cárdenas, C., Munoz, F., Spin-active single photon emitters in hexagonal boron nitride from carbon-based defects. Phys. Scr., 98(9), 2023, 095505, 10.1088/1402-4896/aceb1d https://dx.doi.org/10.1088/1402-4896/aceb1d.
Jara, C., Rauch, T., Botti, S., Marques, M.A.L., Norambuena, A., Coto, R., Castellanos-Águila, J.E., Maze, J.R., Munoz, F., First-principles identification of single photon emitters based on carbon clusters in hexagonal boron nitride. J. Phys. Chem. A 125:6 (2021), 1325–1335, 10.1021/acs.jpca.0c07339.
Auburger, P., Gali, A., Towards ab initio identification of paramagnetic substitutional carbon defects in hexagonal boron nitride acting as quantum bits. Phys. Rev. B, 104, 2021, 075410, 10.1103/PhysRevB.104.075410 https://link.aps.org/doi/10.1103/PhysRevB.104.075410.
Evers, F., Mirlin, A.D., Fluctuations of the inverse participation ratio at the Anderson transition. Phys. Rev. Lett. 84 (2000), 3690–3693, 10.1103/PhysRevLett.84.3690 https://link.aps.org/doi/10.1103/PhysRevLett.84.3690.
Murphy, N.C., Wortis, R., Atkinson, W.A., Generalized inverse participation ratio as a possible measure of localization for interacting systems. Phys. Rev. B, 83, 2011, 184206, 10.1103/PhysRevB.83.184206 https://link.aps.org/doi/10.1103/PhysRevB.83.184206.
Pashartis, C., Rubel, O., Localization of electronic states in iii-v semiconductor alloys: a comparative study. Phys. Rev. Appl., 7, 2017, 064011, 10.1103/PhysRevApplied.7.064011 https://link.aps.org/doi/10.1103/PhysRevApplied.7.064011.
Munoz, F., Pinilla, F., Mella, J., Molina, M.I., Topological properties of a bipartite lattice of domain wall states. Sci. Rep., 8(1), 2018, 17330, 10.1038/s41598-018-35651-6.
Linderälv, C., Wieczorek, W., Erhart, P., Vibrational signatures for the identification of single-photon emitters in hexagonal boron nitride. Phys. Rev. B, 103, 2021, 115421, 10.1103/PhysRevB.103.115421 https://link.aps.org/doi/10.1103/PhysRevB.103.115421.
Malki, M., Uhrig, G.S., Delocalization of edge states in topological phases. Europhys. Lett., 127(2), 2019, 27001, 10.1209/0295-5075/127/27001.
Zhang, H., Liu, C.-X., Qi, X.-L., Dai, X., Fang, Z., Zhang, S.-C., Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface. Nat. Phys. 5:6 (2009), 438–442.
Doherty, M.W., Manson, N.B., Delaney, P., Jelezko, F., Wrachtrup, J., Hollenberg, L.C., The nitrogen-vacancy colour centre in diamond.The Nitrogen-Vacancy Colour Centre in Diamond. Phys. Rep., 528(1), 2013, 1–45, 10.1016/j.physrep.2013.02.001 https://www.sciencedirect.com/science/article/pii/S0370157313000562.
Jin, Y., Govoni, M., Wolfowicz, G., Sullivan, S.E., Heremans, F.J., Awschalom, D.D., Galli, G., Photoluminescence spectra of point defects in semiconductors: validation of first-principles calculations. Phys. Rev. Mater., 5, 2021, 084603, 10.1103/PhysRevMaterials.5.084603 https://link.aps.org/doi/10.1103/PhysRevMaterials.5.084603.
Munoz, F., Vergniory, M., Rauch, T., Henk, J., Chulkov, E.V., Mertig, I., Botti, S., Marques, M.A., Romero, A., Topological crystalline insulator in a new bi semiconducting phase. Sci. Rep., 6(1), 2016, 21790, 10.1038/srep21790.
Aguilera, I., Kim, H.-J., Friedrich, C., Bihlmayer, G., Blügel, S., z_2 topology of bismuth. Phys. Rev. Mater., 5, 2021, L091201, 10.1103/PhysRevMaterials.5.L091201 https://link.aps.org/doi/10.1103/PhysRevMaterials.5.L091201.
Shoenberg, D., The Fermi surfaces of copper, silver and gold. I. The de Haas-Van alphen effect. Philos. Trans. R. Soc. Lond. Ser. A, Math. Phys. Sci. 255:1052 (1962), 85–133, 10.1098/rsta.1962.0011 https://royalsocietypublishing.org/doi/pdf/10.1098/rsta.1962.0011 https://royalsocietypublishing.org/doi/abs/10.1098/rsta.1962.0011.
Parzen, E., On estimation of a probability density function and mode. Ann. Math. Stat. 33:3 (1962), 1065–1076, 10.1214/aoms/1177728190.
Nelson, R., Ertural, C., George, J., Deringer, V.L., Hautier, G., Dronskowski, R., Lobster: local orbital projections, atomic charges, and chemical-bonding analysis from projector-augmented-wave-based density-functional theory. J. Comput. Chem. 41:21 (2020), 1931–1940.