[en] Two-dimensional (2D) materials, such as monolayer CrI3, are the focus of much attention because of their unique properties and potential applications in various technological fields. Despite their discovery years ago, there remains significant confusion regarding space group assignments, with disparities reported across well- known 2D material databases and publications. Therefore, accurate determination of space groups is crucial for understanding the intrinsic properties of these materials and optimizing their performance. We use first-principles calculations to systematically investigate the space group of monolayer CrI3 and other 2D materials reported with disparities. From total energy, geometry optimization, and subsequent lattice dynamics computations, we identify common sources of confusion and propose a methodology to resolve these ambiguities. Our results highlight the necessity of integrating computational analyses with symmetry analysis to achieve a correct space group determination of 2D materials. This approach can be beneficial for, e.g., machine learning algorithms that rely on accurate determination of crystal symmetry to identify material properties.
Research Center/Unit :
Q-MAT - Quantum Materials - ULiège
Disciplines :
Physics
Author, co-author :
Routaray, Rashmi Ranjan ; Université de Liège - ULiège > Quantum Materials (Q-MAT) ; Université Catholique de Louvain
Bousquet, Eric ; Université de Liège - ULiège > Département de physique
Giantomassi, Matteo ; Université de Liège - ULiège > Département de physique > Physique théorique des matériaux ; Université Catholique de Louvain
Gonze, Xavier ; Université de Liège - ULiège > Département de physique > Physique théorique des matériaux ; Université Catholique de Louvain
Language :
English
Title :
Correct space group determination of 2D materials
Publication date :
27 August 2025
Journal title :
Physical Review Materials
eISSN :
2475-9953
Publisher :
American Physical Society (APS)
Volume :
9
Issue :
8
Pages :
084003
Peer reviewed :
Peer Reviewed verified by ORBi
Tags :
CÉCI : Consortium des Équipements de Calcul Intensif Tier-1 supercomputer
This work is an outcome of the Shapeable 2D magneto- electronics by design project (SHAPEme, EOS Project No. 560400077525) that has received funding from the FWO and FRS-FNRS under the Belgian Excellence of Science (EOS) program. Computational resources have been provided by the supercomputer facility of the Consortium des Équipements de Calcul Intensif (CECI) funded by the FRS-FNRS under Grant No. 2.5020.11.
K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Science 306, 666 (2004) 0036-8075 10.1126/science.1102896.
M. Sang, J. Shin, K. Kim, and K. J. Yu, Nanomaterials 9, 374 (2019) 2079-4991 10.3390/nano9030374.
J. D. Renteria, D. L. Nika, and A. A. Balandin, Appl. Sci. 4, 525 (2014) 2076-3417 10.3390/app4040525.
R. Mas-Balleste, C. Gomez-Navarro, J. Gomez-Herrero, and F. Zamora, Nanoscale 3, 20 (2011) 2040-3364 10.1039/C0NR00323A.
M. M. Uddin, M. H. Kabir, M. A. Ali, M. M. Hossain, M. U. Khandaker, S. Mandal, A. Arifutzzaman, and D. Jana, RSC Adv. 13, 33336 (2023) 2046-2069 10.1039/D3RA04456D.
N. D. Mermin and H. Wagner, Phys. Rev. Lett. 17, 1133 (1966) 0031-9007 10.1103/PhysRevLett.17.1133.
B. Huang, G. Clark, E. Navarro-Moratalla, D. R. Klein, R. Cheng, K. L. Seyler, D. Zhong, E. Schmidgall, M. A. McGuire, D. H. Cobden , Nature (London) 546, 270 (2017) 0028-0836 10.1038/nature22391.
Y. Zhao, L. Lin, Q. Zhou, Y. Li, S. Yuan, Q. Chen, S. Dong, and J. Wang, Nano Lett. 18, 2943 (2018) 1748-3387 10.1021/acs.nanolett.8b00314.
C. Gong and X. Zhang, Science 363, eaav4450 (2019) 0036-8075 10.1126/science.aav4450.
Y. Zhumagulov, S. Chiavazzo, I. A. Shelykh, and O. Kyriienko, Phys. Rev. B 108, L161402 (2023) 2469-9950 10.1103/PhysRevB.108.L161402.
D. Campi, N. Mounet, M. Gibertini, G. Pizzi, and N. Marzari, “The Materials Cloud 2D database (MC2D)”, Materials Cloud Archive (2022), https://doi.org/10.24435/materialscloud:36-nd.
S. Haastrup, M. Strange, M. Pandey, T. Deilmann, P. S. Schmidt, N. F. Hinsche, M. N. Gjerding, D. Torelli, P. M. Larsen, A. C. Riis-Jensen , 2D Mater. 5, 042002 (2018) 2053-1583 10.1088/2053-1583/aacfc1.
L. Webster, L. Liang, and J.-A. Yan, Phys. Chem. Chem. Phys. 20, 23546 (2018) 1463-9076 10.1039/C8CP03599G.
C. Bacaksiz, D. Šabani, R. M. Menezes, and M. V. Milošević, Phys. Rev. B 103, 125418 (2021) 2469-9950 10.1103/PhysRevB.103.125418.
M. Och, M.-B. Martin, B. Dlubak, P. Seneor, and C. Mattevi, Nanoscale 13, 2157 (2021) 2040-3364 10.1039/D0NR07867K.
J.-Y. You, Z. Zhang, X.-J. Dong, B. Gu, and G. Su, Phys. Rev. Res. 2, 013002 (2020) 2643-1564 10.1103/PhysRevResearch.2.013002.
F. Han, X. Yan, A. Bergara, W. Li, H. Yu, and G. Yang, Phys. Chem. Chem. Phys. 25, 29672 (2023) 1463-9076 10.1039/D3CP04584F.
X. Wang, X.-P. Li, J. Li, C. Xie, J. Wang, H. Yuan, W. Wang, Z. Cheng, Z.-M. Yu, and G. Zhang, Adv. Funct. Mater. 33, 2304499 (2023) 1616-301X 10.1002/adfm.202304499.
S. N. Neal, H.-S. Kim, K. A. Smith, A. V. Haglund, D. G. Mandrus, H. A. Bechtel, G. L. Carr, K. Haule, D. Vanderbilt, and J. L. Musfeldt, Phys. Rev. B 100, 075428 (2019) 2469-9950 10.1103/PhysRevB.100.075428.
J. Yang, Y. Zhou, Q. Guo, Y. Dedkov, and E. Voloshina, RSC Adv. 10, 851 (2020) 2046-2069 10.1039/C9RA09030D.
M. Mi, X. Zheng, S. Wang, Y. Zhou, L. Yu, H. Xiao, H. Song, B. Shen, F. Li, L. Bai , Adv. Funct. Mater. 32, 2112750 (2022) 1616-301X 10.1002/adfm.202112750.
P. Li, X. Li, J. Feng, J. Ni, Z.-X. Guo, and H. Xiang, Phys. Rev. B 109, 214418 (2024) 2469-9950 10.1103/PhysRevB.109.214418.
A. Musari and P. Kratzer, Mater. Res. Express 9, 106302 (2022) 2053-1591 10.1088/2053-1591/ac96d3.
T. Y. Kim and C.-H. Park, Nano Lett. 21, 10114 (2021) 1530-6984 10.1021/acs.nanolett.1c03992.
M. Wu, Z. Li, and S. G. Louie, Phys. Rev. Mater. 6, 014008 (2022) 2475-9953 10.1103/PhysRevMaterials.6.014008.
K. Kim, S. Y. Lim, J.-U. Lee, S. Lee, T. Y. Kim, K. Park, G. S. Jeon, C.-H. Park, J.-G. Park, and H. Cheong, Nat. Commun. 10, 345 (2019) 2041-1723 10.1038/s41467-018-08284-6.
M. A. McGuire, G. Clark, S. Kc, W. M. Chance, G. E. Jellison, Jr., V. R. Cooper, X. Xu, and B. C. Sales, Phys. Rev. Mater. 1, 014001 (2017) 2475-9953 10.1103/PhysRevMaterials.1.014001.
K. Chen, J. Deng, Y. Yan, Q. Shi, T. Chang, X. Ding, J. Sun, S. Yang, and J. Z. Liu, npj Comput. Mater. 7, 79 (2021) 2057-3960 10.1038/s41524-021-00547-z.
Q. Wei, D. Chen, C. Yongqing, S. Lei, X. Jing, Y. Jiaren, C. Yuanping, and Y. Xiaohong, J. Supercond. Novel Magn. 35, 787 (2022) 1557-1939 10.1007/s10948-021-06112-5.
Y. Liu, S. Kwon, G. J. de Coster, R. K. Lake, and M. R. Neupane, Phys. Rev. Mater. 6, 084004 (2022) 2475-9953 10.1103/PhysRevMaterials.6.084004.
J.-J. Xian, C. Wang, J.-H. Nie, R. Li, M. Han, J. Lin, W.-H. Zhang, Z.-Y. Liu, Z.-M. Zhang, M.-P. Miao , Nat. Commun. 13, 257 (2022) 2041-1723 10.1038/s41467-021-27834-z.
E. B. Isaacs and C. A. Marianetti, Phys. Rev. B 94, 035120 (2016) 2469-9950 10.1103/PhysRevB.94.035120.
H. Sheng, H. Long, G. Zou, D. Bai, J. Zhang, and J. Wang, J. Mater. Sci. 56, 15844 (2021) 10.1007/s10853-021-06311-4.
G. Miao, S. Xue, B. Li, Z. Lin, B. Liu, X. Zhu, W. Wang, and J. Guo, Phys. Rev. B 101, 035407 (2020) 2469-9950 10.1103/PhysRevB.101.035407.
E. Kroumova, M. I. Aroyo, J. M. Perez-Mato, A. Kirov, C. Capillas, S. Ivantchev, and H. Wondratschek, Phase Transitions 76, 155 (2003) 0141-1594 10.1080/0141159031000076110.
M. Kruse, U. Petralanda, M. N. Gjerding, K. W. Jacobsen, K. S. Thygesen, and T. Olsen, npj Comput. Mater. 9, 45 (2023) 2057-3960 10.1038/s41524-023-00999-5.
Z.-F. Gao, S. Qu, B. Zeng, Y. Liu, J.-R. Wen, H. Sun, P.-J. Guo, and Z.-Y. Lu, Natl. Sci. Rev. 12, nwaf066 (2025) 2095-5138 10.1093/nsr/nwaf066.
S. Zeng and Y.-J. Zhao, Phys. Rev. B 110, 054406 (2024) 2469-9950 10.1103/PhysRevB.110.054406.
J. Sødequist and T. Olsen, Appl. Phys. Lett. 124, 182409 (2024) 0003-6951 10.1063/5.0198285.
C. Xin, B. Song, G. Jin, Y. Song, and F. Pan, Adv. Theor. Simul. 6, 2300475 (2023) 2513-0390 10.1002/adts.202300475.
G. R. Schleder, B. Focassio, and A. Fazzio, Appl. Phys. Rev. 8, 031409 (2021) 1931-9401 10.1063/5.0055035.
K. Wagoner-Oshima, R. Bhattarai, H. Terrones, and T. D. Rhone, ACS Appl. Mater. Interfaces 17, 11002 (2025) 10.1021/acsami.4c20385.
T. H. B. da Silva, T. Cavignac, T. F. T. Cerqueira, H.-C. Wang, and M. A. L. Marques, Mater. Horiz. 12, 3408 (2025) 10.1039/D4MH01753F.
D. Pant, H. B. Tripathi, and D. D. Pant, J. Lumin. 51, 223 (1992) 0022-2313 10.1016/0022-2313(92)90057-G.
J. Gates, A. Atrens, and I. Smith, Mater. Werkstofftech. 18, 179 (1987) 10.1002/mawe.19870180607.
C. Cazorla and T. Gould, Sci. Adv. 5, eaau5832 (2019) 2375-2548 10.1126/sciadv.aau5832.
D. Hicks, C. Oses, E. Gossett, G. Gomez, R. H. Taylor, C. Toher, M. J. Mehl, O. Levy, and S. Curtarolo, Acta Crystallogr., Sect. A: Found. Adv. 74, 184 (2018) 2053-2733 10.1107/S2053273318003066.
H. T. Stokes and D. M. Hatch, J. Appl. Crystallogr. 38, 237 (2005) 0021-8898 10.1107/S0021889804031528.
A. L. Spek, Acta Crystallogr., Sect. D: Biol. Crystallogr. 65, 148 (2009) 0907-4449 10.1107/S090744490804362X.
A. Togo, K. Shinohara, and I. Tanaka, Sci. Technol. Adv. Mater., Meth. 4, 2384822 (2024) 10.1080/27660400.2024.2384822.
K. Shinohara, A. Togo, and I. Tanaka, Acta Crystallogr. Sect. A: Found. Adv. 79, 390 (2023) 10.1107/S2053273323005016.
X. Gonze, B. Amadon, G. Antonius, F. Arnardi, L. Baguet, J.-M. Beuken, J. Bieder, F. Bottin, J. Bouchet, E. Bousquet et al., Comput. Phys. Commun. 248, 107042 (2020) 0010-4655 10.1016/j.cpc.2019.107042.
X. Gonze, J.-M. Beuken, R. Caracas, F. Detraux, M. Fuchs, G.-M. Rignanese, L. Sindic, M. Verstraete, G. Zerah, F. Jollet , Comput. Mater. Sci. 25, 478 (2002) 0927-0256 10.1016/S0927-0256(02)00325-7.
A. H. Romero, D. C. Allan, B. Amadon, G. Antonius, T. Applencourt, L. Baguet, J. Bieder, F. Bottin, J. Bouchet, E. Bousquet et al., J. Chem. Phys. 152, 124102 (2020) 0021-9606 10.1063/1.5144261.
D. R. Hamann, Phys. Rev. B 95, 239906(E) (2017) 2469-9950 10.1103/PhysRevB.95.239906.
M. J. V. Setten, M. Giantomassi, E. Bousquet, M. J. Verstraete, D. R. Hamann, X. Gonze, and G.-M. Rignanese, Comput. Phys. Commun. 226, 39 (2018) 0010-4655 10.1016/j.cpc.2018.01.012.
J. P. Perdew and Y. Wang, Phys. Rev. B 33, 8800 (1986) 0163-1829 10.1103/PhysRevB.33.8800.
J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996) 0031-9007 10.1103/PhysRevLett.77.3865.
X. Gonze, Phys. Rev. A 52, 1096 (1995) 1050-2947 10.1103/PhysRevA.52.1096.
X. Gonze and C. Lee, Phys. Rev. B 55, 10355 (1997) 0163-1829 10.1103/PhysRevB.55.10355.
X. Gonze, Phys. Rev. B 55, 10337 (1997) 0163-1829 10.1103/PhysRevB.55.10337.
S. Baroni, S. D. Gironcoli, A. D. Corso, and P. Giannozzi, Rev. Mod. Phys. 73, 515 (2001) 0034-6861 10.1103/RevModPhys.73.515.
A. Belsky, M. Hellenbrandt, V. L. Karen, and P. Luksch, Acta Crystallogr. Sect. B: Struct. Sci. 58, 364 (2002) 0108-7681 10.1107/S0108768102006948.
S. Gražulis, D. Chateigner, R. T. Downs, A. F. Yokochi, M. Quirós, L. Lutterotti, E. Manakova, J. Butkus, P. Moeck, and A. Le Bail, J. Appl. Crystallogr. 42, 726 (2009) 10.1107/S0021889809016690.
E. Blokhin and P. Villars, The pauling file project and materials platform for data science: From big data toward materials genome, in Handbook of Materials Modeling: Methods: Theory and Modeling (Springer, Cham, Switzerland, 2020), pp. 1837–1861.
J. E. Saal, S. Kirklin, M. Aykol, B. Meredig, and C. Wolverton, JOM 65, 1501 (2013) 1047-4838 10.1007/s11837-013-0755-4.
P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, I. Dabo et al., J. Phys.: Condens. Matter 21, 395502 (2009) 0953-8984 10.1088/0953-8984/21/39/395502.
G. Graziano, J. Klimes, F. Fernandez-Alonso, and A. Michaelides, J. Phys.: Condens. Matter 24, 424216 (2012) 0953-8984 10.1088/0953-8984/24/42/424216.
G. Prandini, A. Marrazzo, I. E. Castelli, N. Mounet, and N. Marzari, npj Comput. Mater. 4, 72 (2018) 2057-3960 10.1038/s41524-018-0127-2.
J. J. Mortensen, A. H. Larsen, M. Kuisma, A. V. Ivanov, A. Taghizadeh, A. Peterson, A. Haldar, A. O. Dohn, C. Schäfer, E. Ö. Jónsson et al., J. Chem. Phys. 160, 092503 (2024) 0021-9606 10.1063/5.0182685.
E. Kucukbenli, M. Monni, B. I. Adetunji, X. Ge, G. A. Adebayo, N. Marzari, S. de Gironcoli, and A. Dal Corso, arXiv:1404.3015.
A. Jain, S. P. Ong, G. Hautier, W. Chen, W. D. Richards, S. Dacek, S. Cholia, D. Gunter, D. Skinner, G. Ceder, and K. A. Persson, APL Mater. 1, 011002 (2013) 2166-532X 10.1063/1.4812323.
See Supplemental Material at http://link.aps.org/supplemental/10.1103/dj5c-d24m for the data used to produce the Figs. 1, 3–6 and Table II.
The eggbox effect in a planewave basis set is solely due to the computation of the exchange-correlation energy (and potential) on a discrete grid. It is quite small, usually less than 1mHa per atom. See Appendix C.1 of the Ph.D. thesis of ph. Ghosez, http://www.phythema.ulg.ac.be/webroot/misc/books/PhD-Ph.Ghosez.pdf. When also the kinetic energy is computed on a discrete grid, like in Ref. [75] online, the eggbox effect is larger.
D. Roller, A. M. Rappe, L. Kronik, and O. Hellman, J. Chem. Theory Comput. 19, 3889 (2023) 10.1021/acs.jctc.3c00217.
H. Jónsson, G. Mills, and K. W. Jacobsen, Nudged elastic band method for finding minimum energy paths of transitions, in Classical and Quantum Dynamics in Condensed Phase Simulations (World Scientific, 1998), pp. 385–404.
G. Henkelman and H. Jónsson, J. Chem. Phys. 113, 9978 (2000) 0021-9606 10.1063/1.1323224.
G. Henkelman, B. P. Uberuaga, and H. Jónsson, J. Chem. Phys. 113, 9901 (2000) 0021-9606 10.1063/1.1329672.
V. Ásgeirsson, B. O. Birgisson, R. Bjornsson, U. Becker, F. Neese, C. Riplinger, and H. Jónsson, J. Chem. Theory Comput. 17, 4929 (2021) 1549-9618 10.1021/acs.jctc.1c00462.
S. Amisi, E. Bousquet, K. Katcho, and P. Ghosez, Phys. Rev. B 85, 064112 (2012) 1098-0121 10.1103/PhysRevB.85.064112.
H. Djani, E. Bousquet, A. Kellou, and P. Ghosez, Phys. Rev. B 86, 054107 (2012) 1098-0121 10.1103/PhysRevB.86.054107.
M. Veithen and P. Ghosez, Phys. Rev. B 65, 214302 (2002) 0163-1829 10.1103/PhysRevB.65.214302.
P. Ghosez, X. Gonze, and J.-P. Michenaud, Ferroelectrics 206, 205 (1998) 0015-0193 10.1080/00150199808009159.