[en] Bitter Lupinus albus genotypes, traditionally excluded from food use due to high alkaloid levels, are reassessed as underutilized sources of bioactive phytochemicals. This study conducted a comparative agro-morphological and biochemical analysis of bitter and sweet genotypes. Targeted GC–MS profiling revealed that bitter types exhibited accelerated phenological development and significantly higher levels of stearic, behenic, and α-linolenic acids. They also demonstrated enhanced antioxidant capacity (DPPH IC₅₀: 23.4 ± 2.1 vs. 41.2 ± 3.7 μg/mL) and stronger lipoxygenase-inhibitory activity. Lupanine was the dominant alkaloid in bitter seeds, while erucic acid remained within acceptable dietary limits. Sweet genotypes maintained low alkaloid content and favourable fatty acid ratios. Antifungal assays indicated stronger inhibition of Colletotrichum acutatum by bitter types. Principal component analysis highlighted clear genotype-dependent clustering based on phenological, biochemical, and functional traits. These results support the valorisation of bitter L. albus for functional food applications and breeding strategies aimed at enhancing nutritional properties.
Disciplines :
Agriculture & agronomy Chemistry
Author, co-author :
Akremi, Imen; Laboratory of Microorganisms and Active Biomolecules (LR03ES03), Department of Biology, Faculty of Sciences of Tunis, University Campus, El -Manar University, Tunisia
Kabtni, Souhir; Laboratory of Microorganisms and Active Biomolecules (LR03ES03), Department of Biology, Faculty of Sciences of Tunis, University Campus, El -Manar University, Tunisia
Amma, Ben
Riolo, Mario; Department of Agriculture, Food and Environment Di3A, University of Catania, Italy
Genva, Manon ; Université de Liège - ULiège > Département GxABT > Chemistry for Sustainable Food and Environmental Systems (CSFES)
Rouz, Slim; Institution of Agricultural Research and Higher Education -Department of Agronomy, Tunisia
Elbok, Safia; Laboratory of Biodiversity, Biotechnologies and Climate Change (LR11ES09), Department of Biology, Faculty of Sciences of Tunis, University Campus, El-Manar University, Tunisia
Cacciola, Santa; Department of Agriculture, Food and Environment Di3A, University of Catania, Italy
Fauconnier, Marie-Laure ; Université de Liège - ULiège > Département GxABT > Chemistry for Sustainable Food and Environmental Systems (CSFES)
Marghali, Sonia; Laboratory of Microorganisms and Active Biomolecules (LR03ES03), Department of Biology, Faculty of Sciences of Tunis, University Campus, El -Manar University, Tunisia
Language :
English
Title :
Targeted phytochemical profiling and functional evaluation of bitter and sweet Lupinus albus genotypes from diverse origins
Abd-Elsamei, A. H., Mahgoub, E. S. I., Wafa, H. A., Al Aboud, N. M., Al-Khayri, J. M., Abd El-Moneim, D., ... & Hassanin, A. A.(2025). Genetic diversity, agronomic performance, and bioactive properties of sweet and bitter white lupin (Lupinus albus L.) genotypes. Chilean Journal Of Agricultural Research, 85(5),661-676. DOI:10.4067/S0718-58392025000500661
Abraham, E. M., Ganopoulos, I., Madesis, P., Ralli, P., Tani, E., & Mavromatis, A. (2019). The use of high-throughput technologies to explore the diversity of lupin seeds: Towards marker-assisted selection. Plant Genetic Resources, 17(3), 252–264. doi:10.1017/S1479262119000150
Agati, G., Azzarello, E., Pollastri, S., & Tattini, M. (2012). Flavonoids as antioxidants in plants: Location and functional significance. Plant Science, 196, 67–76.
Ahmed, H. A., Rabeh, M. A., & El-Sayed, H. S. (2016). Effect of Alternaria alternata on the fatty acid profile of Lupinus albus. Journal of Phytopathology, 164(6), 543–549.
Aniszewski, T. (2007). Alkaloids – Secrets of life: Alkaloid chemistry, biological significance, applications and ecological role. Elsevier.
Annicchiarico, P., Thami-Alami, I., Abdelguerfi, A., Bouzerzour, H., Maatougui, M., Marget, P.,& Pecetti, L. (2010). Adaptation of white lupin (Lupinus albus L.) to Mediterranean environments. Field Crops Research, 115(3), 273–282
Ashrei, M., Abbo, S., Rubatzky, B. E., & Sherman, A. (2018). Comparative agro-morphological characterization of bitter and sweet Lupinus albus genotypes: Implications for breeding. Genetic Resources and Crop Evolution, 65, 905–916. doi:10.1007/s10722-017-0576-8
Ayilara, M. S., Abberton, M., Oyatomi, O. A., Odeyemi, O., & Babalola, O. O. (2022). Potentials of underutilized legumes in food security. Frontiers in Soil Science, 2, 1020193. doi:10.3389/fsoil.2022.1020193
Berger, J. D., & Ludwig, C. (2014). Contrasting adaptive strategies to terminal drought-stress gradients in Mediterranean legumes: phenology, productivity, and water relations in wild and domesticated Lupinus luteus L. Journal of Experimental Botany, 65(21), 6219-6229.
Berger, J. D., Ludwig, C., & Luckett, D. J. (2012). The ecology and adaptation of white lupin (Lupinus albus L.) in the Mediterranean. Euphytica, 183(1), 23–40.
Bettaieb, A., Zouaoui, R., Nadia, F., Elkahoui, S., & Moujahed, N. (2019). Chemical composition and essential oil antimicrobial activity of four grazed plants growing wild in northeastern Tunisia. Options Méditerranéennes, A: Innovations for Sustainability in Sheep and Goats, 123, 99–104. http://om.ciheam.org/om/pdf/a123/a123
Boschin, G., D'Agostina, A., Annicchiarico, P., & Arnoldi, A. (2006). The fatty acid composition of the oil from Lupinus albus cv. Luxe as affected by environmental and agricultural factors. European Food Research and Technology, 225(5–6), 769–776. doi:10.1007/s00217-006-0480-0
Boschin, G., D'Agostina, A., Annicchiarico, P., & Arnoldi, A. (2008a). The fatty acid composition of the oil from selected lupin (Lupinus) species. Journal of the American Oil Chemists' Society, 85, 315–320.
Boschin, G., Resta, D., D'Agostina, A., & Arnoldi, A. (2008b). Evaluation of alkaloids content in lupin flours. Food Chemistry, 107(1), 353–358.
Brand-Williams, W., Cuvelier, M. E., & Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. LWT - Food Science and Technology, 28(1), 25–30.
Bunsupa, S., Katayama, K., Ikeura, E., Oikawa, A., Toyooka, K., Saito, K., & Yamazaki, M. (2012). Lysine decarboxylase catalyzes the first step of quinolizidine alkaloid biosynthesis and coevolved with alkaloid production in leguminosae. The Plant Cell, 24(3), 1202–1216.
Bunsupa, S., Yamazaki, M., & Saito, K. (2012). Quinolizidine alkaloid biosynthesis: Recent advances and future prospects. Frontiers in Plant Science, 3, 239. doi:10.3389/fpls.2012.00239
Cabrita, A. R., Valente, I. M., Monteiro, A., Sousa, C., Miranda, C., Almeida, A., & Fonseca, A. J. (2024). Environmental conditions affect the nutritive value and alkaloid profiles of Lupinus forage: Opportunities and threats for sustainable ruminant systems. Heliyon, 10(7), e28790. doi:10.1016/j.heliyon.2024.e28790
Caramona, A., Martins, A. M., Seixas, J., & Marto, J. (2024). The use, reuse and valorization of lupin and its industry by-products for dermocosmetics applications. Sustainable Chemistry and Pharmacy, 38, 101477. doi:10.1016/j.scp.2024.101477
Caretto, S., Linsalata, V., Colella, G., Mita, G., & Lattanzio, V. (2015). Carbon fluxes between primary metabolism and phenolic pathway in plant tissues under stress. International Journal of Molecular Sciences, 16(11), 26378–26394. doi:10.3390/ijms161125976
Cely-Veloza, W., Kato, M. J., & Coy-Barrera, E. (2023a). Quinolizidine-type alkaloids: Chemodiversity, occurrence, and bioactivity. ACS Omega, 8(31), 27862–27893. doi:10.1021/acsomega.3c03922
Cely-Veloza, W., Quiroga, D., & Coy-Barrera, E. (2022). Quinolizidine-based variations and antifungal activity of eight Lupinus species grown under greenhouse conditions. Molecules, 27(1), 305. doi:10.3390/molecules27010305≤
Cely-Veloza, W., Yamaguchi, L., Quiroga, D., Kato, M. J., & Coy-Barrera, E. (2023b). Antifungal activity against Fusarium oxysporum of quinolizidines isolated from three controlled-growth Genisteae plants: Structure–activity relationship implications. Natural Products and Bioprospecting, 13(1), 9. doi:10.1007/s13659-023-00389-6
Cerone, M & Smith, T.K. (2021). A brief journey into the history of and future sources and uses of fatty acids. Frontiers in nutrition, 8, p.570401.
Chen, Q., Wang, X., Yuan, X., Shi, J., Zhang, C., Yan, N. and Jing, C. (2021). Comparison of phenolic and flavonoid compound profiles and antioxidant and α-glucosidase inhibition properties of cultivated soybean (Glycine max) and wild soybean (Glycine soja). Plants, 10(4), p.813.
Cheynier, V., Comte, G., Davies, K. M., Lattanzio, V., & Martens, S. (2013). Plant phenolics: recent advances on their biosynthesis, genetics, and ecophysiology. Plant physiology and biochemistry, 72, 1-20.
Clements, J. C., Dracup, M., & Sweetingham, M. (2005). Variation for flowering time and yield in a white lupin (Lupinus albus) breeding program. Australian Journal of Agricultural Research, 56(11), 1167–1176. doi:10.1071/AR04233
Costa, D., Silva, R., Pereira, J., Rocha, L., & Santos, M. (2013). The role of alkaloids in plant defenses. Phytochemistry, 92, 39–45. doi:10.1016/j.phytochem.2012.10.012
Dai, J., & Mumper, R. J. (2010). Plant phenolics: Extraction, analysis and their antioxidant and anticancer properties. Molecules, 15(10), 7313–7352. doi:10.3390/molecules15107313
Damm, U., Cannon, P. F., Woudenberg, J. H. C., & Crous, P. W. (2012). The Colletotrichum acutatum species complex. Studies in Mycology, 73, 37–113. doi:10.3114/sim0010
De Melo Nazareth, T., Luz, C., Torrijos, R., Quiles, J. M., Luciano, F. B., Manes, J., & Meca, G. (2019). Potential application of lactic acid bacteria to reduce aflatoxin B1 and fumonisin B1 occurrence on corn kernels and corn ears. Toxins (Basel), 12(1), 21. doi:10.3390/toxins12010021
Deepa, G., Ayesha, S., Nishtha, K., & Thankamani, M. (2013). Comparative evaluation of various total antioxidant capacity assays applied to phytochemical compounds of Indian culinary spices. International Food Research Journal, 20(4), 1711-1716.
Dozio, D., Ghosh, S., Dallavalle, S., Consolini, D. A., Starna, J. L. E., Pinto, L., & Kunova, A. (2025a). Feruloyl-amides as natural antimicrobials for crop and food protection. Chemical and Biological Technologies in Agriculture, 12, Article 18. doi:10.1186/s40538-025-00418-5
Dozio, D., Sacchi, F., Pinto, A., Dallavalle, S., Annunziata, F., & Princiotto, S. (2025b). Natural Antifungal Alkaloids for Crop Protection: An Overview of the Latest Synthetic Approaches. Pharmaceuticals, 18(4), 589.
Dumancas, G. G., Alfarhan, A. H., Elshafie, A. E., Al-Khattaf, S. S., Al-Tamimi, J. Z., & Alkahtani, S. A. (2017). Advances in edible oil production and processing. Advances in Food and Nutrition Research, 82, 1–47. doi:10.1016/bs.afnr.2017.02.001
Erbas, M., Certel, M., & Uslu, M. K. (2005). Some chemical properties of white lupin seeds (Lupinus albus L.). Food Chemistry, 89, 341–345.
Estivi, L., Brandolini, A., Gasparini, A., & Hidalgo, A. (2023). Lupin as a source of bioactive antioxidant compounds for food products. Molecules, 28(22), 7529. doi:10.3390/molecules28227529
European Food Safety Authority (EFSA). (2016). Erucic acid in food – Scientific opinion. EFSA Journal, 14(11), 4593.
Evelyne A. T., Fatimata N., Tierry K. K., Manon G., Matthew S., Felix Z. T., & Marie-Laure Fr. (2019). Antioxidant and Lipoxygenase Inhibitory Activities of Essential Oils from Endemic Plants of Côte d'Ivoire: Zanthoxylum mezoneurispinosum Ake Assi and Zanthoxylum psammophilum Ake Assi. Molecules, 24(13), 2445. doi:10.3390/molecules24132445
Ezeagu, I. E., Petzke, J. K., Metges, C. C., Akinsoyinu, A. O., & Ologhobo, A. D. (2002). Seed protein contents and nitrogen-to-protein conversion factors for some uncultivated tropical plant seeds. Food Chemistry, 78(1), 105–109. doi:10.1016/S0308-8146(02)00105-X
Ferchichi, N., Toukabri, W., Vrhovsek, U., Nouairi, I., Angeli, A., Masuero, D., & Trabelsi, D. (2021). Proximate composition, lipid and phenolic profiles, and antioxidant activity of different ecotypes of Lupinus albus, Lupinus luteus and Lupinus angustifolius. Journal of Food Measurement and Characterization, 15, 1241–1257. doi:10.1007/s11694-020-00722-8
Ferrigo, D., Raiola, A., & Causin, R. (2016). Fusarium toxins in cereals: Occurrence, legislation, factors promoting the appearance and their management. Molecules, 21(5), 627. doi:10.3390/molecules21050627
Fiedor, J., & Burda, K. (2014). Potential role of carotenoids as antioxidants in human health and disease. Nutrients, 6(2), 466–488.
Flores-Soto, M. E., Bañuelos-Pineda, J., Orozco-Suárez, S., Schliebs, R., & Beas-Zárate, C. (2006). Neuronal damage and changes in the expression of muscarinic acetylcholine receptor subtypes in the neonatal rat cerebral cortex upon exposure to sparteine, a quinolizidine alkaloid. International Journal of Developmental Neuroscience, 24(6), 401–410. doi:10.1016/j.ijdevneu.2006.05.004
Frick, K. M., Foley, R. C., Kamphuis, L. G., Siddique, K. H., Garg, G., & Singh, K. B. (2018). Characterization of the genetic factors affecting quinolizidine alkaloid biosynthesis and its response to abiotic stress in narrow-leafed lupin (Lupinus angustifolius L.). Plant, Cell & Environment, 41(9), 2155-2168.
Frick, S., Kaminski, F., & Kutchan, T. M. (2017). Molecular basis of quinolizidine alkaloid biosynthesis in lupins. Frontiers in Plant Science, 8, 87. doi:10.3389/fpls.2017.00087
Gamarra-Castillo, H., Mariotti-Celis, M. S., & Martinez-Gonzalez, A. (2006). Chemical composition and biological properties of Lupinus mutabilis seeds. Plant Foods for Human Nutrition, 61(1), 1–9.
Gao, L., Kantar, M. B., Moxley, D., Ortiz-Barrientos, D., & Rieseberg, L. H. (2023). Crop adaptation to climate change: An evolutionary perspective. Molecular Plant, 16(10), 1518-1546.
García-Lafuente, A., Guillamón, E., Villares, A., Rostagno, M. A., & Martínez, J. A. (2009). Flavonoids as anti-inflammatory agents: Implications in cancer and cardiovascular disease. Inflammation Research, 58(9), 537–552. doi:10.1007/s00011-009-0037-3
Glenn, W. S., Runguphan, W., & O'Connor, S. E. (2013). Recent progress in the metabolic engineering of alkaloids in plant systems. Current opinion in biotechnology, 24(2), 354-365.
Gresta, F., Oteri, M., Scordia, D., Costale, A., Armone, R., Meineri, G., & Chiofalo, B. (2023). White lupine (Lupinus albus L.), an alternative legume for animal feeding in the Mediterranean area. Agriculture, 13(2), 434. doi:10.3390/agriculture13020434
Grundy, M. M.-L., Edwards, C. H., Mackie, A. R., Gidley, M. J., Butterworth, P. J., Ellis, P. R., & Brett, G. M. (2016). Impact of food structure on nutrient bioaccessibility and digestion. Annual Review of Food Science and Technology, 7, 377–403. doi:10.1146/annurev-food-081315-032015
Gunstone, F. D. (2011). Vegetable oils in food technology: Composition, properties and uses. Hama, J. R., & Strobel, B. W. (2020). Seasonal variation in quinolizidine alkaloid concentrations in different organs of narrow-leafed lupin (Lupinus angustifolius) and yellow lupin (Lupinus luteus). Journal of Agricultural and Food Chemistry, 68(9), 2783–2792. doi:10.1021/acs.jafc.9b07258
Harborne, J. B., & Williams, C. A. (2000). Advances in flavonoid research. Phytochemistry, 55(6), 481–508.
Henderson J.W., Ricker R.D., Bidlingmeyer B.A., Woodward C. Rapid, accurate, sensitive, and reproducible analysis of amino acids: Amino acid analysis using Zorbax Eclipse-AAA columns and the Agilent 1100 HPLC. Agilent Technologies; (2000). Technical Note 5980-1193EN. Available from: .
Hilal, B., Khan, M. M., & Fariduddin, Q. (2024). Recent advancements in deciphering the therapeutic properties of plant secondary metabolites: phenolics, terpenes, and alkaloids. Plant Physiology and Biochemistry, 211, 108674.
Hseu, Y. C., Chang, W. H., Chen, C. S., Liao, J. W., Huang, C. J., Lu, F. J., Chia, Y. C., Hsu, H. K., Wu, J. J., & Yang, H. L. (2008). Antioxidant activities of Toona sinensis leaves extracts using different antioxidant models. Food and Chemical Toxicology, 46(1), 105–114.
Jansen, G., Jürgens, H. U., & Ordon, F. (2009). Effects of temperature on the alkaloid content of seeds of Lupinus angustifolius cultivars. Journal of agronomy and crop science, 195(3), 172-177. doi:10.1111/j.1439-037X.2008.00356.x
Kabtni, S., Sdouga, D., Bettaieb Rebey, I., Save, M., Trifi-Farah, N., Fauconnier, M. L., & Marghali, S. (2020b). Influence of climate variation on phenolic composition and antioxidant capacity of Medicago minima populations. Scientific Reports, 10, 8293. doi:10.1038/s41598-020-65160-4
Kabtni, S., Sdouga D., Hakim L., Trifi-Farah N., & Marghali S. (2020a). New morphotypes structuring Medicago minima (L.) Bartal. populations in various climate environments. Genetic Resources and Crop Evolution, 67(7), pp.1867-1883.
Karamać, M., Orak, H. H., Amarowicz, R., Orak, A., & Piekoszewski, W. (2018). Phenolic contents and antioxidant capacities of wild and cultivated white lupin (Lupinus albus L.) seeds. Food Chemistry, 258, 1–7. doi:10.1016/j.foodchem.2018.03.041
Kaur, K., Grewal, S.K., Gill, P.S. & Singh, S.( 2019). Comparison of cultivated and wild chickpea genotypes for nutritional quality and antioxidant potential. Journal of food science and technology, 56(4), pp.1864-1876.
Khedr, T., Gao, L. L., Kamphuis, L. G., Bose, U., Juhász, A., & Colgrave, M. L. (2024). Evaluation of alkaloid levels in commercial and wild genotypes of narrow-leafed lupin. Journal of Food Composition and Analysis, 135, 106600. doi:10.1016/j.jfca.2024.106600
Klčová, B., Balarynová, J., Trněný, O., Krejčí, P., Cechová, M. Z., Leonova, T., & Smýkal, P. (2024). Domestication has altered gene expression and secondary metabolites in pea seed coat. The Plant Journal, 118(6), 2269–2295. doi:10.1111/tpj.16657
Kordan, B., Kazimierczak, R., & Gabryś, B. (2012). Biological role of quinolizidine alkaloids: Relevance for lupin breeding and agriculture. Plant Breeding, 131(2), 221–230.
Kotha, R. R., Tareq, F. S., Yildiz, E., & Luthria, D. L. (2022). Oxidative stress and antioxidants—A critical review on in vitro antioxidant assays. Antioxidants, 11(12), 2388. doi:10.3390/antiox11122388
Krakowska, A., Rafińska, K., Walczak, J., Kowalkowski, T., & Buszewski, B. (2017). Comparison of various extraction techniques of Medicago sativa: Yield, antioxidant activity, and content of phytochemical constituents. Journal of AOAC International, 100(6), 1681–1693. doi:10.5740/jaoacint.17-0234
Kroc, M., Jakubowicz, M., Kamel, K. A., Barzyk, P., & Kaczmarek, Z. (2019). Towards lupin alkaloid engineering: Current status and perspectives. International Journal of Molecular Sciences, 20(23), 5944. doi:10.3390/ijms20235944
Kroc, M., Rybiński, W., Wilczura, P., Kamel, K., Kaczmarek, Z., Barzyk, P., & Święcicki, W. (2017). Quantitative and qualitative analysis of alkaloids composition in the seeds of a white lupin (Lupinus albus L.) collection. Genetic Resources and Crop Evolution, 64, 1853–1860. doi:10.1007/s10722-016-0473-1
Król, A., Amarowicz, R., & Weidner, S. (2018). Content of phenolic compounds and antioxidant properties in seeds of sweet and bitter cultivars of lupine (Lupinus angustifolius). Natural Product Communications, 13(10), 1934578X1801301027.
Kućko, A., Wilmowicz, E., Pokora, W., & Alché, J. D. D. (2020). Disruption of the auxin gradient in the abscission zone area evokes asymmetrical changes leading to flower separation in yellow lupine. International Journal of Molecular Sciences, 21(11), 3815. doi:10.3390/ijms21113815
Kulisic, T., Radonic, A., Katalinic, V., & Milos, M. (2004). Use of different methods for testing antioxidative activity of oregano essential oil. Food Chemistry, 85(4), 633–640. doi:10.1016/j.foodchem.2003.07.024
La Spada, F., Aloi, F., Coniglione, M., Pane, A., & Cacciola, S. O. (2021). Natural biostimulants elicit plant immune system in an integrated management strategy of the postharvest green mold of orange fruit incited by Penicillium digitatum. Frontiers in Plant Science, 12, 684722. doi:10.3389/fpls.2021.684722
Lee, J. H., Kang, B. S., Hwang, K. H., & Kim, G. H. (2011). Evaluation for anti-inflammatory effects of Siegesbeckia glabrescens extract in vitro. Food and Agricultural Immunology, 22(2), 145–160.
Leyva Salas, M., Mounier, J., Valence, F., Coton, M., Thierry, A., & Coton, E. (2017). Antifungal microbial agents for food biopreservation—A review. Microorganisms, 5(3), 37.
Loizzo, M. R., Sicari, V., Pellicanò, T., Xiao, J., Poiana, M., & Tundis, R. (2019). Comparative analysis of chemical composition, antioxidant and anti-proliferative activities of Italian Vitis vinifera by-products for a sustainable agro-industry. Food and Chemical Toxicology, 127, 127–134. doi:10.1016/j.fct.2019.03.007
Lucas, M. M., Stoddard, F. L., Annicchiarico, P., Frías, J., Martínez-Villaluenga, C., Sussmann, D., ... & Pueyo, J. J. (2015). The future of lupin as a protein crop in Europe. Frontiers in Plant Science, 6, 705. doi:10.3389/fpls.2015.00705
Magalhães, S. C., Fernandes, F., Cabrita, A. R., Fonseca, A. J., Valentão, P., & Andrade, P. B. (2017). Alkaloids in the valorization of European Lupinus spp. seeds crop. Industrial Crops and Products, 95, 286–295.
Mancinotti, D., Frick, K.M., Geu-Flores, F.(2022) Biosynthesis of quinolizidine alkaloids in lupins: mechanistic considerations and prospects for pathway elucidation. Nat Prod Rep, 20;39 (7):1423-1437. doi:10.1039/d1np00069a. PMID: 35302146.
Millán-Linares, M. C., Montserrat-de la Paz, S., & Martín, M. E. (2014). Anti-inflammatory activity of Lupinus angustifolius peptides in LPS-stimulated human monocytes. Plant Foods for Human Nutrition, 69(3), 196–202.
Mimura, M., Yahara, T., Faith, D. P., Vázquez-Domínguez, E., Colautti, R. I., Araki, H., & Hendry, A. P. (2017). Understanding and monitoring the consequences of human impacts on intraspecific variation. Evolutionary Applications, 10(2), 121–139. doi:10.1111/eva.12436
Mithöfer, A., & Boland, W. (2012). Plant defense against herbivores: Chemical aspects. Annual Review of Plant Biology, 63, 431–450. doi:10.1146/annurev-arplant-042110-103854
Nazan, K., 2022. Yogurt-like product from lupine (Lupinus albus L.) milk as an alternative to dairy products. Foods and Raw materials, 10(2), pp.377-385.
Ncube, B., Afolayan, A. J., & Okoh, A. I. (2016). Assessment techniques of antibacterial properties of plant extracts: A review. African Journal of Biotechnology, 15(18), 723–730.
Odabaşoğlu, F., Aslan, A., Çakır, A., Süleyman, H., Karagöz, Y., Halıcı, M.,& Bayir, Y. (2004). Comparison of antioxidant activity and phenolic content of three lichen species. Phytotherapy Research, 18(11), 938–941.
Odeku, O. A., Ogunniyi, Q. A., Ogbole, O. O., & Fettke, J. (2024). Forgotten gems: Exploring the untapped benefits of underutilized legumes in agriculture, nutrition, and environmental sustainability. Plants, 13(9), 1208. doi:10.3390/plants13091208
Oomah, B. D., Tiger, N., Olson, M., & Balasubramanian, P. (2006). Phenolics and antioxidative activities in narrow-leafed lupins (Lupinus angustifolius L.). Plant Foods for Human Nutrition, 61(2), 86-92.
Orozco-Ávila, I., Fonseca-García, C., Esquivel-Naranjo, E. U., & López-Bucio, J. (2017). Metabolic shifts during plant response to environmental stresses. Plant Science, 256, 40–52. doi:10.1016/j.plantsci.2016.12.001
Osorio, C. E., & Till, B. J. (2022). A bitter-sweet story: Unraveling the genes involved in quinolizidine alkaloid synthesis in Lupinus albus. Frontiers in Plant Science, 12, 795091. doi:10.3389/fpls.2021.795091
Otterbach, S. L., Wrobel, T. J., & Wrobel, M. (2019a). Differential gene expression involved in alkaloid metabolism in narrow-leafed lupin (Lupinus angustifolius). Plant Cell Reports, 38(4), 445–459.
Otterbach, S. L., Yang, T., Kato, L., Janfelt, C., & Geu-Flores, F. (2019b). Quinolizidine alkaloids are transported to seeds of bitter narrow-leafed lupin. Journal of Experimental Botany, 70(20), 5799–5808. doi:10.1093/jxb/erz357Riolo
Pereira, A., Ramos, F., & Sanches Silva, A. (2022). Lupin (Lupinus albus L.) seeds: Balancing the good and the bad and addressing future challenges. Molecules, 27(23), 8557. doi:10.3390/molecules27238557
Pinheiro, C., Passarinho, J. A., & Ricardo, C. P. (2004). Effect of drought and rewatering on the metabolism of Lupinus albus organs. Journal of Plant Physiology, 161(11), 1203–1210. doi:10.1016/j.jplph.2004.01.016
Pospišil, A., Ivanović, K., & Pospišil, M. (2022). The potential of white lupin (Lupinus albus L.) seed and biomass yield in organic farming. Poljoprivreda, 28(1), 18–23. doi:10.18047/poljo.28.1.3
Prior, R. L., Wu, X., & Schaich, K. (2005). Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements. Journal of Agricultural and Food Chemistry, 53(10), 4290–4302. doi:10.1021/jf0502698
Resta, D., Boschin, G., D'Agostina, A., & Arnoldi, A. (2008). Evaluation of total alkaloids in Lupinus albus L. and Lupinus angustifolius L. products. Food Chemistry, 108(1), 452–459. doi:10.1016/j.foodchem.2007.11.010
Riolo, M., Luz, C., Santilli, E., Meca, G., & Cacciola, S. O. (2023a). Antifungal activity of selected lactic acid bacteria from olive drupes. Food Bioscience, 52, 102422. doi:10.1016/j.fbio.2023.102422
Riolo, M., Luz, C., Santilli, E., Meca, G., & Cacciola, S. O. (2023b). Secondary metabolites produced by four Colletotrichum species in vitro and on fruit of diverse olive cultivars. Fungal Biology, 127(10), 1118–1128. doi:10.1016/j.funbio.2023.06.003
Romeo, F. V., Fabroni, S., Ballistreri, G., Muccilli, S., Spina, A., & Rapisarda, P. (2018). Characterization and antimicrobial activity of alkaloid extracts from seeds of different genotypes of Lupinus spp. Sustainability, 10(3), 788. doi:10.3390/su10030788
Rychel, S., & Książkiewicz, M. (2019). Development of gene-based molecular markers tagging low alkaloid pauper locus in white lupin (Lupinus albus L.). Journal of Applied Genetics, 60(3), 269–281. doi:10.1007/s13353-019-00513-w
Saha Tchinda, J. B., Ndikontar, K. M., Fouda Belinga, A. D., Mounguengui, S., Njankouo, J. M., Durmaçay, S., & Gerardin, P. (2018). Inhibition of fungi with wood extractives and natural durability of five Cameroonian wood species. Industrial Crops and Products, 123, 183–191. doi:10.1016/j.indcrop.2018.06.078
Saleh, I., & Al-Thani, R. (2019). Fungal food spoilage of supermarkets' displayed fruits. Veterinary World, 12(11), 1877–1883. doi:10.14202/vetworld.2019.1877-1883
Sánchez-Moreno, C., Larrauri, J. A., & Saura-Calixto, F. (1999). Free radical scavenging capacity and inhibition of lipid oxidation of wines, grape juices and related polyphenolic constituents. Food Research International, 32(6), 407–412. doi:10.1016/S0963-9969(99)00183-3
Sands, D. C., Morris, C. E., Dratz, E. A., & Pilgeram, A. L. (2009). Elevating optimal human nutrition to a central goal of plant breeding and production of plant-based foods. Plant Science, 177(5), 377–389. doi:10.1016/j.plantsci.2009.07.011
Sbihi, H. M., Nehdi, I. A., Tan, C. P., & Al-Resayes, S. I. (2013). Bitter and sweet lupin (Lupinus albus L.) seeds and seed oils: A comparison study of their compositions and physicochemical properties. Industrial Crops and Products, 49, 573–579. doi:10.1016/j.indcrop.2013.05.014
Sequin, C. J., Appelhans, S. C., Heis, M. S., Torrent, W. A., Trossero, J. A., Catalán, C. A, & Aceñolaza, P. G. (2023). Antifungal and toxicological evaluation of the alkaloids fraction from Neltuma nigra leaves. Biocatalysis and Agricultural Biotechnology, 54, 102914. doi:10.1016/j.bcab.2023.102914
Sher, A.S., Padmanaban, V.S., Sudhakar, S. and Kundanati, L. (2025). Formulation of Plant–based Meat Analogues: Protein Sources, Functional Additives, and Technological Advancements. doi:10.20944/preprints202506.1509.v1
Siger, A., Czubinski, J., Kachlicki, P., Dwiecki, K., Lampart-Szczapa, E., & Nogala-Kalucka, -8987987M. (2012). Antioxidant activity and phenolic content in three lupin species. Journal of Food Composition and Analysis, 25(2), 190–197. doi:10.1016/j.jfca.2011.10.005
Simopoulos, A. P. (2002). The importance of the ratio of omega-6/omega-3 essential fatty acids. Biomedicine & Pharmacotherapy, 56(8), 365–379. doi:10.1016/S0753-3322(02)00253-6
Stephany, M., Bader-Mittermaier, S., Schweiggert-Weisz, U., & Carle, R. (2015). Lipoxygenase activity in different species of sweet lupin (Lupinus L.) seeds and flakes. Food Chemistry, 174, 400–406. doi:10.1016/j.foodchem.2014.11.039
Stracquadanio, C., Quiles, J. M., Meca, G., & Cacciola, S. O. (2020). Antifungal activity of bioactive metabolites produced by Trichoderma asperellum and T. atroviride in liquid medium. Journal of Fungi, 6(4), 263. doi:10.3390/jof6040263
Święcicki, W., Górny, A., Barzyk, P., Gawłowska, M., & Kaczmarek, Z. (2019). Genetic analysis of alkaloid accumulation in seeds of white lupin (Lupinus albus L.). Genetika, 51(3), 961–973. doi:10.2298/GENSR1903961S
Tepe, B., Sokmen, M., Sokmen, A., Daferera, D., & Polissiou, M. (2005). Antimicrobial and antioxidative activity of the essential oil and various extracts of Cyclotrichium origanifolium (Labill.) Manden. & Scheng. Journal of Food Engineering, 69(3), 335–342. doi:10.1016/j.jfoodeng.2004.08.024
Thudi, M., Palakurthi, R., Schnable, J. C., Chitikineni, A., Dreisigacker, S., Mace, E.,& Varshney, R. K. (2020). Genomic resources in plant breeding for sustainable agriculture. Journal of Plant Physiology, 253, 153351. doi:10.1016/j.jplph.2020.153351
Tirdil'ová, T., Křížová, L., & Musilová, J. (2022). Bitter and sweet lupin (Lupinus albus L.) seeds and seed oils: A comparison study of their compositions and physicochemical properties. Plant Foods for Human Nutrition, 77(2), 265–274. doi:10.1007/s11130-021-00903-1
Tosoroni, A., Di Vittori, V., Nanni, L., Musari, E., Papalini, S., Bitocchi, E., & Papa, R. (2025). Recent Advances in Molecular Tools and Pre-Breeding Activities in White Lupin (Lupinus albus). Plants, 14(6), 914. doi:10.3390/plants14060914
Tsaliki, E., Lagouri, V., & Doxastakis, G. (1999). Evaluation of the antioxidant activity of lupin seed flour and derivatives (Lupinus albus ssp. Graecus). Food Chemistry, 65(1), 71–75. doi:10.1016/S0308-8146(98)00157-0
Ullah, N., Nawaz, M. A., & Alsafran, M. (2024). Physiological mechanisms regulating source-sink interactions and grain yield formation in heat-stressed wheat. Plant Stress, 14, 100654. doi:10.1016/j.stress.2024.100654
UPOV. (2004). Guidelines for the conduct of tests for distinctness, uniformity and stability: White lupin, narrow-leafed lupin, yellow lupin. Geneva: International Union for the Protection of New Varieties of Plants. https://www.upov.int/edocs/tgdocs/en/tg066.pdf
Valente, I. M., Monteiro, A., Sousa, C., Miranda, C., Maia, M. R., Castro, C., & Fonseca, A. J. (2024). Agronomic, nutritional traits, and alkaloids of Lupinus albus, Lupinus angustifolius and Lupinus luteus genotypes: Effect of sowing dates and locations. ACS Agricultural Science & Technology, 4(4), 450–462. doi:10.1021/acsagscitech.3c00238
Van de Noort, M. (2024). Lupine: An important protein and nutrient source. In Sustainable protein sources (pp. 219–239). Academic Press. doi:10.1016/B978-0-323-91652-3.00028-9
Wachowska, U., Packa, D., & Wiwart, M. (2017). Microbial inhibition of Fusarium pathogens and biological modification of trichothecenes in cereal grains. Toxins, 9(12), 408.
Wang, S., & Clements, J. (2008). Antioxidant activities of lupin seeds. In J. A. Palta & J. B. Berger (Eds.), Lupins for health and wealth: Proceedings of the 12th International Lupin Conference (pp. 546–551). International Lupin Association.
Wink, M. (2008). Plant secondary metabolism: Diversity, function, and its evolution. Natural Product Communications, 3(8), 1205–1216.
Witte, T. E., Hicks, C., Hermans, A., Shields, S., & Overy, D. P. (2024). Debunking the myth of Fusarium poae T-2/HT-2 toxin production. Journal of Agricultural and Food Chemistry, 72(8), 3949–3957.
Yoshie-Stark, Y., & Wäsche, A. (2004). Characteristics of crude lipoxygenase from commercially de-oiled lupin flakes for different types of lupins (Lupinus albus, Lupinus angustifolius). Food Chemistry, 88, 287–292.
Zafeiriou, I., Polidoros, A. N., Baira, E., Kasiotis, K. M., Machera, K., & Mylona, P. V. (2021). Mediterranean white lupin landraces as a valuable genetic reserve for breeding. Plants, 10(11), 2403. doi:10.3390/plants10112403