[en] Rel stringent factors are bifunctional ribosome-associated enzymes that catalyze both synthesis and hydrolysis of the alarmones (p)ppGpp. Besides the allosteric control by starved ribosomes and (p)ppGpp, Rel is regulated by various protein factors depending on specific stress conditions, including the c-di-AMP-binding protein DarB. However, how these effector proteins control Rel remains unknown. We have determined the crystal structure of the DarB(2):Rel(NTD)(2) complex, uncovering that DarB directly engages the SYNTH domain of Rel to stimulate (p)ppGpp synthesis. This association with DarB promotes a SYNTH-primed conformation of the N-terminal domain region, markedly increasing the affinity of Rel for ATP while switching off the hydrolase activity of the enzyme. Binding to c-di-AMP rigidifies DarB, imposing an entropic penalty that precludes DarB-mediated control of Rel during normal growth. Our experiments provide the basis for understanding a previously unknown mechanism of allosteric regulation of Rel stringent factors independent of amino acid starvation.
Disciplines :
Physical, chemical, mathematical & earth Sciences: Multidisciplinary, general & others
Author, co-author :
Ainelo, Andres ; Cellular and Molecular Microbiology, Faculté des Sciences, Université libre de Bruxelles 10 (ULB), Boulevard du Triomphe, Building BC (1C4 203), 1050 Brussels, Belgium.
Caballero-Montes, Julien; Cellular and Molecular Microbiology, Faculté des Sciences, Université libre de Bruxelles 10 (ULB), Boulevard du Triomphe, Building BC (1C4 203), 1050 Brussels, Belgium.
Bulvas, Ondřej ; Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i., Flemingovo nam. 2, 166 10 Prague 6, Czech Republic. ; Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Technicka 5, 166 28 Prague 6, Czech Republic.
Ernits, Karin ; Department of Experimental Medical Science, Lund University, 221 00 Lund, Sweden.
Coppieters 't Wallant, Kyo ; Centre for Structural Biology and Bioinformatics, Universite Libre de Bruxelles (ULB), Boulevard du Triomphe, Building BC, 1050 Bruxelles, Belgium.
Takada, Hiraku ; Department of Experimental Medical Science, Lund University, 221 00 Lund, Sweden. ; Faculty of Life Sciences, Kyoto Sangyo University, Kamigamo Motoyama, Kita-ku, Kyoto 603-8555, Japan.
Craig, Sophie Z ; Cellular and Molecular Microbiology, Faculté des Sciences, Université libre de Bruxelles 10 (ULB), Boulevard du Triomphe, Building BC (1C4 203), 1050 Brussels, Belgium.
Mazzucchelli, Gabriel ; Université de Liège - ULiège > Département de chimie (sciences) > Laboratoire de spectrométrie de masse (L.S.M.)
Zedek, Safia; Cellular and Molecular Microbiology, Faculté des Sciences, Université libre de Bruxelles 10 (ULB), Boulevard du Triomphe, Building BC (1C4 203), 1050 Brussels, Belgium.
Pichová, Iva; Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i., Flemingovo nam. 2, 166 10 Prague 6, Czech Republic.
Atkinson, Gemma C ; Department of Experimental Medical Science, Lund University, 221 00 Lund, Sweden.
Talavera, Ariel ; Cellular and Molecular Microbiology, Faculté des Sciences, Université libre de Bruxelles 10 (ULB), Boulevard du Triomphe, Building BC (1C4 203), 1050 Brussels, Belgium.
Martens, Chloe ; Centre for Structural Biology and Bioinformatics, Universite Libre de Bruxelles (ULB), Boulevard du Triomphe, Building BC, 1050 Bruxelles, Belgium.
Hauryliuk, Vasili ; Department of Experimental Medical Science, Lund University, 221 00 Lund, Sweden. ; University of Tartu, Institute of Technology, 50411 Tartu, Estonia.
Garcia-Pino, Abel ; Cellular and Molecular Microbiology, Faculté des Sciences, Université libre de Bruxelles 10 (ULB), Boulevard du Triomphe, Building BC (1C4 203), 1050 Brussels, Belgium. ; WELBIO, Avenue Hippocrate 75, 1200 Brussels, Belgium.
S. E. Irving, N. R. Choudhury, R. M. Corrigan, The stringent response and physiological roles of (pp)pGpp in bacteria. Nat. Rev. Microbiol. 19, 256–271 (2021).
G. Bange, D. E. Brodersen, A. Liuzzi, W. Steinchen, Two P or not two P: Understanding regulation by the bacterial second messengers (p)ppGpp. Annu. Rev. Microbiol. 75, 383–406 (2021).
B. W. Anderson, D. K. Fung, J. D. Wang, Regulatory themes and variations by the stress-signaling nucleotide alarmones (p)ppGpp in bacteria. Annu. Rev. Genet. 55, 115–133 (2021).
G. C. Atkinson, T. Tenson, V. Hauryliuk, The RelA/SpoT homolog (RSH) superfamily: Distribution and functional evolution of ppGpp synthetases and hydrolases across the tree of life. PLOS ONE 6, e23479 (2011).
G. Mittenhuber, Comparative genomics and evolution of genes encoding bacterial (p)ppGpp synthetases/hydrolases (the Rel, RelA and SpoT proteins). J. Mol. Microbiol. Biotechnol. 3, 585–600 (2001).
S. Jimmy, C. K. Saha, T. Kurata, C. Stavropoulos, S. R. A. Oliveira, A. Koh, A. Cepauskas, H. Takada, D. Rejman, T. Tenson, H. Strahl, A. Garcia-Pino, V. Hauryliuk, G. C. Atkinson, A widespread toxin–antitoxin system exploiting growth control via alarmone signaling. Proc. Natl. Acad. Sci. U.S.A. 117, 10500–10510 (2020).
W. A. Haseltine, R. Block, Synthesis of guanosine tetra- and pentaphosphate requires the presence of a codon-specific, uncharged transfer ribonucleic acid in the acceptor site of ribosomes. Proc. Natl. Acad. Sci. U.S.A. 70, 1564–1568 (1973).
H. Xiao, M. Kalman, K. Ikehara, S. Zemel, G. Glaser, M. Cashel, Residual guanosine 3’,5’-bispyrophosphate synthetic activity of relA null mutants can be eliminated by spoT null mutations. J. Biol. Chem. 266, 5980–5990 (1991).
G. An, J. Justesen, R. J. Watson, J. D. Friesen, Cloning the spoT gene of Escherichia coli: Identification of the spoT gene product. J. Bacteriol. 137, 1100–1110 (1979).
H. Tamman, K. Ernits, M. Roghanian, A. Ainelo, C. Julius, A. Perrier, A. Talavera, H. Ainelo, R. Dugauquier, S. Zedek, A. Thureau, J. Pérez, G. Lima-Mendez, R. Hallez, G. C. Atkinson, V. Hauryliuk, A. Garcia-Pino, Structure of SpoT reveals evolutionary tuning of catalysis via conformational constraint. Nat. Chem. Biol. 10.1038/s41589-022-01198-x, (2022).
D. Avarbock, A. Avarbock, H. Rubin, Differential regulation of opposing RelMtb activities by the aminoacylation state of a tRNA:ribosome:mRNA:RelMtb complex. Biochemistry 39, 11640–11648 (2000).
U. Mechold, H. Murphy, L. Brown, M. Cashel, Intramolecular regulation of the opposing (p)ppGpp catalytic activities of RelSeq, the Rel/Spo enzyme from Streptococcus equisimilis. J. Bacteriol. 184, 2878–2888 (2002).
H. Takada, M. Roghanian, J. Caballero-Montes, K. Van Nerom, S. Jimmy, P. Kudrin, F. Trebini, R. Murayama, G. Akanuma, A. Garcia-Pino, V. Hauryliuk, Ribosome association primes the stringent factor Rel for tRNA-dependent locking in the A-site and activation of (p)ppGpp synthesis. Nucleic Acids Res. 49, 444–457 (2021).
V. Shyp, S. Tankov, A. Ermakov, P. Kudrin, B. P. English, M. Ehrenberg, T. Tenson, J. Elf, V. Hauryliuk, Positive allosteric feedback regulation of the stringent response enzyme RelA by its product. EMBO Rep. 13, 835–839 (2012).
M. Roghanian, K. Van Nerom, H. Takada, J. Caballero-Montes, H. Tamman, P. Kudrin, A. Talavera, I. Dzhygyr, S. Ekström, G. C. Atkinson, A. Garcia-Pino, V. Hauryliuk, (p)ppGpp controls stringent factors by exploiting antagonistic allosteric coupling between catalytic domains. Mol. Cell 81, 3310–3322.e6 (2021).
T. Hogg, U. Mechold, H. Malke, M. Cashel, R. Hilgenfeld, Conformational antagonism between opposing active sites in a bifunctional RelA/SpoT homolog modulates (p)ppGpp metabolism during the stringent response. Cell 117, 57–68 (2004).
H. Tamman, K. Van Nerom, H. Takada, N. Vandenberk, D. Scholl, Y. Polikanov, J. Hofkens, A. Talavera, V. Hauryliuk, J. Hendrix, A. Garcia-Pino, A nucleotide-switch mechanism mediates opposing catalytic activities of Rel enzymes. Nat. Chem. Biol. 16, 834–840 (2020).
A. Brown, I. S. Fernandez, Y. Gordiyenko, V. Ramakrishnan, Ribosome-dependent activation of stringent control. Nature 534, 277–280 (2016).
V. Jain, R. Saleem-Batcha, A. China, D. Chatterji, Molecular dissection of the mycobacterial stringent response protein Rel. Protein Sci. 15, 1449–1464 (2006).
A. Avarbock, D. Avarbock, J.-S. Teh, M. Buckstein, Z.-M. Wang, H. Rubin, Functional regulation of the opposing (p)ppGpp synthetase/hydrolase activities of RelMtb from Mycobacterium tuberculosis. Biochemistry 44, 9913–9923 (2005).
X. Agirrezabala, I. S. Fernández, A. C. Kelley, D. G. Cartón, V. Ramakrishnan, M. Valle, The ribosome triggers the stringent response by RelA via a highly distorted tRNA. EMBO Rep. 14, 811–816 (2013).
S. Arenz, M. Abdelshahid, D. Sohmen, R. Payoe, A. L. Starosta, O. Berninghausen, V. Hauryliuk, R. Beckmann, D. N. Wilson, The stringent factor RelA adopts an open conformation on the ribosome to stimulate ppGpp synthesis. Nucleic Acids Res. 44, 6471–6481 (2016).
P. Pausch, M. Abdelshahid, W. Steinchen, H. Schäfer, F. L. Gratani, S.-A. Freibert, C. Wolz, K. Turgay, D. N. Wilson, G. Bange, Structural basis for regulation of the opposing (p)ppGpp synthetase and hydrolase within the stringent response orchestrator rel. Cell Rep. 32, 108157 (2020).
S. Ronneau, J. Caballero-Montes, J. Coppine, A. Mayard, A. Garcia-Pino, R. Hallez, Regulation of (p)ppGpp hydrolysis by a conserved archetypal regulatory domain. Nucleic Acids Res. 47, 843–854 (2019).
L. Léger, D. Byrne, P. Guiraud, E. Germain, E. Maisonneuve, NirD curtails the stringent response by inhibiting RelA activity in Escherichia coli. eLife 10, e64092 (2021).
E. Germain, P. Guiraud, D. Byrne, B. Douzi, M. Djendli, E. Maisonneuve, YtfK activates the stringent response by triggering the alarmone synthetase SpoT in Escherichia coli. Nat. Commun. 10, 5763 (2019).
A. Battesti, E. Bouveret, Acyl carrier protein/SpoT interaction, the switch linking SpoT-dependent stress response to fatty acid metabolism. Mol. Microbiol. 62, 1048–1063 (2006).
L. Krüger, C. Herzberg, D. Wicke, H. Bähre, J. L. Heidemann, A. Dickmanns, K. Schmitt, R. Ficner, J. Stülke, A meet-up of two second messengers: The c-di-AMP receptor DarB controls (p)ppGpp synthesis in Bacillus subtilis. Nat. Commun. 12, 1210 (2021).
J. Stülke, L. Krüger, Cyclic di-AMP signaling in bacteria. Annu. Rev. Microbiol. 74, 159–179 (2020).
B. N. Peterson, M. K. M. Young, S. Luo, J. Wang, A. T. Whiteley, J. J. Woodward, L. Tong, J. D. Wang, D. A. Portnoy, (p)ppGpp and c-di-AMP homeostasis is controlled by CbpB in Listeria monocytogenes. MBio 11, 10.1128/mBio.01625-20, (2020).
V. Mojr, M. Roghanian, H. Tamman, D. D. Do Pham, M. Petrova, R. Pohl, H. Takada, K. Van Nerom, H. Ainelo, J. Caballero-Montes, S. Jimmy, A. Garcia-Pino, V. Hauryliuk, D. Rejman, Nonhydrolysable analogues of (p)ppGpp and (p)ppApp alarmone nucleotides as novel molecular tools. ACS Chem. Biol. 16, 1680–1691 (2021).
J. R. Engen, Analysis of protein conformation and dynamics by hydrogen/deuterium exchange MS. Anal. Chem. 81, 7870–7875 (2009).
A. Garcia-Pino, S. Balasubramanian, L. Wyns, E. Gazit, H. De Greve, R. D. Magnuson, D. Charlier, N. A. van Nuland, R. Loris, Allostery and intrinsic disorder mediate transcription regulation by conditional cooperativity. Cell 142, 101–111 (2010).
H. Takada, M. Roghanian, V. Murina, I. Dzhygyr, R. Murayama, G. Akanuma, G. C. Atkinson, A. Garcia-Pino, V. Hauryliuk, The C-terminal RRM/ACT domain is crucial for fine-tuning the activation of “long” RelA-SpoT homolog enzymes by ribosomal complexes. Front. Microbiol. 11, 277 (2020).
W. Steinchen, J. S. Schuhmacher, F. Altegoer, C. D. Fage, V. Srinivasan, U. Linne, M. A. Marahiel, G. Bange, Catalytic mechanism and allosteric regulation of an oligomeric (p)ppGpp synthetase by an alarmone. Proc. Natl. Acad. Sci. U.S.A. 112, 13348–13353 (2015).
J. Ereño-Orbea, I. Oyenarte, L. A. Martínez-Cruz, CBS domains: Ligand binding sites and conformational variability. Arch. Biochem. Biophys. 540, 70–81 (2013).
T. Pedreira, C. Elfmann, J. Stülke, The current state of SubtiWiki, the database for the model organism Bacillus subtilis. Nucleic Acids Res. 50, D875–D882 (2022).
M. Sajish, S. Kalayil, S. K. Verma, V. K. Nandicoori, B. Prakash, The significance of EXDD and RXKD motif conservation in Rel proteins. J. Biol. Chem. 284, 9115–9123 (2009).
Y. Oppenheimer-Shaanan, E. Wexselblatt, J. Katzhendler, E. Yavin, S. Ben-Yehuda, c-di-AMP reports DNA integrity during sporulation in Bacillus subtilis. EMBO Rep. 12, 594–601 (2011).
J. Gundlach, C. Herzberg, V. Kaever, K. Gunka, T. Hoffmann, M. Weiß, J. Gibhardt, A. Thurmer, D. Hertel, R. Daniel, E. Bremer, F. M. Commichau, J. Stülke, Control of potassium homeostasis is an essential function of the second messenger cyclic di-AMP in Bacillus subtilis. Sci. Signal. 10, eaal3011 (2017).
J. He, W. Yin, M. Y. Galperin, S.-H. Chou, Cyclic di-AMP, a second messenger of primary importance: Tertiary structures and binding mechanisms. Nucleic Acids Res. 48, 2807–2829 (2020).
J. Muntel, V. Fromion, A. Goelzer, S. Maaβ, U. Mäder, K. Büttner, M. Hecker, D. Becher, Comprehensive absolute quantification of the cytosolic proteome of Bacillus subtilis by data independent, parallel fragmentation in liquid chromatography/mass spectrometry (LC/MSE). Mol. Cell. Proteomics 13, 1008–1019 (2014).
X.-P. Hu, H. Dourado, P. Schubert, M. J. Lercher, The protein translation machinery is expressed for maximal efficiency in Escherichia coli. Nat. Commun. 11, 5260 (2020).
F. W. Studier, Protein production by auto-induction in high-density shaking cultures. Protein Expr. Purif. 41, 207–234 (2005).
K. Van Nerom, H. Tamman, H. Takada, V. Hauryliuk, A. Garcia-Pino, The Rel stringent factor from Thermus thermophilus: Crystallization and x-ray analysis. Acta Crystallogr. F. Struct. Biol. Commun. 75, 561–569 (2019).
W. Kabsch, XDS. Acta Crystallogr. D Biol. Crystallogr. 66, 125–132 (2010).
Collaborative Computational Project, Number 4, The CCP4 suite: Programs for protein crystallography. Acta Crystallogr. D Biol. Crystallogr. 50, 760–763 (1994).
A. J. McCoy, R. W. Grosse-Kunstleve, P. D. Adams, M. D. Winn, L. C. Storoni, R. J. Read, Phaser crystallographic software. J. Appl. Crystallogr. 40, 658–674 (2007).
T. Zhang, H. Tamman, K. C. ‘t Wallant, T. Kurata, M. L. Roux, S. Srikant, T. Brodiazhenko, A. Cepauskas, A. Talavera, C. Martens, G. C. Atkinson, V. Hauryliuk, A. Garcia-Pino, M. T. Laub, Direct activation of a bacterial innate immune system by a viral capsid protein. Nature 612, 132–140 (2022).
T. C. Terwilliger, F. Dimaio, R. J. Read, D. Baker, G. Bunkóczi, P. D. Adams, R. W. Grosse-Kunstleve, P. V. Afonine, N. Echols, phenix.mr_rosetta: Molecular replacement and model rebuilding with Phenix and Rosetta. J. Struct. Funct. Genomics 13, 81–90 (2012).
P. V. Afonine, R. W. Grosse-Kunstleve, N. Echols, J. J. Headd, N. W. Moriarty, M. Mustyakimov, T. C. Terwilliger, A. Urzhumtsev, P. H. Zwart, P. D. Adams, Towards automated crystallographic structure refinement with phenix.refine. Acta Crystallogr. D Biol. Crystallogr. 68, 352–367 (2012).
P. Emsley, K. Cowtan, Coot: Model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004).
O. S. Smart, T. O. Womack, C. Flensburg, P. Keller, W. Paciorek, A. Sharff, C. Vonrhein, G. Bricogne, Exploiting structure similarity in refinement: Automated NCS and target-structure restraints in BUSTER. Acta Crystallogr. D Biol. Crystallogr. 68, 368–380 (2012).
A. Talavera, J. Hendrix, W. Versées, D. Jurėnas, K. Van Nerom, N. Vandenberk, R. K. Singh, A. Konijnenberg, S. De Gieter, D. Castro-Roa, A. Barth, H. De Greve, F. Sobott, J. Hofkens, N. Zenkin, R. Loris, A. Garcia-Pino, Phosphorylation decelerates conformational dynamics in bacterial translation elongation factors. Sci. Adv. 4, eaap9714 (2018).
H. Ashkenazy, S. Abadi, E. Martz, O. Chay, I. Mayrose, T. Pupko, N. Ben-Tal, ConSurf 2016: An improved methodology to estimate and visualize evolutionary conservation in macromolecules. Nucleic Acids Res. 44, W344–W350 (2016).
K. Katoh, D. M. Standley, MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013).