Foliar and wood traits covary along a vertical gradient within the crown of long-lived light-demanding species of the congo basin semi-deciduous forest - 2020
Foliar and wood traits covary along a vertical gradient within the crown of long-lived light-demanding species of the congo basin semi-deciduous forest
Kafuti, Chadrack; Bourland, Nils; De Mil, Tomet al.
Leaf traits; Pericopsis elata; Tradeoff; Trait-based ecology; Tropical rainforest; Water deficit; Wood traits; Tropical rain forest; Water deficits; Forestry
Abstract :
[en] Plant functional traits have shown to be relevant predictors of forest functional responses to climate change. However, the trait-based approach to study plant performances and ecological strategies has mostly been focused on trait comparisons at the interspecific and intraspecific levels. In this study, we analyzed traits variation and association at the individual level. We measured wood and leaf traits at different height locations within the crown of five individuals of Pericopsis elata (Harms) Meeuwen (Fabaceae) from the northern tropical forest of the Democratic Republic of the Congo. All traits varied between and within individuals. The between-individual variation was more important for leaf traits (23%-48%) than for wood traits (~10%) where the within-individual variation showed to be more important (33%-39%). The sample location height within the crown was found to be the driving factor of this within-individual variation. In a gradient from the base to the top of the crown, theoretical specific hydraulic conductivity and specific leaf area decreased while the stomatal density increased. We found significant relationships among traits and between wood and leaf traits. However, these relationships varied with the position within the crown. The relationship between vessel size and vessel density was negative at the bottom part of the crown but positive upward. Also, the negative relationship between stomatal density and stomatal size became stronger with increasing height within the crown. Finally, the positive relationship between specific leaf area and theoretical specific hydraulic conductivity became stronger in higher parts of the crown, suggesting that P. elata constantly adapts its water use with respect to its water supply, more strongly at the top of the crown where the environment is more extreme and less buffered against environmental fluctuations.
Kafuti, Chadrack; Department of Environment, Ghent University, Gent, Belgium ; Royal Museum for Central Africa, Service of Wood Biology, Tervuren, Belgium ; Department of Natural Resources Management, University of Kinshasa, Kinshasa XI, Congo
Bourland, Nils ; Université de Liège - ULiège > Forêts, Nature et Paysage > Laboratoire de Foresterie des régions tropicales et subtropicales ; Royal Museum for Central Africa, Service of Wood Biology, Tervuren, Belgium ; Center for International Forestry Research, Situ Gede, Sindang Barang, Bogor, Indonesia ; Resources and Synergies Development Pte Ltd., Hong Leong Building, Singapore
De Mil, Tom ; Université de Liège - ULiège > TERRA Research Centre > Gestion des ressources forestières
Rousseau, Mélissa; Royal Museum for Central Africa, Service of Wood Biology, Tervuren, Belgium
Toirambe, Benjamin; Royal Museum for Central Africa, Service of Wood Biology, Tervuren, Belgium
Bolaluembe, Papy-Claude; Department of Natural Resources Management, University of Kinshasa, Kinshasa XI, Congo
Ndjele, Léopold; Department of Ecology and Fauna Resources Management, University of Kisangani, Kisangani, Congo
Beeckman, Hans ; Royal Museum for Central Africa, Service of Wood Biology, Tervuren, Belgium
Language :
English
Title :
Foliar and wood traits covary along a vertical gradient within the crown of long-lived light-demanding species of the congo basin semi-deciduous forest
Funding: This research was performed under projects \u201CBiosphere traits\u201D (UN/31) and \u201CHerbaxylaredd\u201D (BR/143/A3) funded by the Belgian Science Policy Office (Belspo).
Beeckman, H. Wood Anatomy and Tait-based ecology. IAWA J. 2016, 37, 127-151. [CrossRef]
Lachenbruch, B.; Mcculloh, K.A. Traits, properties, and performance: How woody plants combine hydraulic and mechanical functions in a cell, tissue, or whole plant. New Phytol. 2014, 204, 747-764. [CrossRef] [PubMed]
Violle, C.; Navas, M.L.; Vile, D.; Kazakou, E.; Fortunel, C.; Hummel, I.; Garnier, E. Let the concept of trait be functional Oikos 2007, 116, 882-892. [CrossRef]
Weiher, E.; van der Werf, A.; Thompson, K.; Roderick, M.; Garnier, E.; Eriksson, O. Challenging Theophrastus: A common core list of plant traits for functional ecology. J. Veg. Sci. 1999, 10, 609-620. [CrossRef]
Jung, V.; Violle, C.; Mondy, C.; Hoffmann, L.; Muller, S. Intraspecific variability and trait-based community assembly. J. Ecol. 2010, 98, 1134-1140. [CrossRef]
Savage, J.A.; Cavender-Bares, J. Habitat specialization and the role of trait lability in structuring diverse willow (genus Salix) communities. Ecology 2012, 93, 138-150. [CrossRef]
Greenwood, S.; Ruiz-Benito, P.; Martinez-Vilalta, J.; Lloret, F.; Kitzberger, T.; Allen, D.C.; Fensham, R.; Laughlin, D.C.; Kattge, J.; Bönisch, G.; et al. Tree mortality across biomes is promoted by drought intensity, lower wood density and higher specific leaf area. Ecol. Lett. 2017, 20, 539-553. [CrossRef]
Kraft, N.J.B.; Valencia, R.; Ackerly, D.D. Functional traits and niche-based tree community assembly in an Amazonian forest. Science 2008, 322, 580-582. [CrossRef]
Visser, M.D.; Bruijning, M.; Wright, S.J.; Muller-Landau, H.C.; Jongejans, E.; Comita, L.S.; de Kroon, H. Functional traits as predictors of vital rates across the life cycle of tropical trees. Funct. Ecol. 2016, 30, 168-180. [CrossRef]
Martínez-Vilalta, J.; Lloret, F.; Breshears, D.D. Drought-induced forest decline: Causes, scope and implications. Biol. Lett. 2012, 8, 689-691. [CrossRef]
Skelton, R.P.; West, A.G.; Dawson, T.E. Predicting plant vulnerability to drought in biodiverse regions using functional traits. Proc. Natl. Acad. Sci. USA 2015, 112, 5744-5749. [CrossRef]
Xu, Z.; Zhou, G. Responses of leaf stomatal density to water status and its relationship with photosynthesis in a grass. J. Exp. Bot. 2008, 59, 3317-3325. [CrossRef]
Zhang, L.; Niu, H.; Wang, S.; Zhu, X.; Luo, C.; Li, Y.; Zhao, X. Gene or environment Species-specific control of stomatal density and length. Ecol. Evol. 2012, 2, 1065-1070. [CrossRef]
Ladjal, M.; Huc, R.; Ducrey, M. Drought effects on hydraulic conductivity and xylem vulnerability to embolism in diverse species and provenances of Mediterranean cedars. Tree Physiol. 2005, 25, 1109-1117. [CrossRef]
Lovisolo, C.; Schubert, A. Effects of water stress on vessel size and xylem hydraulic conductivity in Vitis vinifera L. J. Exp. Bot. 1998, 49, 693-700.
Savi, T.; Bertuzzi, S.; Branca, S.; Tretiach, M.; Nardini, A. Drought-induced xylem cavitation and hydraulic deterioration: Risk factors for urban trees under climate change New Phytol. 2015, 205, 1106-1116. [CrossRef]
Paine, C.E.T.; Baraloto, C.; Chave, J.; Hérault, B. Functional traits of individual trees reveal ecological constraints on community assembly in tropical rain forests. Oikos 2011, 120, 720-727. [CrossRef]
Albert, C.H.; Thuiller, W.; Yoccoz, N.G.; Douzet, R.; Aubert, S.; Lavorel, S. A multi-trait approach reveals the structure and the relative importance of intra-vs. interspecific variability in plant traits. Funct. Ecol. 2010, 24, 1192-1201. [CrossRef]
Chacón-Madrigal, E.; Wanek, W.; Hietz, P.; Dullinger, S. Is local trait variation related to total range size of tropical trees PLoS ONE 2018, 13, e0193268. [CrossRef]
Liu, R.; Liang, S.; Long, W.; Jiang, Y. Variations in Leaf Functional Traits Across Ecological Scales in Riparian Plant Communities of the Lijiang River, Guilin, Southwest China. Trop. Conserv. Sci. 2018, 11, 194008291880468. [CrossRef]
Liu, C.; He, N.; Zhang, J.; Li, Y.; Wang, Q.; Sack, L.; Yu, G. Variation of stomatal traits from cold temperate to tropical forests and association with water use efficiency. Funct. Ecol. 2018, 32, 20-28. [CrossRef]
Violle, C.; Enquist, B.J.; McGill, B.J.; Jiang, L.; Albert, C.H.; Hulshof, C.; Jung, V.; Messier, J. The return of the variance: Intraspecific variability in community ecology. Trends Ecol. Evol. 2012, 27, 244-252. [CrossRef]
Anfodillo, T.; Carraro, V.; Carrer, M.; Fior, C.; Rossi, S. Convergent tapering of xylem conduits in different woody species. New Phytol. 2006, 169, 279-290. [CrossRef]
Bourland, N.; Kouadio, L.Y.; Lejeune, P.; Sonké, B.; Philippart, J.; Daïnou, K.; Fétéké, F.; Doucet, J.-L. Ecology of Pericopsis elata (Fabaceae), an Endangered Timber Species in Southeastern Cameroon. Biotropica 2012, 44, 840-847.
Boyemba, F. Ecologie de Pericopsis elata (Harms) Van Meeuwen (Fabaceae), Arbre de Forêt Tropicale Africaine à Répartition Agrégée. Ph.D. Thesis, Université Libre de Bruxelles, Bruxelles, Belgium, 2011, unpublished.
De Ridder, M.; Toirambe, B.; Van den Bulcke, J.; Bourland, N.; Van Acker, J.; Beeckman, H. Dendrochronological potential in a semi-deciduous rainforest: The case of Pericopsis elata in central Africa. Forests 2014, 5, 3087-3106. [CrossRef]
Hall, J.; Swaine, M.D. Distribution and Ecology of Vascular Plants in A Tropical Rain Forest; Werger, M.J., Ed.; Geobotany W. Junk: The Hague, The Netherlands, 1981; ISBN 9789400986527.
White, F. La Végétation de L'afrique; ORSTOM-UNESCO: Paris, France, 1986; ISBN 9232019558.
Oumbe, A.; Wald, L. A parameterisation of vertical profile of solar irradiance for correcting solar fluxes for changes in terrain elevation. In Proceedings of the Earth Observation and Water Cycle Science Conference, Frascati, Italy, 4 April 2010; p. S05.
Jansen, S.; Kitin, P.; De Pauw, H.; Idris, M.; Beeckman, H.; Smets, E. Preparation of wood specimens for transmitted light microscopy and scanning electron microscopy. Belg. J. Bot. 1998, 131, 41-49.
Schneider, C.A.; Rasband, W.S.; Eliceiri, K.W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 2012, 9, 671. [CrossRef]
Tyree, M.T.; Zimmermann, M.H. Xylem Structure and the Ascent of Sap; Timell, T.E., Ed.; Wood Scien.: Karnataka, India; Springer Verlag: Berlin, Germany, 2002; ISBN 9783642640711.
Fortunel, C.; Ruelle, J.; Beauchêne, J.; Fine, P.V.A.; Baraloto, C. Wood specific gravity and anatomy of branches and roots in 113 Amazonian rainforest tree species across environmental gradients. New Phytol. 2014, 202, 79-94. [CrossRef]
Zanne, A.E.; Westoby, M.; Falster, D.S.; Ackerly, D.D.; Loarie, S.R.; Arnold, S.E.J.; Coomes, D.A. Angiosperm wood structure: Global patterns in vessel anatomy and their relation to wood density and potential conductivity. Am. J. Bot. 2010, 97, 207-215. [CrossRef]
Sterck, F.J.; Zweifel, R.; Sass-Klaassen, U.; Chowdhury, Q. Persisting soil drought reduces leaf specific conductivity in Scots pine (Pinus sylvestris) and pubescent oak (Quercus pubescens). Tree Physiol. 2008, 28, 529-536. [CrossRef]
Pérez-Harguindeguy, N.; Díaz, S.; Garnier, E.; Lavorel, S.; Poorter, H.; Jaureguiberry, P.; Bret-Harte, M.S.; Cornwell, W.K.; Craine, J.M.; Gurvich, D.E.; et al. New handbook for standardised measurement of plant functional traits worldwide. Aust. J. Bot. 2013, 61, 167-234. [CrossRef]
Brown, H.T.; Escombe, F. Static diffusion of gases and liquids in relation to the assimilation of carbon and translocation in plants. Ann. Bot. 1900, 14, 537-542. [CrossRef]
Franks, P.J.; Farquhar, C.D. The Mechanical Diversity of Stomata and Its Significance in Gas-Exchange Control. Plant Physiol. 2006, 143, 78-87. [CrossRef]
Dow, G.J.; Bergmann, D.C.; Berry, J.A. An integrated model of stomatal development and leaf physiology. New Phytol. 2014, 201, 1218-1226. [CrossRef]
Fanourakis, D.; Giday, H.; Milla, R.; Pieruschka, R.; Kjaer, K.H.; Bolger, M.; Vasilevski, A.; Nunes-Nesi, A.; Fiorani, F.; Ottosen, C.O. Pore size regulates operating stomatal conductance, while stomatal densities drive the partitioning of conductance between leaf sides. Ann. Bot. 2015, 115, 555-565. [CrossRef]
Bates, D.; Mächler, M.; Bolker, B.M.; Walker, S.C. Fitting Linear Mixed-Effects Models Using lme4. J. Stat. Softw. 2015, 67, 1-48. [CrossRef]
R Core Team. R: A Language and Environment for Statistical Computing; R Core Team: Vienna, Austria, 2018; Volume 1, pp. 1-2630.
Shieh, G. Clarifying the role of mean centring in multicollinearity of interaction effects. Br. J. Math. Stat. Psychol. 2011, 64, 462-477. [CrossRef]
Logan, M. Biostatistical Design and Analysis Using R: A Practical Guide; Wiley-Blackwell: Oxford, UK, 2010; ISBN 9781444335248.
Siefert, A. Incorporating intraspecific variation in tests of trait-based community assembly. Oecologia 2012, 170, 767-775. [CrossRef]
Ordoñez, J.C.; Van Bodegom, P.M.; Witte, J.P.M.; Bartholomeus, R.P.; Van Dobben, H.F.; Aerts, R. Leaf habit and woodiness regulate different leaf economy traits at a given nutrient supply. Ecology 2010, 91, 3218-3228. [CrossRef]
Oladi, R.; Bräuning, A.; Pourtahmasi, K. "Plastic" and "static" behavior of vessel-anatomical features in Oriental beech (Fagus orientalis Lipsky) in view of xylem hydraulic conductivity. Trees-Struct. Funct. 2014, 28, 493-502. [CrossRef]
Giagli, K.; Gricar, J.; Vavrcík, H.; Menšík, L.; Gryc, V. The effects of drought on wood formation in Fagus Sylvatica during two contrasting years. IAWA J. 2016, 37, 332-348. [CrossRef]
Zhang, Y.; Chen, J.M.; Miller, J.R. Determining digital hemispherical photograph exposure for leaf area index estimation. Agric. For. Meteorol. 2005, 133, 166-181. [CrossRef]
Xu, Z.; Zhou, G. Effects of water stress and nocturnal temperature on carbon allocation in the perennial grass, Leymus chinensis. Physiol. Plant. 2005, 123, 272-280. [CrossRef]
Martínez, J.P.; Silva, H.; Ledent, J.F.; Pinto, M. Effect of drought stress on the osmotic adjustment, cell wall elasticity and cell volume of six cultivars of common beans (Phaseolus vulgaris L.). Eur. J. Agron. 2007, 26, 30-38. [CrossRef]
Hubbard, R.M.; Bond, B.J.; Senock, R.S.; Ryan, M.G. Effects of branch height on leaf gas exchange, branch hydraulic conductance and branch sap flux in open-grown ponderosa pine. Tree Physiol. 2002, 22, 575-581. [CrossRef]
Delzon, S.; Sartore, M.; Burlett, R.; Dewar, R.; Loustau, D. Hydraulic responses to height growth in maritime pine trees. Plant Cell Environ. 2004, 27, 1077-1087. [CrossRef]
Zaehle, S. Effect of height on tree hydraulic conductance incompletely compensated by xylem tapering. Funct. Ecol. 2005, 19, 359-364. [CrossRef]
Whitehead, D. Regulations of stomatal conductance and transpiration in forest canopies. Tree Physiol. 1998, 18, 633-644. [CrossRef]
McDowell, N.; Barnard, H.; Bond, B.J.; Hinckley, T.; Hubbard, R.M.; Ishii, H.; Köstner, B.; Magnani, F.; Marshall, J.D.; Meinzer, F.C.; et al. The relationship between tree height and leaf area: Sapwood area ratio. Oecologia 2002, 132, 12-20. [CrossRef]
Butz, P.; Hölscher, D.; Cueva, E.; Graefe, S. Tree Water Use Patterns as Influenced by Phenology in a Dry Forest of Southern Ecuador. Front. Plant Sci. 2018, 9, 945. [CrossRef]
Sperry, J.S.; Meinzer, F.C.; McCulloh, K.A. Safety and efficiency conflicts in hydraulic architecture: Scaling from tissues to trees. Plant Cell Environ. 2008, 31, 632-645. [CrossRef]
Fichtler, E.; Worbes, M. Wood anatomical variables in tropical trees and their relation to site conditions and individual tree morphology. IAWA J. 2012, 33, 119-140. [CrossRef]
Fan, Z.-X.; Sterck, F.; Zhang, S.-B.; Fu, P.-L.; Hao, G.-Y. Tradeoff between Stem Hydraulic Efficiency and Mechanical Strength Affects Leaf-Stem Allometry in 28 Ficus Tree Species. Front. Plant Sci. 2017, 8, 1619-1629. [CrossRef]
Santiago, L.S.; Goldstein, B.G.; Meinzer, F.C.; Fisher, J.B.; Maehado, K.; Woodruff, D.; Jones, T. Leaf photosynthetic traits scale with hydraulic conductivity and wood density in Panamanian forest canopy trees. Oecologia 2004, 140, 543-550. [CrossRef]
Jacobsen, A.L.; Pratt, R.B.; Ewers, F.W.; Davis, S.D. Cavitation resistance among 26 chaparral species of southern California. Ecol. Monogr. 2007, 77, 99-115. [CrossRef]
Franks, P.J.; Drake, P.L.; Beerling, D.J. Plasticity in maximum stomatal conductance constrained by negative correlation between stomatal size and density: An analysis using Eucalyptus globulus. Plant Cell Environ. 2009, 32, 1737-1748. [CrossRef]
Douhovnikoff, V.; Taylor, S.H.; Hazelton, E.L.G.; Smith, C.M.; O'Brien, J. Maximal stomatal conductance to water and plasticity in stomatal traits differ between native and invasive introduced lineages of Phragmites australis in North America. AoB Plants 2016, 8, 1-11. [CrossRef]
Drake, R.E.; Frey, W.; Bond, G.R.; Goldman, H.H.; Salkever, D.; Miller, A.; Moore, T.A.; Riley, J.; Karakus, M.; Milfort, R. Assisting social security disability insurance beneficiaries with schizophrenia, bipolar disorder, or major depression in returning to work. Am. J. Psychiatry 2013, 170, 1433-1441. [CrossRef]
Aasamaa, K.; Sõber, A.; Rahi, M. Leaf anatomical characteristics associated with shoot hydraulic conductance, stomatal conductance and stomatal sensitivity to changes of leaf water status in temperate deciduous trees. Funct. Plant Biol. 2001, 28, 765-774. [CrossRef]
Niinemets, Ü.; Portsmuth, A.; Tena, D.; Tobias, M.; Matesanz, S.; Valladares, F. Do we underestimate the importance of leaf size in plant economics Disproportional scaling of support costs within the spectrum of leaf physiognomy. Ann. Bot. 2007, 100, 283-303. [CrossRef]