anatomical density; blue intensity; maximum latewood density (MXD); microdensitometry; paleoclimatology; X-ray densitometry; Maximum latewood density; Paleoclimatology; X ray densitometry; Geophysics
Abstract :
[en] X-ray microdensitometry on annually resolved tree-ring samples has gained an exceptional position in last-millennium paleoclimatology through the maximum latewood density (MXD) parameter, but also increasingly through other density parameters. For 50 years, X-ray based measurement techniques have been the de facto standard. However, studies report offsets in the mean levels for MXD measurements derived from different laboratories, indicating challenges of accuracy and precision. Moreover, reflected visible light-based techniques are becoming increasingly popular, and wood anatomical techniques are emerging as a potentially powerful pathway to extract density information at the highest resolution. Here we review the current understanding and merits of wood density for tree-ring research, associated microdensitometric techniques, and analytical measurement challenges. The review is further complemented with a careful comparison of new measurements derived at 17 laboratories, using several different techniques. The new experiment allowed us to corroborate and refresh “long-standing wisdom” but also provide new insights. Key outcomes include (i) a demonstration of the need for mass/volume-based recalibration to accurately estimate average ring density; (ii) a substantiation of systematic differences in MXD measurements that cautions for great care when combining density data sets for climate reconstructions; and (iii) insights into the relevance of analytical measurement resolution in signals derived from tree-ring density data. Finally, we provide recommendations expected to facilitate futureinter-comparability and interpretations for global change research.
Disciplines :
Agriculture & agronomy Phytobiology (plant sciences, forestry, mycology...) Life sciences: Multidisciplinary, general & others Engineering, computing & technology: Multidisciplinary, general & others
Author, co-author :
Björklund, J. ; Swiss Federal Institute for Forest Snow and Landscape Research WSL, Birmensdorf, Switzerland ; Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Prague, Czech Republic ; Gothenburg University Laboratory for Dendrochronology, Earth Science Center, Gothenburg University, Gothenburg, Sweden
von Arx, G. ; Swiss Federal Institute for Forest Snow and Landscape Research WSL, Birmensdorf, Switzerland
Nievergelt, D.; Swiss Federal Institute for Forest Snow and Landscape Research WSL, Birmensdorf, Switzerland
Wilson, R. ; School of Earth and Environmental Sciences, University of St. Andrews, St. Andrews, United Kingdom ; Tree-Ring Laboratory, Lamont-Doherty Earth Observatory of Columbia University, New York, United States
Van den Bulcke, J. ; UGent-Woodlab, Laboratory of Wood Technology, Department of Environment, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium ; Ghent University Centre for X-ray Tomography (UGCT), Ghent, Belgium
Günther, B.; Institute of Forest Utilization and Forest Technology, Technische Universität Dresden, Dresden, Germany
Loader, N.J.; Department of Geography, Swansea University, Swansea, United Kingdom
Rydval, M. ; Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Prague, Czech Republic
Fonti, P. ; Swiss Federal Institute for Forest Snow and Landscape Research WSL, Birmensdorf, Switzerland
Scharnweber, T. ; Dendrogreif, University of Greifswald, Greifswald, Germany
Andreu-Hayles, L. ; Tree-Ring Laboratory, Lamont-Doherty Earth Observatory of Columbia University, New York, United States
Büntgen, U.; Swiss Federal Institute for Forest Snow and Landscape Research WSL, Birmensdorf, Switzerland ; Department of Geography, University of Cambridge, Cambridge, United Kingdom
D'Arrigo, R.; Tree-Ring Laboratory, Lamont-Doherty Earth Observatory of Columbia University, New York, United States
Davi, N.; Department of Environmental Science, William Paterson University, Wayne, United States
De Mil, Tom ; Université de Liège - ULiège > TERRA Research Centre > Gestion des ressources forestières ; UGent-Woodlab, Laboratory of Wood Technology, Department of Environment, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium ; Ghent University Centre for X-ray Tomography (UGCT), Ghent, Belgium
Esper, J.; Department of Geography, Johannes Gutenberg-University, Mainz, Germany
Gärtner, H. ; Swiss Federal Institute for Forest Snow and Landscape Research WSL, Birmensdorf, Switzerland
Geary, J.; Department of Environmental Science, William Paterson University, Wayne, United States
Gunnarson, B.E.; Bolin Centre for Climate Research, Stockholm University, Stockholm, Sweden
Hartl, C.; Department of Geography, Johannes Gutenberg-University, Mainz, Germany
Hevia, A.; Forest and Wood Technology Research Centre (CETEMAS), Spain ; Departamento de Ciencias Agroforestales, Universidad de Huelva, Huelva, Spain
Song, H.; State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, China ; Center for Excellence in Quaternary Science and Global Change, Chinese Academy of Sciences, Xi'an, China
Janecka, K.; Dendrogreif, University of Greifswald, Greifswald, Germany ; Faculty of Earth Sciences, University of Silesia in Katowice, Katowice, Poland
Kaczka, R.J.; Faculty of Earth Sciences, University of Silesia in Katowice, Katowice, Poland
Kirdyanov, A.V.; Sukachev Institute of Forest SB RAS, Krasnoyarsk, Russian Federation ; Institute of Ecology and Geography, Siberian Federal University, Krasnoyarsk, Russian Federation
Kochbeck, M.; Department of Geography, Johannes Gutenberg-University, Mainz, Germany
Liu, Y.; State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, China ; Center for Excellence in Quaternary Science and Global Change, Chinese Academy of Sciences, Xi'an, China
Meko, M.; Laboratory of Tree-Ring Research, University of Arizona, Tucson, United States
Mundo, I. ; Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales (IANIGLA), CONICET, Mendoza, Argentina ; Facultad de Ciencias Exactas y Naturales, UNCuyo, Mendoza, Argentina
Nicolussi, K. ; Institute of Geography, University of Innsbruck, Innsbruck, Austria
Oelkers, R.; Tree-Ring Laboratory, Lamont-Doherty Earth Observatory of Columbia University, New York, United States
Pichler, T.; Institute of Geography, University of Innsbruck, Innsbruck, Austria
Sánchez-Salguero, R.; Departamento de Sistemas Físicos, Químicos y Naturales, Universidad Pablo de Olavide, Seville, Spain
Schneider, L.; Swiss Federal Institute for Forest Snow and Landscape Research WSL, Birmensdorf, Switzerland
Schweingruber, F.; Swiss Federal Institute for Forest Snow and Landscape Research WSL, Birmensdorf, Switzerland
Timonen, M. ; Natural Resources Institute, Joensuu, Finland
Trouet, V. ; Laboratory of Tree-Ring Research, University of Arizona, Tucson, United States
Van Acker, J. ; UGent-Woodlab, Laboratory of Wood Technology, Department of Environment, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium ; Ghent University Centre for X-ray Tomography (UGCT), Ghent, Belgium
Verstege, A.; Swiss Federal Institute for Forest Snow and Landscape Research WSL, Birmensdorf, Switzerland
Villalba, R. ; Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales (IANIGLA), CONICET, Mendoza, Argentina
Wilmking, M.; Dendrogreif, University of Greifswald, Greifswald, Germany
Frank, D.; Swiss Federal Institute for Forest Snow and Landscape Research WSL, Birmensdorf, Switzerland ; Laboratory of Tree-Ring Research, University of Arizona, Tucson, United States
FWF - Austrian Science Fund RSF - Russian Science Foundation NSF - National Science Foundation EU - European Union NERC - Natural Environment Research Council LG - Leibniz-Gemeinschaft ERDF - European Regional Development Fund NCN - Narodowe Centrum Nauki UGent - Universiteit Gent SNF - Schweizerischer Nationalfonds zur Förderung der wissenschaftlichen Forschung
Funding text :
We sincerely thank three anonymous referees for valuable critique to an earlier version of the manuscript. We further acknowledge the shared expertise of Etienne Szymanski and Peter Herter of WALESCH Electronic and Anders Rindby of Cox Analytical Systems during a workshop arranged as part of the coordination of the intercomparison experiment (section of this review). We thank two diligent technicians: Patrick Z\u00FCst and Basil Frefel for assistance in producing the wood anatomically based data set. This work was mainly funded by the Swiss National Science Foundation (Grants iTREE CRSII3_136295 and P300P2_ 154543). J. B. further gratefully acknowledges financial support by the Transnational Access to Research Infrastructures activity in the 7th Framework Programme of the EC under the Trees4Future project (284181). G. v. A. was supported by a grant from the Swiss State Secretariat for Education, Research and Innovation SERI (SBFI C14.0104). J. B. and G. v. A. were also supported by the Swiss National Science Foundation (SNSF; Project XELLCLIM 200021_182398). M. R. acknowledges funding through the EVA4.0 project (CZ.02.1.01/0.0/0.0/16_019/0000803). P. F. was supported by the Swiss National Science Foundation (Grants 150205 and LOTFOR). T. D. M was supported by Ghent University Special Research Fund PhD grant (BOF.DOC.2014.0037.01). R. K. and K. J. were supported by the National Science Centre project DEC\u20102013/11/B/ST10/04764 (Poland). A. H. and R. S.\u2010S. are grateful to Juan Majada for providing support for this study and Laura Gonz\u00E1lez S\u00E1nchez, Mara Arrojo, and Fernando Quintana who assisted in the CETEMAS laboratory. R. S.\u2010S. was supported by a postdoctoral grant (IJCI\u20102015\u201025845, FEDER funds). A. V. K. was supported by the Russian Science Foundation (Project 18\u201014\u201000072). J. E, C. H., and M. K. were supported by the German Science Foundation (Grants Inst 247/665\u20101 FUGG, ES 161/9\u20101, and HA 8048/1\u20101). M. W. and T. S. were supported by the Leibnitz Association (project BaltRap) and M. W. by the German Science Foundation (Grants Inst 247/665\u20101 FUGG, ES 161/9\u20101, and Wi 2680/8\u20101). K. N. was supported by the Austrian Science Fund FWF (Grant I 1183\u2010N19). L. A.\u2010H., R. O., and R. D. were supported by the U.S. National Science Foundation (NSF) Grants AGS\u201015\u201002150, PLR\u201015\u201004134, and PLR\u201016\u201003473. U. B. received funding from the project \u201CSustES \u2010 Adaptation strategies for sustainable ecosystem services and food security under adverse environmental conditions\u201D (CZ.02.1.01/0.0/0.0/16_019/0000797). R. W. was supported by NERC Grant NE/K003097/1. N. J. L. received support from the UK NERC (NE/P011527/1) and EU project \u201CMillennium\u201D (017008). M. M. and V. T. were supported by U.S. NSF CAREER Grant AGS\u20101349942. I.M. and R.V. were partially supported by the BNP Paribas Foundation (Award THEMES). Data produced for this study are made available through the Supporting Information ( Data S1 ), where also meta data (technique and parameterization) for each data set are described (Tables S1 \u2013 S3 of Data S2 ).
Allen, K. J., Cook, E. R., Evans, R., Francey, R., Buckley, B. M., Palmer, J. G., Peterson, M. J., & Baker, P. J. (2018). Lack of cool, not warm, extremes distinguishes late 20th century climate in 979-year Tasmanian summer temperature reconstruction. Environmental Research Letters, 13(3). https://doi.org/10.1088/1748-9326/aaafd7
Allen, K. J., Drew, D. M., Downes, G. M., Evans, R., Cook, E. R., Battaglia, M., & Baker, P. J. (2013). A strong regional temperature signal in low-elevation Huon pine. Journal of Quaternary Science, 28(5), 433–438. https://doi.org/10.1002/jqs.2637
Allen, K. J., Nichols, S. C., Evans, R., Cook, E. R., Allie, S., Carson, G., Ling, F., & Baker, P. J. (2015). Preliminary December–January inflow and streamflow reconstructions from tree rings for western Tasmania, southeastern Australia. Water Resources Research, 51, 5487–5503. https://doi.org/10.1002/2015WR017062
Anchukaitis, K. J., Breitenmoser, P., Briffa, K. R., Buchwal, A., Büntgen, U., Cook, E. R., D'Arrigo, R. D., Esper, J., Evans, M. N., Frank, D., Grudd, H., Gunnarson, B. E., Hughes, M. K., Kirdyanov, A. V., Körner, C., Krusic, P. J., Luckman, B., Melvin, T. M., Salzer, M. W., Shashkin, A. V., Timmreck, C., Vaganov, E. A., & Wilson, R. J. S. (2012). Tree rings and volcanic cooling. Nature Geoscience, 5(12), 836–837. https://doi.org/10.1038/ngeo1645
Anchukaitis, K. J., D'Arrigo, R. D., Andreu-Hayles, L., Frank, D., Verstege, A., Curtis, A., Buckley, B. M., Jacoby, G. C., & Cook, E. R. (2013). Tree-ring-reconstructed summer temperatures from northwestern North America during the last nine centuries. Journal of Climate, 26(10), 3001–3012. https://doi.org/10.1175/JCLI-D-11-00139.1
Anchukaitis, K. J., Wilson, R., Briffa, K. R., Büntgen, U., Cook, E. R., D'Arrigo, R., Davi, N., Esper, J., Frank, D., Gunnarson, B. E., Hegerl, G., Helama, S., Klesse, S., Krusic, P. J., Linderholm, H. W., Myglan, V., Osborn, T. J., Zhang, P., Rydval, M., Schneider, L., Schurer, A., Wiles, G., & Zorita, E. (2017). Last millennium Northern Hemisphere summer temperatures from tree rings: Part II, spatially resolved reconstructions. Quaternary Science Reviews, 163, 1–22. https://doi.org/10.1016/j.quascirev.2017.02.020
Antonova, G. F., & Stasova, V. V. (1997). Effects of environmental factors on wood formation in larch (Larix sibirica Ldb.) stems. Trees, 11(8), 462–468.
Arzac, A., López-Cepero, J. M., Babushkina, E. A., & Gomez, S. (2018). Applying methods of hard tissues preparation for wood anatomy: Imaging polished samples embedded in polymethylmethacrylate. Dendrochronologia, 51, 76–81. https://doi.org/10.1016/j.dendro.2018.08.005
Austin, A. T., & Ballaré, C. L. (2010). Dual role of lignin in plant litter decomposition in terrestrial ecosystems. Proceedings of the National Academy of Sciences, 107(10), 4618–4622. https://doi.org/10.1073/pnas.0909396107
Auty, D., Achim, A., Macdonald, E., Cameron, A. D., & Gardiner, B. A. (2014). Models for predicting wood density variation in Scots pine. Forestry: An International Journal of Forest Research, 87(3), 449–458. https://doi.org/10.1093/forestry/cpu005
Babst, F., Alexander, M. R., Szejner, P., Bouriaud, O., Klesse, S., Roden, J., Ciais, P., Poulter, B., Frank, D., Moore, D. J. P., & Trouet, V. (2014). A tree-ring perspective on the terrestrial carbon cycle. Oecologia, 176(2), 307–322. https://doi.org/10.1007/s00442-014-3031-6
Babst, F., Bouriaud, O., Papale, D., Gielen, B., Janssens, I. A., Nikinmaa, E., Ibrom, A., Wu, J., Bernhofer, C., Köstner, B., Grünwald, T., Seufert, G., Ciais, P., & Frank, D. (2014). Above-ground woody carbon sequestration measured from tree rings is coherent with net ecosystem productivity at five eddy-covariance sites. New Phytologist, 201(4), 1289–1303. https://doi.org/10.1111/nph.12589
Babst, F., Frank, D., Büntgen, U., Nievergelt, D., & Esper, J. (2009). Effect of sample preparation and scanning resolution on the blue reflectance of Picea abies. TRACE Proc, 7, 188–195.
Baker, T. R., Phillips, O. L., Malhi, Y., Almeida, S., Arroyo, L., di Fiore, A., Erwin, T., Killeen, T. J., Laurance, S. G., Laurance, W. F., Lewis, S. L., Lloyd, J., Monteagudo, A., Neill, D. A., Patino, S., Pitman, N. C. A., M. Silva, J. N., & Vasquez Martinez, R. (2004). Variation in wood density determines spatial patterns in Amazonian forest biomass. Global Change Biology, 10(5), 545–562. https://doi.org/10.1111/j.1365-2486.2004.00751.x
Battipaglia, G., Frank, D., Büntgen, U., Dobrovolný, P., Brázdil, R., Pfister, C., & Esper, J. (2010). Five centuries of Central European temperature extremes reconstructed from tree-ring density and documentary evidence. Global and Planetary Change, 72(3), 182–191.
Bergsten, U., Lindeberg, J., Rindby, A., & Evans, R. (2001). Batch measurements of wood density on intact or prepared drill cores using X-ray microdensitometry. Wood Science and Technology, 35(5), 435–452. https://doi.org/10.1007/s002260100106
Björklund, J. (2014). Tree-rings and climate-standardization, proxy-development, and Fennoscandian summer temperature history. PhD thesis. Department of Earth Sciences, University of Gothen- burg. http://www.gvc.gu.se/forskning/klimat/paleoklimat/GULD/Publications/thesises-and-reports/
Björklund, J., Gunnarson, B. E., Seftigen, K., Zhang, P., & Linderholm, H. W. (2015). Using adjusted blue intensity data to attain high-quality summer temperature information: A case study from Central Scandinavia. The Holocene, 25(3), 547–556. https://doi.org/10.1177/0959683614562434
Björklund, J., Seftigen, K., Schweingruber, F., Fonti, P., von Arx, G., Bryukhanova, M. V., Cuny, H. E., Carrer, M., Castagneri, D., & Frank, D. C. (2017). Cell size and wall dimensions drive distinct variability of earlywood and latewood density in Northern Hemisphere conifers. New Phytologist, 216(3), 728–740. https://doi.org/10.1111/nph.14639
Björklund, J. A., Gunnarson, B. E., Krusic, P. J., Grudd, H., Josefsson, T., Östlund, L., & Linderholm, H. W. (2013). Advances towards improved low-frequency tree-ring reconstructions, using an updated Pinus sylvestris L. MXD network from the Scandinavian Mountains. Theoretical and applied climatology, 113(3-4), 697–710. https://doi.org/10.1007/s00704-012-0787-7
Björklund, J. A., Gunnarson, B. E., Seftigen, K., Esper, J., & Linderholm, H. W. (2014). Blue intensity and density from northern Fennoscandian tree rings, exploring the potential to improve summer temperature reconstructions with earlywood information. Climate of the Past, 10(2), 877–885. https://doi.org/10.5194/cp-10-877-2014
Black, B. A., Griffin, D., van der Sleen, P., Wanamaker Jr, A. D., Speer, J. H., Frank, D. C., Stahle, D. W., Pederson, N., Copenheaver, C. A., Trouet, V., Griffin, S., & Gillanders, B. M. (2016). The value of crossdating to retain high-frequency variability, climate signals, and extreme events in environmental proxies. Global Change Biology, 22(7), 2582–2595.
Bowyer, J. L., Shmulsky, R., & Haygreen, J. G. (2003). Forest products and wood science (Vol. 4). USA: Iowa State Press.
Bouriaud, O., Teodosiu, M., Kirdyanov, A. V., & Wirth, C. (2015). Influence of wood density in tree-ring-based annual productivity assessments and its errors in Norway spruce. Biogeosciences, 12(20), 6205–6217.
Briffa, K. R., Bartholin, T. S., Eckstein, D., Jones, P. D., Karlén, W., Schweingruber, F. H., & Zetterberg, P. (1990). A 1,400-year tree-ring record of summer temperatures in Fennoscandia. Nature, 346(6283), 434.
Briffa, K. R., Jones, P. D., Bartholin, T. S., Eckstein, D., Schweingruber, F. H., Karlén, W., Zetterberg, P., & Eronen, M. (1992). Fennoscandian summers from AD 500: Temperature changes on short and long timescales. Climate dynamics, 7(3), 111–119. https://doi.org/10.1007/BF00211153
Briffa, K. R., Jones, P. D., Schweingruber, F. H., & Osborn, T. J. (1998). Influence of volcanic eruptions on Northern Hemisphere summer temperature over the past 600 years. Nature, 393(6684), 450.
Briffa, K. R., & Melvin, T. M. (2011). A closer look at regional curve standardization of tree-ring records: Justification of the need, a warning of some pitfalls, and suggested improvements in its application. In Dendroclimatology (pp. 113–145). Dordrecht: Springer.
Briffa, K. R., Osborn, T. J., & Schweingruber, F. H. (2004). Large-scale temperature inferences from tree rings: A review. Global and planetary change, 40(1-2), 11–26.
Briffa, K. R., Osborn, T. J., Schweingruber, F. H., Jones, P. D., Shiyatov, S. G., & Vaganov, E. A. (2002). Tree-ring width and density data around the Northern Hemisphere: Part 1, local and regional climate signals. The Holocene, 12(6), 737–757.
Britez, M. R. D., Sergent, A. S., Meier, A. M., Bréda, N., & Rozenberg, P. (2014). Wood density proxies of adaptive traits linked with resistance to drought in Douglas fir (Pseudotsuga menziesii (Mirb.) Franco). Trees, 28(5), 1289–1304.
Brown, H. P., Panshin, A. J., & Forsaith, C. C. (1949). Textbook of wood technology. Vol. 1. Structure, identification, defects and uses of the commercial woods of the United States. Textbook of wood technology. Vol. 1. Structure, identification, defects and uses of the commercial woods of the United States.
Bryukhanova, M., & Fonti, P. (2013). Xylem plasticity allows rapid hydraulic adjustment to annual climatic variability. Trees, 27(3), 485–496.
Buckley, B. M., Hansen, K. G., Griffin, K. L., Schmiege, S., Oelkers, R., D'Arrigo, R. D., Stahle, D. K., Davi, N., Nguyen, T. Q. T., Le, C. N., & Wilson, R. J. S. (2018). Blue intensity from a tropical conifer's annual rings for climate reconstruction: An ecophysiological perspective. Dendrochronologia, 50, 10–22. https://doi.org/10.1016/j.dendro.2018.04.003
Büntgen, U., Frank, D., Grudd, H., & Esper, J. (2008). Long-term summer temperature variations in the Pyrenees. Climate Dynamics, 31(6), 615–631.
Büntgen, U., Frank, D., Trouet, V., & Esper, J. (2010). Diverse climate sensitivity of Mediterranean tree-ring width and density. Trees, 24(2), 261–273.
Büntgen, U., Frank, D. C., Kaczka, R. J., Verstege, A., Zwijacz-Kozica, T., & Esper, J. (2007). Growth responses to climate in a multi-species tree-ring network in the Western Carpathian Tatra Mountains, Poland and Slovakia. Tree physiology, 27(5), 689–702.
Büntgen, U., Frank, D. C., Nievergelt, D., & Esper, J. (2006). Summer temperature variations in the European Alps, AD 755–2004. Journal of Climate, 19(21), 5606–5623.
Büntgen, U., Krusic, P. J., Verstege, A., Sangüesa-Barreda, G., Wagner, S., Camarero, J. J., Ljungqvist, F. C., Zorita, E., Oppenheimer, C., Konter, O., Tegel, W., Gärtner, H., Cherubini, P., Reinig, F., & Esper, J. (2017). New tree-ring evidence from the Pyrenees reveals western Mediterranean climate variability since medieval times. Journal of Climate, 30(14), 5295–5318. https://doi.org/10.1175/JCLI-D-16-0526.1
Büntgen, U., Raible, C. C., Frank, D., Helama, S., Cunningham, L., Hofer, D., Nievergelt, D., Verstege, A., Timonen, M., Stenseth, N. C., & Esper, J. (2011). Causes and consequences of past and projected Scandinavian summer temperatures, 500–2100 AD. Plos One, 6(9), e25133. https://doi.org/10.1371/journal.pone.0025133
Burkey, J. (2006). A non-parametric monotonic trend test computing Mann-Kendall Tau, Tau-b, and Sen's slope written in Mathworks-MATLAB implemented using matrix rotations. Seattle, WA: King County, Department of Natural Resources and Parks, Science and Technical Services Section.
Camarero, J. J., Fernández-Pérez, L., Kirdyanov, A. V., Shestakova, T. A., Knorre, A. A., Kukarskih, V. V., & Voltas, J. (2017). Minimum wood density of conifers portrays changes in early season precipitation at dry and cold Eurasian regions. Trees, 31(5), 1423–1437.
Camarero, J. J., Rozas, V., & Olano, J. M. (2014). Minimum wood density of Juniperus thurifera is a robust proxy of spring water availability in a continental Mediterranean climate. Journal of biogeography, 41(6), 1105–1114.
Cameron, A. D., Gardiner, B. A., Ramsay, J., & Drewett, T. A. (2015). Effect of early release from intense competition within high density natural regeneration on the properties of juvenile and mature wood of 40-year-old Sitka spruce (Picea sitchensis (Bong.) Carr.). Annals of forest science, 72(1), 99–107.
Cameron, J. F., Berry, P. F., & Phillips, E. W. J. (1959). The determination of wood density using beta rays. Holzforschung-International Journal of the Biology, Chemistry, Physics and Technology of Wood, 13(3), 78–84.
Campbell, R., McCarroll, D., Loader, N. J., Grudd, H., Robertson, I., & Jalkanen, R. (2007). Blue intensity in Pinus sylvestris tree-rings: Developing a new palaeoclimate proxy. The Holocene, 17(6), 821–828.
Campbell, R., McCarroll, D., Robertson, I., Loader, N. J., Grudd, H., & Gunnarson, B. (2011). Blue intensity in Pinus sylvestris tree rings: A manual for a new palaeoclimate proxy. Tree-Ring Research, 67(2), 127–134.
Castagneri, D., Battipaglia, G., von Arx, G., Pacheco, A., & Carrer, M. (2018). Tree-ring anatomy and carbon isotope ratio show both direct and legacy effects of climate on bimodal xylem formation in Pinus pinea. Tree physiology, 38(8), 1098–1109. https://doi.org/10.1093/treephys/tpy036
Castagneri, D., Fonti, P., von Arx, G., & Carrer, M. (2017). How does climate influence xylem morphogenesis over the growing season? Insights from long-term intra-ring anatomy in Picea abies. Annals of botany, 119(6), 1011–1020.
Chave, J., Coomes, D., Jansen, S., Lewis, S. L., Swenson, N. G., & Zanne, A. E. (2009). Towards a worldwide wood economics spectrum. Ecology letters, 12(4), 351–366.
Chen, F., Yuan, Y. J., Wei, W. S., Yu, S. L., Fan, Z. A., Zhang, R. B., Zhang, T. W., Li, Q., & Shang, H. M. (2012). Temperature reconstruction from tree-ring maximum latewood density of Qinghai spruce in middle Hexi Corridor, China. Theoretical and Applied Climatology, 107(3-4), 633–643. https://doi.org/10.1007/s00704-011-0512-y
Clauson, M. L., & Wilson, J. B. (1991). Comparison of video and x-ray for scanning wood density. Forest products journal (USA).
Cleaveland, M. K. (1986). Climatic response of densitometric properties in semiarid site tree rings. Tree-Ring Bulletin.
Cook, E. R. (1985). A time series analysis approach to tree-ring standardization, Ph.D. Thesis, The University of Arizona, Tucson.
Cook, E. R., Briffa, K. R., Meko, D. M., Graybill, D. A., & Funkhouser, G. (1995). The'segment length curse'in long tree-ring chronology development for palaeoclimatic studies. The Holocene, 5(2), 229–237.
Cook, E. R., & Kairiukstis, L. A. (Eds) (2013). Methods of dendrochronology: Applications in the environmental sciences. Dordrecht: Springer Science & Business Media.
Cook, E. R., & Peters, K. (1981). The smoothing spline: A new approach to standardizing forest interior tree-ring width series for dendroclimatic studies.
Cown, D. J., & Clement, B. C. (1983). A wood densitometer using direct scanning with X-rays. Wood Science and Technology, 17(2), 91–99.
Cuny, H. E., Rathgeber, C. B., Frank, D., Fonti, P., & Fournier, M. (2014). Kinetics of tracheid development explain conifer tree-ring structure. New Phytologist, 203(4), 1231–1241.
Cuny, H. E., Rathgeber, C. B. K., Frank, D. C., Fonti, P., Mäkinen, H., Prislan, P., Rossi, S., Del Castillo, E. M., Campelo, F., Vavrˇík, Camarero, J. J., Bryukhanova, M. V., Jyske, T., Griˇar, J., Gryc, V., De Luis, M., Vieira, J., Čufar, K., Kirdyanov, A. V., Oberhuber, W., Treml, V., Huang, J. G., Li, X., Swidrak, I., Deslauriers, A., Liang, E., Nöjd, P., Gruber, A., Nabais, C., Morin, H., Krause, C., King, G., & Fournier, M. (2015). Woody biomass production lags stem-girth increase by over one month in coniferous forests. Nature Plants, 1(11), 15160.
Dannenberg, M. P., & Wise, E. K. (2016). Seasonal climate signals from multiple tree ring metrics: A case study of Pinus ponderosa in the upper Columbia River Basin. Journal of Geophysical Research: Biogeosciences, 121, 1178–1189. https://doi.org/10.1002/2015JG003155
D'Arrigo, R., Wilson, R., & Anchukaitis, K. J. (2013). Volcanic cooling signal in tree ring temperature records for the past millennium. Journal of Geophysical Research: Atmospheres, 118, 9000–9010. https://doi.org/10.1002/jgrd.50692
D'Arrigo, R., Wilson, R., Liepert, B., & Cherubini, P. (2008). On the ‘divergence problem’ in northern forests: A review of the tree-ring evidence and possible causes. Global and planetary change, 60(3-4), 289–305.
Davi, N. K., Jacoby, G. C., & Wiles, G. C. (2003). Boreal temperature variability inferred from maximum latewood density and tree-ring width data, Wrangell Mountain region, Alaska. Quaternary Research, 60(3), 252–262.
de Groote, S. R. E., Vanhellemont, M., Baeten, L., van den Bulcke, J., Martel, A., Bonte, D., Lens, L., & Verheyen, K. (2018). Competition, tree age and size drive the productivity of mixed forests of pedunculate oak, beech and red oak. Forest Ecology and Management, 430, 609–617. https://doi.org/10.1016/j.foreco.2018.08.050
De Mil, T., Vannoppen, A., Beeckman, H., Van Acker, J., & Van den Bulcke, J. (2016). A field-to-desktop toolchain for X-ray CT densitometry enables tree ring analysis. Annals of botany, 117(7), 1187–1196.
De Ridder, M., Van den Bulcke, J., Vansteenkiste, D., Van Loo, D., Dierick, M., Masschaele, B., De Witte, Y., Mannes, D., Lehmann, E., Beeckman, H., & Van Hoorebeke, L. (2010). High-resolution proxies for wood density variations in Terminalia superba. Annals of botany, 107(2), 293–302. https://doi.org/10.1093/aob/mcq224
DeBell, D. S., Singleton, R., Gartner, B. L., & Marshall, D. D. (2004). Wood density of young-growth western hemlock: relation to ring age, radial growth, stand density, and site quality. Canadian Journal of Forest Research, 34(12), 2433–2442.
Decoux, V., Varcin, É., & Leban, J. M. (2004). Relationships between the intra-ring wood density assessed by X-ray densitometry and optical anatomical measurements in conifers. Consequences for the cell wall apparent density determination. Annals of Forest Science, 61(3), 251–262.
Dierick, M., Van Loo, D., Masschaele, B., Boone, M., & Van Hoorebeke, L. (2010). A LabVIEW® based generic CT scanner control software platform. Journal of X-ray Science and Technology, 18(4), 451–461.
Dierick, M., Van Loo, D., Masschaele, B., Van den Bulcke, J., Van Acker, J., Cnudde, V., & Van Hoorebeke, L. (2014). Recent micro-CT scanner developments at UGCT. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 324, 35–40.
Dolgova, E. (2016). June–September temperature reconstruction in the Northern Caucasus based on blue intensity data. Dendrochronologia, 39, 17–23. https://doi.org/10.1016/j.dendro.2016.03.002
Downes, G. M., Evans, R., Benson, M., & Myers, B. (1994). Application of a new wood micro-structure analyser to the assessment of environmental effects on radiata pine tracheid dimensions. In 48th Appita Conference, Melbourne.
Downes, G. M., Wimmer, R., & Evans, R. (2002). Understanding wood formation: Gains to commercial forestry through tree-ring research. Dendrochronologia, 20(1-2), 37–51.
Drew, D. M., Allen, K., Downes, G. M., Evans, R., Battaglia, M., & Baker, P. (2012). Wood properties in a long-lived conifer reveal strong climate signals where ring-width series do not. Tree physiology, 33(1), 37–47.
Duan, J., & Zhang, Q. B. (2014). A 449 year warm season temperature reconstruction in the southeastern Tibetan Plateau and its relation to solar activity. Journal of Geophysical Research: Atmospheres, 119, 11–578. https://doi.org/10.1002/2014JD022422
Düthorn, E., Schneider, L., Günther, B., Gläser, S., & Esper, J. (2016). Ecological and climatological signals in tree-ring width and density chronologies along a latitudinal boreal transect. Scandinavian Journal of Forest Research, 31(8), 750–757.
Elliott, G. K. (1970). Wood density in conifers. Tech. Comm. No. 8, Commonwealth Forestry Bureau, Oxford, England.
Elliott, G. K., & Brook, S. E. G. (1967). Microphotometric technique for growth-ring analysis. Journal of the Institute of wood Science, 18, 24.
Emile-Geay, J., McKay, N. P., Kaufman, D. S., Von Gunten, L., Wang, J., Anchukaitis, K. J., et al. (2017). A global multiproxy database for temperature reconstructions of the Common Era. Scientific data, 4.
Eschbach, W., Nogler, P., Schär, E., & Schweingruber, F. H. (1995). Technical advances in the radiodensitometrical determination of wood density. Dendrochronologia, 13, 155–168.
Esper, J., Cook, E. R., Krusic, P. J., Peters, K., & Schweingruber, F. H. (2003). Tests of the RCS method for preserving low-frequency variability in long tree-ring chronologies. Tree Ring Res., 59, 81–98.
Esper, J., Düthorn, E., Krusic, P. J., Timonen, M., & Büntgen, U. (2014). Northern European summer temperature variations over the Common Era from integrated tree-ring density records. Journal of Quaternary Science, 29(5), 487–494. https://doi.org/10.1002/jqs.2726
Esper, J., & Frank, D. (2009). Divergence pitfalls in tree-ring research. Climatic Change, 94(3), 261–266.
Esper, J., Frank, D. C., Timonen, M., Zorita, E., Wilson, R. J. S., Luterbacher, J., Holzkämper, S., Fischer, N., Wagner, S., Nievergelt, D., Verstege, A., & Büntgen, U. (2012). Orbital forcing of tree-ring data. Nature Climate Change, 2(12), 862–866. https://doi.org/10.1038/nclimate1589
Esper, J., George, S. S., Anchukaitis, K., D'Arrigo, R., Ljungqvist, F. C., Luterbacher, J., Schneider, L., Stoffel, M., Wilson, R., & Büntgen, U. (2018). Large-scale, millennial-length temperature reconstructions from tree-rings. Dendrochronologia, 50, 81–90. https://doi.org/10.1016/j.dendro.2018.06.001
Esper, J., Schneider, L., Smerdon, J. E., Schöne, B. R., & Büntgen, U. (2015). Signals and memory in tree-ring width and density data. Dendrochronologia, 35, 62–70. https://doi.org/10.1016/j.dendro.2015.07.001
Evans, R. (1994). Rapid measurement of the transverse dimensions of tracheids in radial wood sections from Pinus radiata. Holzforschung, 48(2), 168–172.
Evans, R., Downes, G. M., & Murphy, J. O. (1996). Application of new wood characterization technology to dendrochronology. In ‘Tree Rings, Environment and Humanity’. (Eds JS Dean, DM Meko and TW Swetnam.) pp. 743–749. Radiocarbon.
Fletcher, J. M., & Hughes, J. F. (1970). Uses of X-rays for density determinations and dendrochronology. Bull. Fac. For. Univ. BC, 7, 41–54.
Fonti, P., Bryukhanova, M. V., Myglan, V. S., Kirdyanov, A. V., Naumova, O. V., & Vaganov, E. A. (2013). Temperature-induced responses of xylem structure of Larix sibirica (Pinaceae) from the Russian Altay. American journal of botany, 100(7), 1332–1343.
Fonti, P., & Jansen, S. (2012). Xylem plasticity in response to climate. New Phytologist, 195(4), 734–736.
Fonti, P., von Arx, G., García-González, I., Eilmann, B., Sass-Klaassen, U., Gärtner, H., & Eckstein, D. (2010). Studying global change through investigation of the plastic responses of xylem anatomy in tree rings. New Phytologist, 185(1), 42–53.
Frank, D., Büntgen, U., Böhm, R., Maugeri, M., & Esper, J. (2007). Warmer early instrumental measurements versus colder reconstructed temperatures: Shooting at a moving target. Quaternary Science Reviews, 26(25-28), 3298–3310.
Frank, D., & Esper, J. (2005). Characterization and climate response patterns of a high-elevation, multi-species tree-ring network in the European Alps. Dendrochronologia, 22(2), 107–121.
Franke, J., Frank, D., Raible, C. C., Esper, J., & Brönnimann, S. (2013). Spectral biases in tree-ring climate proxies. Nature Climate Change, 3(4), 360.
Fritts, H. C. (1976). Tree rings and climate. New York, NY, USA: Academic Press INC.
Fuentes, M., Salo, R., Björklund, J., Seftigen, K., Zhang, P., Gunnarson, B., Aravena, J. C., & Linderholm, H. W. (2018). A 970-year-long summer temperature reconstruction from Rogen, west-central Sweden, based on blue intensity from tree rings. The Holocene, 28(2), 254–266. https://doi.org/10.1177/0959683617721322
Fukazawa, K. (1992). Ultraviolet microscopy. In Methods in lignin chemistry (pp. 110–121). Berlin, Heidelberg: Springer.
Gartner, B. L. (1995). Patterns of xylem variation within a tree and their hydraulic and mechanical consequences. In Plant stems (pp. 125-149).
Gärtner, H., & Nievergelt, D. (2010). The core-microtome: A new tool for surface preparation on cores and time series analysis of varying cell parameters. Dendrochronologia, 28(2), 85–92.
Gärtner, H., & Schweingruber, F. H. (2013). Microscopic preparation techniques for plant stem analysis. Kessel: Verlag Dr.
Gindl, W., Grabner, M., & Wimmer, R. (2000). The influence of temperature on latewood lignin content in treeline Norway spruce compared with maximum density and ring width. Trees, 14(7), 409–414.
Grabner, M., Müller, U., Gierlinger, N., & Wimmer, R. (2005). Effects of heartwood extractives on mechanical properties of larch. Iawa Journal, 26(2), 211–220.
Green, H. V. (1965). Wood characteristics IV: The study of wood characteristics by means of a photometric technique. Woodl. Res. Index Pulp Pap. Res. Inst. Can, (167).
Green, H. V., & Worrall, J. (1964). A Scanning Microphotometer for Automatically Measuring and Recording Certain Wood Caracteristics. Pulp and Paper Research Institute of Canada.
Guay, R., Gagnon, R., & Morin, H. (1992). A new automatic and interactive tree ring measurement system based on a line scan camera. The Forestry Chronicle, 68(1), 138–141.
Guillet, S., Corona, C., Stoffel, M., Khodri, M., Lavigne, F., Ortega, P., Eckert, N., Sielenou, P. D., Daux, V., Churakova (Sidorova), O. V., Davi, N., Edouard, J. L., Zhang, Y., Luckman, B. H., Myglan, V. S., Guiot, J., Beniston, M., Masson-Delmotte, V., & Oppenheimer, C. (2017). Climate response to the Samalas volcanic eruption in 1257 revealed by proxy records. Nature geoscience, 10(2), 123–128. https://doi.org/10.1038/ngeo2875
Gunnarson, B. E., Josefsson, T., Linderholm, H. W., & Östlund, L. (2012). Legacies of pre-industrial land use can bias modern tree-ring climate calibrations. Climate Research, 53(1), 63–76.
Gunnarson, B. E., Linderholm, H. W., & Moberg, A. (2011). Improving a tree-ring reconstruction from west-central Scandinavia: 900 years of warm-season temperatures. Climate Dynamics, 36(1-2), 97–108.
Hacke, U. G., Lachenbruch, B., Pittermann, J., Mayr, S., Domec, J. C., & Schulte, P. J. (2015). The hydraulic architecture of conifers. In Functional and ecological xylem anatomy (pp. 39–75). Cham: Springer.
Haines, H. A., Gadd, P. S., Palmer, J., Olley, J. M., Hua, Q., & Heijnis, H. (2018). A new method for dating tree-rings in trees with faint, indeterminate ring boundaries using the Itrax core scanner. Palaeogeography, Palaeoclimatology, Palaeoecology, 497, 234–243. https://doi.org/10.1016/j.palaeo.2018.02.025
Hannrup, B., Danell, Ö., Ekberg, I., & Moëll, M. (2007). Relationships between wood density and tracheid dimensions in Pinus sylvestris L. Wood and Fiber Science, 33(2), 173–181.
Hansen, J., Turk, R., Vogg, G., Heim, R., & Beck, E. (1997). Conifer carbohydrate physiology: Updating classical views. Trees: Contributions to modern tree physiology.
Harris, M. J. (1969). The use of beta rays in determining wood properties. N. ZJ. Sei, 12, 395–451.
Helama, S., Bégin, Y., Vartiainen, M., Peltola, H., Kolström, T., & Meriläinen, J. (2012). Quantifications of dendrochronological information from contrasting microdensitometric measuring circumstances of experimental wood samples. Applied Radiation and Isotopes, 70(6), 1014–1023.
Helama, S., Vartiainen, M., Holopainen, J., Mäkelä, H. M., Kolström, T., & Meriläinen, J. (2014). A palaeotemperature record for the Finnish Lakeland based on microdensitometric variations in tree rings. Geochronometria, 41(3), 265–277.
Helama, S., Vartiainen, M., Kolström, T., & Meriläinen, J. (2010). Dendrochronological investigation of wood extractives. Wood science and technology, 44(2), 335–351.
Hevia, A., Sánchez-Salguero, R., Camarero, J. J., Buras, A., Sangüesa-Barreda, G., Galván, J. D., & Gutiérrez, E. (2018). Towards a better understanding of long-term wood-chemistry variations in old-growth forests: A case study on ancient Pinus uncinata trees from the Pyrenees. Science of the Total Environment, 625, 220–232. https://doi.org/10.1016/j.scitotenv.2017.12.229
Holmes, R. L. (1983). Program COFECHA user's manual. Laboratory of Tree-Ring Research, The University of Arizona, Tucson.
Ifju, G., Wellwood, R. W., & Wilson, J. W. (1965). Relationship between certain intra-increment measurements in Douglas-fir. Pulp Pap. Mag. Can, 66, T475–T483.
Ivkovich, M., & Koshy, M. P. (1997). Wood density measurement: Comparison of X-ray, photometric, and morphometric methods. In S. Y. Zhang, R. Gosselin, & G. Chauret (Eds.), Proceedings of the 26th Biannual Meeting of the Canadian Tree Improvement Association (CTIA/IUFRO), International Workshop on Wood Quality, Québec, Que. Edited by (pp. 55–58). Sainte-Foy, Que. pp. II: Forintek Canada Corp.
Jackson, J. B., Mourou, M., Labaune, J., Whitaker, J. F., Duling, I. N. III, Williamson, S. L., Lavier, C., Menu, M., & Mourou, G. A. (2009). Terahertz pulse imaging for tree-ring analysis: A preliminary study for dendrochronology applications. Measurement Science and Technology, 20(7), 075502. https://doi.org/10.1088/0957-0233/20/7/075502
Jacobsen, A. L., Pratt, R. B., Ewers, F. W., & Davis, S. D. (2007). Cavitation resistance among 26 chaparral species of southern California. Ecological Monographs, 77(1), 99–115.
Jacquin, P., Longuetaud, F., Leban, J. M., & Mothe, F. (2017). X-ray microdensitometry of wood: A review of existing principles and devices. Dendrochronologia, 42, 42–50.
Jagels, R., & Telewski, F. W. (1990). Computer-aided image analysis of tree rings. Methods of dendrochronology: Applications in the environmental sciences, 76-93.
Jones, P. D., Briffa, K. R., Osborn, T. J., Lough, J. M., van Ommen, T. D., Vinther, B. M., Luterbacher, J., Wahl, E. R., Zwiers, F. W., Mann, M. E., Schmidt, G. A., Ammann, C. M., Buckley, B. M., Cobb, K. M., Esper, J., Goosse, H., Graham, N., Jansen, E., Kiefer, T., Kull, C., Küttel, M., Mosley-Thompson, E., Overpeck, J. T., Riedwyl, N., Schulz, M., Tudhope, A. W., Villalba, R., Wanner, H., Wolff, E., & Xoplaki, E. (2009). High-resolution palaeoclimatology of the last millennium: A review of current status and future prospects. The Holocene, 19(1), 3–49. https://doi.org/10.1177/0959683608098952
Jones, P. D., Briffa, K. R., & Schweingruber, F. H. (1995). Tree-ring evidence of the widespread effects of explosive volcanic eruptions. Geophysical Research Letters, 22(11), 1333–1336. https://doi.org/10.1029/94GL03113
Kaczka, R. J., Spyt, B., Janecka, K., Beil, I., Büntgen, U., Scharnweber, T., Nievergelt, D., & Wilmking, M. (2018). Different maximum latewood density and blue intensity measurements techniques reveal similar results. Dendrochronologia, 49, 94–101. https://doi.org/10.1016/j.dendro.2018.03.005
Kaczka, R. J., Spyt, B., Janecka, K., & Musioł, R. (2017). The blue intensity proxy for>400 years growing season temperature reconstruction from the Tatra Mountains. TRACE, 15, 23–30.
Kanowski, P., & Wright, J. (1985). Effects of resin extraction on optically determined density of Pinus caribaea Morelet and P. oocarpa Schiede. The Commonwealth Forestry Review, 29-31.
Katsevich, A. (2002). Theoretically exact filtered backprojection-type inversion algorithm for spiral CT. SIAM Journal on Applied Mathematics, 62(6), 2012–2026.
Kellogg, R. M., Sastry, C. B. R., & Wellwood, R. W. (1975). Relationships between cell-wall composition and cell-wall density. Wood and Fiber Science, 7(3), 170–177.
Kellogg, R. M., & Wangaard, F. F. (1969). Variation in the cell-wall density of wood. Wood and Fiber Science, 1(3), 180–204.
Kennedy, R. W. (1966). Intra-increment variation and heritability of specific gravity, parallel-to-grain tensile strength, stiffness and tracheid length in clonal Norway spruce. Tappi, 49(7), 292–296.
Kirdyanov, A. V., Vaganov, E. A., & Hughes, M. K. (2007). Separating the climatic signal from tree-ring width and maximum latewood density records. Trees, 21(1), 37–44.
Klesse, S., Ziehmer, M., Rousakis, G., Trouet, V., & Frank, D. (2015). Synoptic drivers of 400 years of summer temperature and precipitation variability on Mt. Olympus, Greece. Climate dynamics, 45(3-4), 807–824.
Klippel, L., Krusic, P. J., Konter, O., St. George, S., Trouet, V., & Esper, J. (2018). A 1200+ year reconstruction of temperature extremes for the northeastern Mediterranean region. International Journal of Climatology, 39(4), 2336–2350.
Kusec, D. J. (1972). Twin-blade saw for precision machining of increment cores. Wood Fiber, 4(1), 44–49.
Lachenbruch, B., & McCulloh, K. A. (2014). Traits, properties, and performance: How woody plants combine hydraulic and mechanical functions in a cell, tissue, or whole plant. New Phytologist, 204(4), 747–764.
Larsson, L. (2014). CooRecorder and Cdendro programs of the CooRecorder/Cdendro package version 7.7.
Lenz, O., Schär, E., & Schweingruber, F. H. (1976). Methodische Probleme bei der radiographisch-densitometrischen Bestimmung der Dichte und der Jahrringbreiten von Holz. Holzforschung-International Journal of the Biology, Chemistry, Physics and Technology of Wood, 30(4), 114–123.
Lesnino, G. (1994). The laser-sandblasting method: A new method for the qualitative annual ring analysis of conifers. Wood science and technology, 28(2), 159–171.
Levanič, T. (2007). ATRICS–a new system for image acquisition in dendrochronology. Tree-Ring Research, 63(2), 117–123.
Levanič, T., Gričar, J., Gagen, M., Jalkanen, R., Loader, N. J., McCarroll, D., Oven, P., & Robertson, I. (2009). The climate sensitivity of Norway spruce [Picea abies (L.) Karst.] in the southeastern European Alps. Trees, 23(1), 169–180. https://doi.org/10.1007/s00468-008-0265-0
Liang, H., Lyu, L., & Wahab, M. (2016). A 382-year reconstruction of August mean minimum temperature from tree-ring maximum latewood density on the southeastern Tibetan Plateau, China. Dendrochronologia, 37, 1–8. https://doi.org/10.1016/j.dendro.2015.11.001
Liang, W., Heinrich, I., Simard, S., Helle, G., Liñán, I. D., & Heinken, T. (2013). Climate signals derived from cell anatomy of Scots pine in NE Germany. Tree physiology, 33(8), 833–844.
Linderholm, H. W., Björklund, J., Seftigen, K., Gunnarson, B. E., & Fuentes, M. (2015). Fennoscandia revisited: A spatially improved tree-ring reconstruction of summer temperatures for the last 900 years. Climate Dynamics, 45(3-4), 933–947.
Lloyd, J. A. (1978). Distribution of extractives in Pinus radiata earlywood and latewood. New Zealand Journal of Forestry Science, 8(2), 288–294.
Luckman, B. H., Briffa, K. R., Jones, P. D., & Schweingruber, F. H. (1997). Tree-ring based reconstruction of summer temperatures at the Columbia Icefield, Alberta, Canada, AD 1073-1983. The Holocene, 7(4), 375–389.
Luckman, B. H., & Wilson, R. J. S. (2005). Summer temperatures in the Canadian Rockies during the last millennium: A revised record. Climate Dynamics, 24(2-3), 131–144.
Maes, S. L., Vannoppen, A., Altman, J., van den Bulcke, J., Decocq, G., de Mil, T., Depauw, L., Landuyt, D., Perring, M. P., van Acker, J., Vanhellemont, M., & Verheyen, K. (2017). Evaluating the robustness of three ring-width measurement methods for growth release reconstruction. Dendrochronologia, 46, 67–76. https://doi.org/10.1016/j.dendro.2017.10.005
Mannes, D., Lehmann, E., Cherubini, P., & Niemz, P. (2007). Neutron imaging versus standard X-ray densitometry as method to measure tree-ring wood density. Trees, 21(6), 605–612.
Marian, J. E., & Stumbo, D. A. (1960). A new method of growth ring analysis and the determination of density by surface texture measurements. Forest Science, 6(3), 276–291.
McCarroll, D., Loader, N. J., Jalkanen, R., Gagen, M. H., Grudd, H., Gunnarson, B. E., Kirchhefer, A. J., Friedrich, M., Linderholm, H. W., Lindholm, M., Boettger, T., Los, S. O., Remmele, S., Kononov, Y. M., Yamazaki, Y. H., Young, G. H. F., & Zorita, E. (2013). A 1200-year multiproxy record of tree growth and summer temperature at the northern pine forest limit of Europe. The Holocene, 23(4), 471–484. https://doi.org/10.1177/0959683612467483
McCarroll, D., Pettigrew, E., Luckman, A., Guibal, F., & Edouard, J. L. (2002). Blue reflectance provides a surrogate for latewood density of high-latitude pine tree rings. Arctic, Antarctic, and Alpine Research, 34(4), 450–453.
Melvin, T. (2004). Historical growth rates and changing climatic sensitivity of boreal conifers (Doctoral dissertation, University of East Anglia).
Melvin, T. M., & Briffa, K. R. (2008). A “signal-free” approach to dendroclimatic standardisation. Dendrochronologia, 26(2), 71–86.
Melvin, T. M., Grudd, H., & Briffa, K. R. (2013). Potential bias in ‘updating’ tree-ring chronologies using regional curve standardisation: Re-processing 1500 years of Torneträsk density and ring-width data. The Holocene, 23(3), 364–373.
Mills, C. M., Crone, A., Wood, C., & Wilson, R. (2017). Dendrochronologically dated pine buildings from Scotland: The SCOT2K Native Pine Dendrochronology Project. Vernacular Architecture, 48(1), 23–43.
Moehring, D. M., Grano, C. X., & Bassett, J. R. (1975). Xylem development of loblolly pine during irrigation and simulated drought. Res. Pap. SO-110. New Orleans, LA: US Department of Agriculture, Forest Service, Southern Forest Experiment Station. 8 p., 110.
Moschler, W. W. Jr., & Winistorfer, P. M. (1990). Direct scanning densitometry: An effect of sample heterogeneity and aperture area. Wood and fiber science, 22(1), 31–38.
Mothe, F., Duchanois, G., Zannier, B., & Leban, J. M. (1998). Analyse microdensitométrique appliquée au bois: méthode de traitement des données utilisée à l'Inra-ERQB (programme Cerd). In Annales des sciences forestières (Vol. 55, No. 3, pp. 301-313). EDP Sciences.
Nehrbass-Ahles, C., Babst, F., Klesse, S., Nötzli, M., Bouriaud, O., Neukom, R., Dobbertin, M., & Frank, D. (2014). The influence of sampling design on tree-ring-based quantification of forest growth. Global change biology, 20(9), 2867–2885. https://doi.org/10.1111/gcb.12599
Niklas, K. J. (1995). Plant height and the properties of some herbaceous stems. Annals of Botany, 75(2), 133–142.
Nock, C. A., Geihofer, D., Grabner, M., Baker, P. J., Bunyavejchewin, S., & Hietz, P. (2009). Wood density and its radial variation in six canopy tree species differing in shade-tolerance in western Thailand. Annals of botany, 104(2), 297–306.
O'Donnell, A. J., Allen, K. J., Evans, R. M., Cook, E. R., Trouet, V., & Baker, P. J. (2016). Wood density provides new opportunities for reconstructing past temperature variability from southeastern Australian trees. Global and Planetary Change, 141, 1–11.
Olano, J. M., Linares, J. C., García-Cervigón, A. I., Arzac, A., Delgado, A., & Rozas, V. (2014). Drought-induced increase in water-use efficiency reduces secondary tree growth and tracheid wall thickness in a Mediterranean conifer. Oecologia, 176(1), 273–283.
Osborn, T. J., & Jones, P. (2014). The CRUTEM4 land-surface air temperature data set: Construction, previous versions and dissemination via Google Earth. Earth System Science Data, 6(1), 61–68.
Österreicher, A., Weber, G., Leuenberger, M., & Nicolussi, K. (2015). Exploring blue intensity-comparison of blue intensity and MXD data from Alpine spruce trees. In TRACE–Tree Rings in Archaeology, Climatology and Ecology (Vol. 13, pp. 56-61).
Pacheco, A., Camarero, J. J., Ribas, M., Gazol, A., Gutierrez, E., & Carrer, M. (2018). Disentangling the climate-driven bimodal growth pattern in coastal and continental Mediterranean pine stands. Science of The Total Environment, 615, 1518–1526.
Panyushkina, I. P., Hughes, M. K., Vaganov, E. A., & Munro, M. A. (2003). Summer temperature in northeastern Siberia since 1642 reconstructed from tracheid dimensions and cell numbers of Larix cajanderi. Canadian Journal of Forest Research, 33(10), 1905–1914.
Park, W. K., & Telewski, F. W. (1993). Measuring maximum latewood density by image analysis at the cellular level. Wood and Fiber Science, 25(4), 326–332.
Parker, M. L., & Henoch, W. E. S. (1971). The use of Engelmann spruce latewood density for dendrochronological purposes. Canadian Journal of Forest Research, 1(2), 90–98.
Parker, M. L., & Jozsa, L. A. (1973). Dendrochronological investigations along the Mackenzie, Liard and South Nahanni rivers, NWT Part I: Using tree damage to date landslides, ice jamming and flooding. Hydrological aspects of northern pipeline development. Information Canada. Ottawa, Cat, (R27-172), 313-464.
Parker, M. L., Taylor, F. G., Doyle, T. W., Foster, B. E., Cooper, C., & West, D. C. (1985). Radiation densitometry in tree-ring analysis: A review and procedure manual (No. ORNL/FPO-85/73). Oak Ridge National Lab., TN (USA).
Pereira, H., Graça, J., & Rodrigues, J. C. (2003). Wood chemistry in relation to quality. Wood quality and its biological basis, 53-86.
Peters, R. L., Balanzategui, D., Hurley, A. G., von Arx, G., Prendin, A. L., Cuny, H. E., Björklund, J., Frank, D. C., & Fonti, P. (2018). RAPTOR: Row and position tracheid organizer in R. Dendrochronologia, 47, 10–16. https://doi.org/10.1016/j.dendro.2017.10.003
Peters, R. L., Groenendijk, P., Vlam, M., & Zuidema, P. A. (2015). Detecting long-term growth trends using tree rings: A critical evaluation of methods. Global change biology, 21(5), 2040–2054.
Petit, G., & Crivellaro, A. (2014). Comparative axial widening of phloem and xylem conduits in small woody plants. Trees, 28(3), 915–921.
Plomion, C., Leprovost, G., & Stokes, A. (2001). Wood formation in trees. Plant physiology, 127(4), 1513–1523.
Polge, H. (1963). Une nouvelle méthode de détermination de la texture du bois-L'analyse densitométrique de clichés radiographiques. Ann. Ec. Natl. Eaux Forets St. Rech. Exper., 20(4), 530–581.
Polge, H. (1965a). New investigations on wood by densitometric analysis of radiographs. Inst. Natl. Rech. Agron., Cant. Natl. Rech. For., Nancy, France.
Polge, H. (1965b). The use of curves of density variation for the study of environmental factors and in particular of climatic factors. International Union of Forestry Research Organizations Proceedings, 2, 1–8.
Polge, H. (1966). Établissement des courbes de variation de la densité du bois par exploration densitométrique de radiographies d'échantillons prélevés à la tarière sur des arbres vivants: applications dans les domaines Technologique et Physiologique. In Annales des sciences forestières (Vol. 23, No. 1, pp. I-206). EDP Sciences.
Polge, H. (1970). The use of X-ray densitometric methods in dendrochronology. Tree-ring bulletin.
Polge, H. (1978). Fifteen years of wood radiation densitometry. Wood Science and Technology, 12(3), 187–196.
Poorter, L. (2008). The relationships of wood-, gas-and water fractions of tree stems to performance and life history variation in tropical trees. Annals of botany, 102(3), 367–375.
Pratt, R. B., Jacobsen, A. L., Ewers, F. W., & Davis, S. D. (2007). Relationships among xylem transport, biomechanics and storage in stems and roots of nine Rhamnaceae species of the California chaparral. New Phytologist, 174(4), 787–798.
Prendin, A. L., Petit, G., Carrer, M., Fonti, P., Björklund, J., & von Arx, G. (2017). New research perspectives from a novel approach to quantify tracheid wall thickness. Tree physiology, 37(7), 976–983.
Pritzkow, C., Heinrich, I., Grudd, H., & Helle, G. (2014). Relationship between wood anatomy, tree-ring widths and wood density of Pinus sylvestris L. and climate at high latitudes in northern Sweden. Dendrochronologia, 32(4), 295–302.
Rathgeber, C. B., Decoux, V., & Leban, J. M. (2006). Linking intra-tree-ring wood density variations and tracheid anatomical characteristics in Douglas fir (Pseudotsuga menziesii (Mirb.) Franco). Annals of Forest Science, 63(7), 699–706.
Raven, P. H., Evert, R. F., & Eichhorn, S. E. (2005). Biology of plants. Macmillan.
Rinn, F. (1996). Resistographic visualization of tree-ring density variations. Tree Rings, Environment, and Humanity. Radiocarbon, 1996, 871–878.
Rosner, S., Světlík, J., Andreassen, K., Børja, I., Dalsgaard, L., Evans, R., Karlsson, B., Tollefsrud, M. M., & Solberg, S. (2013). Wood density as a screening trait for drought sensitivity in Norway spruce. Canadian Journal of Forest Research, 44(2), 154–161.
Rossi, S., Deslauriers, A., & Anfodillo, T. (2006). Assessment of cambial activity and xylogenesis by microsampling tree species: An example at the Alpine timberline. Iawa Journal, 27(4), 383–394.
Rydval, M., Druckenbrod, D. L., Svoboda, M., Trotsiuk, V., Janda, P., Mikoláš, M., Čada, V., Bače, R., Teodosiu, M., & Wilson, R. (2018). Influence of sampling and disturbance history on climatic sensitivity of temperature-limited conifers. The Holocene, 28(10), 1574–1587. https://doi.org/10.1177/0959683618782605
Rydval, M., Gunnarson, B. E., Loader, N. J., Cook, E. R., Druckenbrod, D. L., & Wilson, R. (2017). Spatial reconstruction of Scottish summer temperatures from tree rings. International Journal of Climatology, 37(3), 1540–1556.
Rydval, M., Larsson, L. Å., McGlynn, L., Gunnarson, B. E., Loader, N. J., Young, G. H., & Wilson, R. (2014). Blue intensity for dendroclimatology: Should we have the blues? Experiments from Scotland. Dendrochronologia, 32(3), 191–204.
Rydval, M., Loader, N. J., Gunnarson, B. E., Druckenbrod, D. L., Linderholm, H. W., Moreton, S. G., Wood, C. V., & Wilson, R. (2017). Reconstructing 800 years of summer temperatures in Scotland from tree rings. Climate Dynamics, 49(9-10), 2951–2974. https://doi.org/10.1007/s00382-016-3478-8
Savidge, R. A. (2003). Tree growth and wood quality. Wood quality and its biological basis, 1-29.
Scharnweber, T., Hevia, A., Buras, A., van der Maaten, E., & Wilmking, M. (2016). Common trends in elements? Within-and between-tree variations of wood-chemistry measured by X-ray fluorescence—A dendrochemical study. Science of the Total Environment, 566, 1245–1253.
Schinker, M. G., Hansen, N., & Spiecker, H. (2003). High-frequency densitometry-a new method for the rapid evaluation of wood density variations. IAWA Journal, 24(3), 231–239. https://doi.org/10.1163/22941932-90001592
Schneider, L., & Gärtner, H. (2013). The advantage of using a starch based non-Newtonian fluid to prepare micro sections. Dendrochronologia, 31(3), 175–178.
Schneider, L., Smerdon, J. E., Büntgen, U., Wilson, R. J., Myglan, V. S., Kirdyanov, A. V., & Esper, J. (2015). Revising midlatitude summer temperatures back to AD 600 based on a wood density network. Geophysical Research Letters, 42, 4556–4562. https://doi.org/10.1002/2015GL063956
Schnell, G. R., & Sell, J. (1989). Image-analytical measurement of cell wall portion and wood density-method of preparation and measurement technique. Holz als Roh-und Werkstoff (Germany, FR).
Schweingruber, F. H. (1988). Tree rings: Basics and applications of dendrochronology. Dordrecht, Netherlands; Boston, Massachusetts, USA: Kluwer Academic Publishers. 276 S
Schweingruber, F. H., Bartholin, T., Schaur, E., & Briffa, K. R. (1988). Radiodensitometric-dendroclimatological conifer chronologies from Lapland (Scandinavia) and the Alps (Switzerland). Boreas, 17(4), 559–566.
Schweingruber, F. H., Börner, A., & Schulze, E. D. (2011). Atlas of stem anatomy in herbs, shrubs and trees (Vol. 1). Berlin, Heidelberg: Springer-verlag.
Schweingruber, F. H., & Briffa, K. R. (1996). Tree-ring density networks for climate reconstruction. In Climatic variations and forcing mechanisms of the last 2000 years (pp. 43–66). Berlin, Heidelberg: Springer.
Schweingruber, F. H., Briffa, K. R., & Nogler, P. (1993). A tree-ring densitometric transect from Alaska to Labrador. International Journal of Biometeorology, 37(3), 151–169. https://doi.org/10.1007/BF01212625
Schweingruber, F. H., Fritts, H. C., Bräker, O. U., Drew, L. G., & Schär, E. (1978). The X-ray technique as applied to dendroclimatology. Tree-Ring Bulletin.
Seidl, R., Thom, D., Kautz, M., Martin-Benito, D., Peltoniemi, M., Vacchiano, G., Wild, J., Ascoli, D., Petr, M., Honkaniemi, J., Lexer, M. J., Trotsiuk, V., Mairota, P., Svoboda, M., Fabrika, M., Nagel, T. A., & Reyer, C. P. O. (2017). Forest disturbances under climate change. Nature Climate Change, 7(6), 395–402. https://doi.org/10.1038/nclimate3303
Sheppard, P., & Singavarapu, S. (2006). Solving the ‘magnification irony’ in reflected-light image analysis of conifer tree-rings using a microscope. Journal of Imaging Science and Technology, 50(3), 304–308.
Sheppard, P. R. (2007). Overcoming extraneous wood color variation during low-magnification reflected-light image analysis of conifer tree rings. Wood and fiber science, 31(2), 106–115.
Sheppard, P. R., Graumlich, L. J., & Conkey, L. E. (1996). Reflected-light image analysis of conifer tree rings for reconstructing climate. The Holocene, 6(1), 62–68.
Sheppard, P. R., & Wiedenhoeft, A. (2007). An advancement in removing extraneous color from wood for low-magnification reflected-light image analysis of conifer tree rings. Wood and fiber science, 39(1), 173–183.
Siau, J. F. (1984). Transport processes in wood (Vol. 2). Berlin, Heidelberg: Springer-Verlag.
Sidorova, O. V., Saurer, M., Myglan, V. S., Eichler, A., Schwikowski, M., Kirdyanov, A. V., Bryukhanova, M. V., Gerasimova, O. V., Kalugin, I. A., Daryin, A. V., & Siegwolf, R. T. W. (2012). A multi-proxy approach for revealing recent climatic changes in the Russian Altai. Climate Dynamics, 38(1-2), 175–188. https://doi.org/10.1007/s00382-010-0989-6
Simard, S., Giovannelli, A., Treydte, K., Traversi, M. L., King, G. M., Frank, D., & Fonti, P. (2013). Intra-annual dynamics of non-structural carbohydrates in the cambium of mature conifer trees reflects radial growth demands. Tree Physiology, 33(9), 913–923.
Sitch, S., Sitch, S., Huntingford, C., Gedney, N., Levy, P. E., Lomas, M., Piao, S. L., Betts, R., Ciais, P., Cox, P., Friedlingstein, P., & Jones, C. D. (2008). Evaluation of the terrestrial carbon cycle, future plant geography and climate-carbon cycle feedbacks using five Dynamic Global Vegetation Models (DGVMs). Global Change Biology, 14(9), 2015–2039. https://doi.org/10.1111/j.1365-2486.2008.01626.x
Sperry, J. S., Hacke, U. G., & Pittermann, J. (2006). Size and function in conifer tracheids and angiosperm vessels. American journal of botany, 93(10), 1490–1500.
Spyt, R., Kaczka, R. J., Ksciuczyk, K., & Zawadzka, M. (2016). Zastosowanie intensywności odbicia światła niebieskiego w datowaniu drewna historycznego. Studia i Materiały Centrum Edukacji Przyrodniczo-Leśnej, 18(3 [48]).
Stamm, A. J., & Sanders, H. T. (1966). Specific gravity of wood substance of loblolly pine as affected by chemical composition. Tappi, 49(9), 397.
Starheim, C. C., Smith, D. J., & Prowse, T. D. (2013). Multi-century reconstructions of Pacific salmon abundance from climate-sensitive tree rings in west central British Columbia, Canada. Ecohydrology, 6(2), 228–240.
Stine, A. R., & Huybers, P. (2014). Arctic tree rings as recorders of variations in light availability. Nature communications, 5(1), 3836. https://doi.org/10.1038/ncomms4836
Stine, A. R., & Huybers, P. (2017). Implications of Liebig's law of the minimum for tree-ring reconstructions of climate. Environmental Research Letters, 12(11). https://doi.org/10.1088/1748-9326/aa8cd6
Stoffel, M., Khodri, M., Corona, C., Guillet, S., Poulain, V., Bekki, S., Guiot, J., Luckman, B. H., Oppenheimer, C., Lebas, N., Beniston, M., & Masson-Delmotte, V. (2015). Estimates of volcanic-induced cooling in the Northern Hemisphere over the past 1,500 years. Nature Geoscience, 8(10), 784–788. https://doi.org/10.1038/ngeo2526
Stokes, M. A., & Smiley, T. L. (1968). Tree-ring dating. Tree-ring dating.
Sun, Y., Wang, L., Chen, J., & Duan, J. (2012). Reconstructing mean maximum temperatures of May–August from tree-ring maximum density in North Da Hinggan Mountains, China. Chinese science bulletin, 57(16), 2007–2014.
Telewski, F. W., Burns, J. M., & Ulan, L. (1986). A thin-section technique for x-ray densitometric analysis of narrow tree-ring series. In G. C. Jacoby & J. Hornbeck (Eds.), Proceedings of the international symposium on ecological aspects of tree-ring analysis. August 17-21, 1986 (pp. 651–657). Tarrytown, NY: Marymount College.
Tene, A., Tobin, B., Dyckmans, J., Ray, D., Black, K., & Nieuwenhuis, M. (2011). Assessment of tree response to drought: Validation of a methodology to identify and test proxies for monitoring past environmental changes in trees. Tree physiology, 31(3), 309–322.
Thetford, R. D., D'Arrigo, R. D., & Jacoby, G. C. (1991). An image analysis system for determining densitometric and ring-width time series. Canadian Journal of Forest Research, 21(10), 1544–1549.
Trachsel, M., Kamenik, C., Grosjean, M., McCarroll, D., Moberg, A., Brázdil, R., Büntgen, U., Dobrovolný, P., Esper, J., Frank, D. C., Friedrich, M., Glaser, R., Larocque-Tobler, I., Nicolussi, K., & Riemann, D. (2012). Multi-archive summer temperature reconstruction for the European Alps, AD 1053–1996. Quaternary Science Reviews, 46, 66–79. https://doi.org/10.1016/j.quascirev.2012.04.021
Trouet, V., Panayotov, M. P., Ivanova, A., & Frank, D. (2012). A pan-European summer teleconnection mode recorded by a new temperature reconstruction from the northeastern Mediterranean (ad 1768–2008). The Holocene, 22(8), 887–898.
Tsoumis, G. (1964). Microscopic measurement of the amount of cell wall substance in wood and its relationship to specific gravity. Tappi, 47(11), 675–677.
Tyree, M. T., & Zimmermann, M. H. (2002). Hydraulic architecture of whole plants and plant performance. In Xylem structure and the ascent of sap (pp. 175–214). Berlin, Heidelberg: Springer.
Uggla, C., Magel, E., Moritz, T., & Sundberg, B. (2001). Function and dynamics of auxin and carbohydrates during earlywood/latewood transition in Scots pine. Plant physiology, 125(4), 2029–2039.
Vaganov, E. A., Anchukaitis, K. J., & Evans, M. N. (2011). How well understood are the processes that create dendroclimatic records? A mechanistic model of the climatic control on conifer tree-ring growth dynamics. In Dendroclimatology (pp. 37–75). Dordrecht: Springer.
Vaganov, E. A., Hughes, M. K., & Shashkin, A. V. (2006). Growth dynamics of conifer tree rings: Images of past and future environments. Berlin, Heidelberg: Springer-Verlag.
Vaganov, E. A., Schulze, E. D., Skomarkova, M. V., Knohl, A., Brand, W. A., & Roscher, C. (2009). Intra-annual variability of anatomical structure and δ 13 C values within tree rings of spruce and pine in alpine, temperate and boreal Europe. Oecologia, 161(4), 729–745.
Van den Bulcke, J., Boone, M., Van Acker, J., Stevens, M., & Van Hoorebeke, L. (2009). X-ray tomography as a tool for detailed anatomical analysis. Annals of Forest Science, 66 (5), 1–12.
van den Bulcke, J., Wernersson, E. L. G., Dierick, M., van Loo, D., Masschaele, B., Brabant, L., Boone, M. N., van Hoorebeke, L., Haneca, K., Brun, A., Luengo Hendriks, C. L., & van Acker, J. (2014). 3D tree-ring analysis using helical X-ray tomography. Dendrochronologia, 32(1), 39–46. https://doi.org/10.1016/j.dendro.2013.07.001
Vanhellemont, M., Sousa-Silva, R., Maes, S. L., van den Bulcke, J., Hertzog, L., de Groote, S. R. E., van Acker, J., Bonte, D., Martel, A., Lens, L., & Verheyen, K. (2019). Distinct growth responses to drought for oak and beech in temperate mixed forests. Science of The Total Environment, 650(Pt 2), 3017–3026. https://doi.org/10.1016/j.scitotenv.2018.10.054
Vannoppen, A., Boeckx, P., de Mil, T., Kint, V., Ponette, Q., van den Bulcke, J., Verheyen, K., & Muys, B. (2018). Climate driven trends in tree biomass increment show asynchronous dependence on tree-ring width and wood density variation. Dendrochronologia, 48, 40–51. https://doi.org/10.1016/j.dendro.2018.02.001
Vannoppen, A., Maes, S., Kint, V., de Mil, T., Ponette, Q., van Acker, J., van den Bulcke, J., Verheyen, K., & Muys, B. (2017). Using X-ray CT based tree-ring width data for tree growth trend analysis. Dendrochronologia, 44, 66–75. https://doi.org/10.1016/j.dendro.2017.03.003
von Arx, G., & Carrer, M. (2014). ROXAS–A new tool to build centuries-long tracheid-lumen chronologies in conifers. Dendrochronologia, 32(3), 290–293.
von Arx, G., Crivellaro, A., Prendin, A. L., Čufar, K., & Carrer, M. (2016). Quantitative wood anatomy—Practical guidelines. Frontiers in Plant Science, 7, 781.
Wang, L., Payette, S., & Bégin, Y. (2002). Relationships between anatomical and densitometric characteristics of black spruce and summer temperature at tree line in northern Quebec. Canadian Journal of Forest Research, 32(3), 477–486. https://doi.org/10.1139/x01-208
Wilson, R., Loader, N. J., Rydval, M., Patton, H., Frith, A., Mills, C. M., Crone, A., Edwards, C., Larsson, L., & Gunnarson, B. E. (2012). Reconstructing Holocene climate from tree rings: The potential for a long chronology from the Scottish Highlands. The Holocene, 22 (1), 3–11.
Wigley, T. M., Briffa, K. R., & Jones, P. D. (1984). On the average value of correlated time series, with applications in dendroclimatology and hydrometeorology. Journal of climate and Applied Meteorology, 23(2), 201–213.
Williamson, G. B., & Wiemann, M. C. (2010). Measuring wood specific gravity … correctly. American Journal of Botany, 97(3), 519–524. https://doi.org/10.3732/ajb.0900243
Wilson, R., Anchukaitis, K., Briffa, K. R., Büntgen, U., Cook, E., D'Arrigo, R., Davi, N., Esper, J., Frank, D., Gunnarson, B., Hegerl, G., Helama, S., Klesse, S., Krusic, P. J., Linderholm, H. W., Myglan, V., Osborn, T. J., Rydval, M., Schneider, L., Schurer, A., Wiles, G., Zhang, P., & Zorita, E. (2016). Last millennium Northern Hemisphere summer temperatures from tree rings: Part I: The long term context. Quaternary Science Reviews, 134, 1–18. https://doi.org/10.1016/j.quascirev.2015.12.005
Wilson, R., D'Arrigo, R., Andreu-Hayles, L., Oelkers, R., Wiles, G., Anchukaitis, K., & Davi, N. (2017). Experiments based on blue intensity for reconstructing North Pacific temperatures along the Gulf of Alaska. Climate of the Past, 13(8), 1007–1022.
Wilson, R., Rao, R., Rydval, M., Wood, C., Larsson, L. Å., & Luckman, B. H. (2014). Blue intensity for dendroclimatology: The BC blues: A case study from British Columbia, Canada. The Holocene, 24(11), 1428–1438.
Wilson, R., Wilson, D., Rydval, M., Crone, A., Büntgen, U., Clark, S., Ehmer, J., Forbes, E., Fuentes, M., Gunnarson, B. E., Linderholm, H. W., Nicolussi, K., Wood, C., & Mills, C. (2017). Facilitating tree-ring dating of historic conifer timbers using Blue Intensity. Journal of Archaeological Science, 78, 99–111. https://doi.org/10.1016/j.jas.2016.11.011
Wilson, R. J., Esper, J., & Luckman, B. H. (2004). Utilising historical tree-ring data for dendroclimatology: A case study from the Bavarian Forest, Germany. Dendrochronologia, 21(2), 53–68.
Wimmer, R. (1995). Intra-annual cellular characteristics and their implications for modeling softwood density. Wood and fiber science, 27(4), 413–420.
Wodzicki, T. J. (1971). Mechanism of xylem differentiation in Pinus sylvestris L. Journal of Experimental Botany, 22(3), 670–687. https://doi.org/10.1093/jxb/22.3.670
Wood, L. J., & Smith, D. J. (2013). Climate and glacier mass balance trends from AD 1780 to present in the Columbia Mountains, British Columbia, Canada. The Holocene, 23(5), 739–748.
Wood, L. J., & Smith, D. J. (2015). Intra-annual dendroclimatic reconstruction for northern British Columbia, Canada, using wood properties. Trees, 29(2), 461–474.
Wood, L. J., Smith, D. J., & Demuth, M. N. (2011). Extending the Place Glacier mass-balance record to AD 1585, using tree rings and wood density. Quaternary Research, 76(3), 305–313.
Woodcock, D., & Shier, A. (2002). Wood specific gravity and its radial variations: The many ways to make a tree. Trees, 16(6), 437–443.
Woods, F. W., & Lawhon, W. T. (1974). Gamma densitometry of increment cores. Forest Science, 20(3), 269–271.
Wright, I. J., Ackerly, D. D., Bongers, F., Harms, K. E., Ibarra-Manriquez, G., Martinez-Ramos, M., Mazer, S. J., Muller-Landau, H. C., Paz, H., Pitman, N. C., Poorter, L., Silman, M. R., Vriesendorp, C. F., Webb, C. O., Westoby, M., & Wright, S. J. (2006). Relationships among ecologically important dimensions of plant trait variation in seven Neotropical forests. Annals of Botany, 99(5), 1003–1015. https://doi.org/10.1093/aob/mcl066
Xing, P., Zhang, Q. B., & Lv, L. X. (2014). Absence of late-summer warming trend over the past two and half centuries on the eastern Tibetan Plateau. Global and Planetary Change, 123, 27–35.
Yamaguchi, D. K. (1991). A simple method for cross-dating increment cores from living trees. Canadian Journal of Forest Research, 21(3), 414–416.
Yanosky, T. M., & Robinove, C. J. (1986). Digital image measurement of the area and anatomical structure of tree rings. Canadian journal of botany, 64(12), 2896–2902.
Yanosky, T. M., Robinove, C. J., & Clark, R. G. (1986). Progress in the image analysis of tree rings. In G. C. Jacoby, & J. W. Hornbeck (Eds.), compilersProceedings, International Symposium on Ecological Aspects of Tree-Ring Analysis (pp. 658–659). Springfield, Virginia: National Technical Information Service.
Yasue, K., Funada, R., Kobayashi, O., & Ohtani, J. (2000). The effects of tracheid dimensions on variations in maximum density of Picea glehnii and relationships to climatic factors. Trees, 14(4), 223–229.
Yuan, Y. J., Zhang, T. W., Wei, W. S., Nievergelt, D., Verstege, A., Yu, S. L., Zhang, R. B., & Esper, J. (2013). Development of tree-ring maximum latewood density chronologies for the western Tien Shan Mountains, China: Influence of detrending method and climate response. Dendrochronologia, 31(3), 192–197. https://doi.org/10.1016/j.dendro.2013.05.004
Zhang, P., Björklund, J., & Linderholm, H. W. (2015). The influence of elevational differences in absolute maximum density values on regional climate reconstructions. Trees, 29(4), 1259–1271.
Zhang, P., Linderholm, H. W., Gunnarson, B. E., Björklund, J., & Chen, D. (2016). 1200 years of warm-season temperature variability in central Scandinavia inferred from tree-ring density. Climate of the Past, 12(6), 1297–1312.
Ziaco, E., Biondi, F., Rossi, S., & Deslauriers, A. (2016). Environmental drivers of cambial phenology in Great Basin bristlecone pine. Tree physiology, 36(7), 818–831.
Zobel, B. J., & van Buijtenen, J. P. (1989). Wood variation and wood properties. In Wood Variation (pp. 1–32). Berlin, Heidelberg: Springer.