[en] [en] BACKGROUND AND AIMS: Disentangling tree growth requires more than ring width data only. Densitometry is considered a valuable proxy, yet laborious wood sample preparation and lack of dedicated software limit the widespread use of density profiling for tree ring analysis. An X-ray computed tomography-based toolchain of tree increment cores is presented, which results in profile data sets suitable for visual exploration as well as density-based pattern matching.
METHODS: Two temperate (Quercus petraea, Fagus sylvatica) and one tropical species (Terminalia superba) were used for density profiling using an X-ray computed tomography facility with custom-made sample holders and dedicated processing software.
KEY RESULTS: Density-based pattern matching is developed and able to detect anomalies in ring series that can be corrected via interactive software.
CONCLUSIONS: A digital workflow allows generation of structure-corrected profiles of large sets of cores in a short time span that provide sufficient intra-annual density information for tree ring analysis. Furthermore, visual exploration of such data sets is of high value. The dated profiles can be used for high-resolution chronologies and also offer opportunities for fast screening of lesser studied tropical tree species.
Disciplines :
Agriculture & agronomy Phytobiology (plant sciences, forestry, mycology...) Environmental sciences & ecology Engineering, computing & technology: Multidisciplinary, general & others Life sciences: Multidisciplinary, general & others
Author, co-author :
De Mil, Tom ; Université de Liège - ULiège > TERRA Research Centre > Gestion des ressources forestières ; UGCT-Woodlab-UGent, Ghent University, Laboratory of Wood Technology, Department of Forest and Water Management, Coupure Links 653, B- 9000 Gent, Belgium Royal Museum for Central Africa, Wood Biology Service, Leuvensesteenweg 13, B-3080 Tervuren, Belgium tom.demil@ugent.be
Vannoppen, Astrid; University of Leuven, Division Forest, Nature and Landscape, Department of Earth and Environmental Sciences, Celestijnenlaan 200E, Box 2411, B-3001 Leuven, Belgium
Beeckman, Hans; Royal Museum for Central Africa, Wood Biology Service, Leuvensesteenweg 13, B-3080 Tervuren, Belgium
Van Acker, Joris; UGCT-Woodlab-UGent, Ghent University, Laboratory of Wood Technology, Department of Forest and Water Management, Coupure Links 653, B- 9000 Gent, Belgium
Van den Bulcke, Jan; UGCT-Woodlab-UGent, Ghent University, Laboratory of Wood Technology, Department of Forest and Water Management, Coupure Links 653, B- 9000 Gent, Belgium
Language :
English
Title :
A field-to-desktop toolchain for X-ray CT densitometry enables tree ring analysis.
Allen K, Drew DM, Downes GM, Evans R, Baker P, Grose M. 2012. Ring width, climate and wood density relationships in two long-lived Tasmanian tree species. Dendrochronologia 30: 167-177.
Battipaglia G, De Micco V, Brand WA, et al. 2014. Drought impact on water use efficiency and intra-annual density fluctuations in Erica arborea on Elba (Italy). Plant, Cell and Environment 37: 382-391.
Bender BJ, Mann M, Backofen R, Spiecker H. 2012. Microstructure alignment of wood density profiles: an approach to equalize radial differences in growth rate. Trees 26: 1267-1274.
Briffa KR, Schweingruber FH, Jones PD, Osborn TJ, Shiyatov SG, Vaganov EA. 1998. Reduced sensitivity of recent tree-growth to temperature at high northern latitudes. Nature 391: 678-682.
Bunn AG. 2010. Statistical and visual crossdating in R using the dplR library. Dendrochronologia 28: 251-258.
Büntgen U, Frank D, Trouet V, Esper J. 2010. Diverse climate sensitivity of Mediterranean tree-ring width and density. Trees 24: 261-273.
Buras A, Wilmking M. 2015. Correcting the calculation of Gleichlaufigkeit. Dendrochronologia 34: 29-30.
Chave J, Coomes D, Jansen S, Lewis SL, Swenson NG, Zanne AE. 2009. Towards a worldwide wood economics spectrum. Ecology Letters 12: 351-366.
Cherubini P, Humbel T, Beeckman H, et al. 2013. Olive tree-ring problematic dating: a comparative analysis on Santorini (Greece). PLoS One 8: 1-5.
De Micco V, Battipaglia G, BrandWA, et al. 2012. Discrete versus continuous analysis of anatomical and d13C variability in tree rings with intra-annual density fluctuations. Trees 26: 513-524.
De RidderM, Van den Bulcke J, Vansteenkiste D, et al. 2011. High-resolution proxies for wood density variations in Terminalia superba. Annals of Botany 107: 293-302.
Dierick M, Van Loo D, Masschaele B, et al. 2014. Recent micro-CT scanner developments at UGCT. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 324: 35-40.
Dierick M, Masschaele B, Van Hoorebeke L. 2004. Octopus, a fast and userfriendly tomographic reconstruction package developed in LabViewVR . Measurement Science and Technology 15: 1366-1370.
Drew DM, Allen K, Downes GM, Evans R, Battaglia M, Baker P. 2013. Wood properties in a long-lived conifer reveal strong climate signals where ring-width series do not. Tree Physiology 33: 37-47.
Evans R. 1994. Rapid measurement of the transverse dimensions of tracheids in radial wood sections from Pinus radiata. Holzforschung 48: 168-172.
Fonti P, Von Arx G, Garc?a-Gonzalez I, et al. 2010. Studying global change through investigation of the plastic responses of xylem anatomy in tree rings. New Phytologist 185: 42-53.
Fritts HC. 1976. Tree rings and climate. New York: Academic Press.
Gonzalez-Benecke CA, Riveros-Walker AJ, Martin TA, Peter GF. 2015. Automated quantification of intra-annual density fluctuations using microdensity profiles of mature Pinus taeda in a replicated irrigation experiment. Trees 29: 185-197.
Grabner M, Mü ller U, Gierlinger N, Wimmer R. 2005. Effects of heartwood extractives onmechanical properties of larch. IAWA Journal 26: 211-220.
Grissino-Mayer HD. 2001. Evaluating crossdating accuracy: a manual and tutorial for the computer program COFECHA. Tree-Ring Research 57: 205-221.
Groenendijk P, Sass-Klaassen U, Bongers F, Zuidema PA. 2014. Potential of tree-ring analysis in a wet tropical forest: a case study on 22 commercial tree species in Central Africa. Forest Ecology andManagement 323: 65-78.
Hietz P, Horsky M, Prohaska T, Lang I, Grabner M. 2015. High-resolution densitometry and elemental analysis of tropical wood. Trees 29: 487-497.
Holmes RL. 1983. Computer-assisted quality control in tree-ring dating and measurement. Tree-Ring Bulletin 43: 69-78.
Hughes MK. 2002. Dendrochronology in climatology-the state of the art. Dendrochronologia 20: 95-116.
Koubaa A, Zhang SYT,Makni S. 2002. Defining the transition from earlywood to latewood in black spruce based on intra-ring wood density profiles from X-ray densitometry. Annals of Forest Science 59: 511-518.
Lachenbruch B,McCulloh KA. 2014. Traits, properties, and performance: how woody plants combine hydraulic and mechanical functions in a cell, tissue, or whole plant. New Phytologist 204: 747-764.
Lewis SL, Lopez-Gonzalez G, Sonké B, et al. 2009. Increasing carbon storage in intact African tropical forests. Nature 457: 1003-1006.
Mannes D, Lehmann E, Cherubini P, Niemz P. 2007. Neutron imaging versus standard X-ray densitometry as method to measure tree-ring wood density. Trees 21: 605-612.
Martin AR, Thomas SC. 2011. A reassessment of carbon content in tropical trees. PLoS One 6: e23533.
Mothe F, Duchanois G, Zannier B, Leban J-M. 1998. Analyse microdensitome trique appliquée au bois: méthode de traitement des données utilisée a l'INRA-ERQB (programme Cerd). Annales des Sciences Forestieres 55: 301-313.
Mü ller-Landau HC. 2004. Interspecific and inter-site variation in wood specific gravity of tropical trees. Biotropica 36: 20-32.
Pilcher JR, Schweingruber FH, Kairiukstis L, et al. 1990. Primary data. In: Cook ER, Kairiukstis L, eds. Methods of dendrochronology. Dordrecht, The Netherlands: Kluwer, 23-96.
Plourde BT, Boukili VK, Chazdon RL. 2015. Radial changes in wood specific gravity of tropical trees: inter-and intraspecific variation during secondary succession. Functional Ecology 29: 111-120.
Polge H. 1966. Etablissement des courbes de variation de la densité du bois par exploration densitométrique de radiographies d'échantillons préleves a la tarière sur des arbres vivants. Applications dans les domaines technologique et physiologique. Annales des Sciences Forestières 23: 215.
Polge H. 1970. The use of X-ray densitometric methods in dendrochonology. Tree-Ring Bulletin 30: 1-10.
Poorter L, McDonald I, Alarcon A, et al. 2010. The importance of wood traits and hydraulic conductance for the performance and life history strategies of 42 rainforest tree species. New Phytologist 185: 481-492.
Preston KA, CornwellWK, DeNoyer JL. 2006. Wood density and vessel traits as distinct correlates of ecological strategy in 51 California coast range angiosperms. New Phytologist 170: 807-818.
Rossi S, Deslauriers A. 2007. Intra-annual time scales in tree rings. Dendrochronologia 25: 75-77.
RydvalM, Larsson L-A,McGlynn L, Gunnarson BE, et al. 2014. Blue intensity for dendroclimatology: should we have the blues? Experiments from Scotland. Dendrochronologia 32: 191-204.
Schinker M, Hansen N, Spiecker H. 2003. High-frequency densitometry-a new method for the rapid evaluation of wood density variations. IAWA Journal 24: 231-239.
Schollaen K, Heinrich I, Helle G. 2014. UV-laser-based microscopic dissection of tree rings-a novel sampling tool for d 13C and d 18O studies. New Phytologist 201: 1045-1055.
Schöngart J, Orthmann B, Hennenberg KJ, Porembski S,Worbes M. 2006. Climate-growth relationships of tropical tree species in West Africa and their potential for climate reconstruction. Global Change Biology 12: 1139-1150.
Stahle DW. 1999. Useful strategies for the development of tropical tree-ring chronologies. IAWA Journal 20: 249-253.
Steffenrem A, Kvaalen H, Dalen KS, Høibø OA. 2014. A high-throughput Xray-based method for measurements of relative wood density from unprepared increment cores from Picea abies. Scandinavian Journal of Forest Research 29: 506-514.
Swenson NG, Enquist BJE. 2007. Ecological and evolutionary determinants of a key plant functional trait: wood density and its community. American Journal of Botany 94: 451-459.
Vaganov E, Hughes M, Shashkin A. 2006. Growth dynamics of conifer tree rings. Images of past and future environments. Berlin: Springer-Verlag.
Van den Bulcke J, Boone MN, Van Acker J, Stevens M, Van Hoorebeke L. 2009. X-ray tomography as a tool for detailed anatomical analysis. Annals of Forest Science 66: 508.
Van den Bulcke J,Wernersson ELG, Dierick M, et al. 2014. 3D tree-ring analysis using helical X-ray tomography. Dendrochronologia 32: 39-46.
Vansteenkiste D, Van Acker J, Stevens M, Le Thiec D, Nepveu G. 2007. Composition, distribution and supposed origin of mineral inclusions in sessile oak wood-consequences for microdensitometrical analysis. Annals of Forest Science 64: 11-19.
Vlassenbroeck J, Dierick M, Masschaele B, Cnudde V, Van Hoorebeke L, Jacobs P. 2007. Software tools for quantification of X-ray microtomography at the UGCT. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 580: 442-445.
Wassenberg M, Montwé D, Kahle H, Spiecker H. 2014. Exploring high frequency densitometry calibration functions for different tree species. Dendrochronologia 32: 273-281.
Wils THG, Robertson I, Eshetu Z, Sass-Klaassen UGW, KoprowskiM. 2009. Periodicity of growth rings in Juniperus procera from Ethiopia inferred from crossdating and radiocarbon dating. Dendrochronologia 27: 45-58.
Wimmer R. 2002. Wood anatomical features in tree-rings as indicators of environmental change. Dendrochronologia 20: 21-36.
Worbes M. 1989. Growth rings, increment and age of trees in inundation forests, savannas and a mountain forest in the neotropics. IAWA Bulletin 10: 109-122.
Worbes M. 2002. One hundred years of tree-ring research in the tropics-a brief history and an outlook to future challenges. Dendrochronologia 20: 217-231.
Zanne AE, Westoby M, Falster DS, et al. 2010. Angiosperm wood structure: Global patterns in vessel anatomy and their relation to wood density and potential conductivity. American Journal of Botany 97: 207-215.