Article (Scientific journals)
Ground Sampling Distance as a Key Parameter for Automatic Crack Detection in Built Heritage: A Practical Framework With YOLOv5
Boutet, Simon; Hallot, Pierre
2025In International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLVIII-M-9-2025, p. 179-186
Peer Reviewed verified by ORBi
 

Files


Full Text
25-10-04_CIPA Peer reviewed_Boutet Simon.pdf
Publisher postprint (1.94 MB) Creative Commons License - Attribution
Download

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
Artificial intelligence; Deep Learning; Computer Vision; Built heritage; Pathology detection; YOLOv5
Abstract :
[en] This study presents a practical approach to applying deep learning for the conservation of built heritage, focusing on automatic crack detection in historic masonry using the YOLOv5 object detection model. While most existing research emphasizes model precision under controlled conditions, this work evaluates YOLOv5’s performance in real-world scenarios, accounting for variations in image acquisition conditions. The study contributes a qualitative comparison of deep learning models relevant to automatic surface pathology detection in built heritage and introduces a field-oriented framework to guide experts in selecting and deploying those tools. A key innovation is the investigation of Ground Sampling Distance (GSD), already used in actual inspection methods like photogrammetry, as a critical parameter influencing detection accuracy and model usability. Results show that YOLOv5 can effectively detect both large cracks and microcracks across varied GSD values, and reinforce the value of interdisciplinary practices that combine Deep Learning technologies with established heritage documentation practices.
Research Center/Unit :
AAP - Art, Archéologie et Patrimoine - ULiège
Disciplines :
Architecture
Author, co-author :
Boutet, Simon  ;  Université de Liège - ULiège > Département d'Architecture
Hallot, Pierre  ;  Université de Liège - ULiège > Unités de recherche interfacultaires > Art, Archéologie et Patrimoine (AAP)
Language :
English
Title :
Ground Sampling Distance as a Key Parameter for Automatic Crack Detection in Built Heritage: A Practical Framework With YOLOv5
Alternative titles :
[fr] Le Ground Sampling Distance comme paramètre clé pour la détection automatique des fissures dans le patrimoine bâti : un cadre pratique avec YOLOv5
Publication date :
01 October 2025
Journal title :
International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences
ISSN :
1682-1750
eISSN :
2194-9034
Publisher :
Copernicus
Volume :
XLVIII-M-9-2025
Pages :
179-186
Peer reviewed :
Peer Reviewed verified by ORBi
Available on ORBi :
since 08 October 2025

Statistics


Number of views
56 (11 by ULiège)
Number of downloads
14 (3 by ULiège)

Scopus citations®
 
0
Scopus citations®
without self-citations
0
OpenCitations
 
0
OpenAlex citations
 
0

Bibliography


Similar publications



Contact ORBi