Cis-regulatory elements co-opting core circadian clock regulator CCA1 underlie enhanced expression of HMA4 for metal hyperaccumulation in Arabidopsis halleri. - 2025
Cis-regulatory elements co-opting core circadian clock regulator CCA1 underlie enhanced expression of HMA4 for metal hyperaccumulation in Arabidopsis halleri.
REVEILLE (RVE); cis-regulatory divergence; enhancing elements; evolutionary novelty; metal hyperaccumulation; metal hypertolerance
Abstract :
[en] The naturally selected extreme traits of zinc/cadmium hyperaccumulation and hypertolerance in Arabidopsis halleri depend on strongly elevated HEAVY METAL ATPase 4 (HMA4) transcript levels compared to the closely related Arabidopsis thaliana. This is governed in cis, meaning that upstream AhHMA4 sequences are sufficient, as previously demonstrated using reporter gene fusions stably introduced into both A. halleri and A. thaliana. However, the underlying cis-regulatory mutations specific to A. halleri have remained unknown. Here we identify cis-regulatory Metal Hyperaccumulation Elements (MHE) that contribute to the increased activity of the promoters of the three tandem AhHMA4 gene copies by examining lines stably transformed with deletion and mutant variants of reporter constructs. MHE1 (consensus TGTAAC) functions in distal regions of AhHMA4 promoters, and all three AhHMA4 gene copies share a proximal upstream pair of MHE2 (consensus AAATATCT, Evening Element, EE). The EE is a known target of Arabidopsis CIRCADIAN CLOCK-ASSOCIATED 1 (CCA1), a transcription factor that mediates light-regulated gene expression and operates in the circadian clock. We show that the elevated activity of the AhHMA4-1 promoter depends on MHE2 in cis and CCA1 in trans, and it is recapitulated by site-directed mutagenesis generating an intact pair of MHE2 in the A. thaliana HMA4 promoter sequence. HMA4 transcript levels show diel rhythmicity in A. halleri but not A. thaliana. In summary, we identify the causal cis-regulatory elements which underlie enhanced HMA4 transcript levels critical for a naturally selected extreme trait syndrome and function by co-opting a regulator of diel and seasonal transcriptional rhythms.
Castanedo, Leonardo; Chair of Molecular Genetics and Physiology of Plants, Faculty of Biology and Biotechnology, Ruhr University Bochum, D-44801 Bochum, Germany
Cebula, Justyna; Chair of Molecular Genetics and Physiology of Plants, Faculty of Biology and Biotechnology, Ruhr University Bochum, D-44801 Bochum, Germany
Spielmann, Julien ; Université de Liège - ULiège > Département des sciences de la vie > Génomique fonctionnelle et imagerie moléculaire végétale
Janina, Nedežda; Chair of Molecular Genetics and Physiology of Plants, Faculty of Biology and Biotechnology, Ruhr University Bochum, D-44801 Bochum, Germany
Hanikenne, Marc ; Université de Liège - ULiège > Integrative Biological Sciences (InBioS)
Krämer, Ute ; Chair of Molecular Genetics and Physiology of Plants, Faculty of Biology and Biotechnology, Ruhr University Bochum, D-44801 Bochum, Germany. Electronic address: Ute.Kraemer@ruhr-uni-bochum.de
Language :
English
Title :
Cis-regulatory elements co-opting core circadian clock regulator CCA1 underlie enhanced expression of HMA4 for metal hyperaccumulation in Arabidopsis halleri.
Alabadi, D., Oyama, T., Yanovsky, M. J., Harmon, F. G., Mas, P., and Kay, S. A. (2001). Reciprocal regulation between TOC1 and LHY/CCA1 within the Arabidopsis circadian clock. Science 293:880-883.
Alabadí, D., Yanovsky, M. J., Mas, P., Harmer, S. L., and Kay, S. A. (2002). Critical role for CCA1 and LHY in maintaining circadian rhythmicity in Arabidopsis. Curr Biol 12:757-761.
Alonge, M., Wang, X., Benoit, M., Soyk, S., Pereira, L., Zhang, L., Suresh, H., Ramakrishnan, S., Maumus, F., Ciren, D., et al. (2020). Major impacts of widespread structural variation on gene expression and crop improvement in Tomato. Cell 182:145-161.e23.
Andronis, C., Barak, S., Knowles, S. M., Sugano, S., and Tobin, E. M. (2008). The Clock Protein CCA1 and the bZIP Transcription Factor HY5 Physically Interact to Regulate Gene Expression in Arabidopsis. Mol Plant 1:58-67.
Bailey, T. L., Boden, M., Buske, F. A., Frith, M., Grant, C. E., Clementi, L., Ren, J., Li, W. W., and Noble, W. S. (2009). MEME Suite: Tools for motif discovery and searching. Nucleic Acids Res 37:202-208.
Becher, M., Talke, I. N., Krall, L., and Kramer, U. (2004). Cross-species microarray transcript profiling reveals high constitutive expression of metal homeostasis genes in shoots of the zinc hyperaccumulator Arabidopsis halleri. Plant J 37:251-268.
Bert, V., Meerts, P., Saumitou-Laprade, P., Salis, P., Gruber, W., and Verbruggen, N. (2003). Genetic basis of Cd tolerance and hyperaccumulation in Arabidopsis halleri. Plant Soil 249:9-18.
Castro-Mondragon, J. A., Riudavets-Puig, R., Rauluseviciute, I., Berhanu Lemma, R., Turchi, L., Blanc-Mathieu, R., Lucas, J., Boddie, P., Khan, A., Perez, N. M., et al. (2022). JASPAR 2022: The 9th release of the open-access database of transcription factor binding profiles. Nucleic Acids Res 50:D165-D173.
Clark, R. M., Wagler, T. N., Quijada, P., and Doebley, J. (2006). A distant upstream enhancer at the maize domestication gene tb1 has pleiotropic effects on plant and inflorescent architecture. Nat Genet 38:594-597.
Clauss, M. J., and Koch, M. A. (2006). Poorly known relatives of Arabidopsis thaliana. Trends Plant Sci 11:449-459.
Courbot, M., Willems, G., Motte, P., Arvidsson, S., Roosens, N., Saumitou-Laprade, P., and Verbruggen, N. (2007). A major quantitative trait locus for cadmium tolerance in Arabidopsis halleri colocalizes with HMA4, a gene encoding a Heavy Metal ATPase. Plant Physiol 144:1052-1065.
Crawford, D. L., Segal, J. A., and Barnett, J. L. (1999). Evolutionary analysis of TATA-less proximal promoter function. Mol Biol Evol 16:194-207.
Dong, M. A., Farre, E. M., and Thomashow, M. F. (2011). CIRCADIAN CLOCK-ASSOCIATED 1 and LATE ELONGATED HYPOCOTYL regulate expression of the C-repeat binding factor (CBF) pathway in Arabidopsis. Proc Natl Acad Sci USA 108:7241-7246.
Dubos, C., Stracke, R., Grotewold, E., Weisshaar, B., Martin, C., and Lepiniec, L. (2010). MYB transcription factors in Arabidopsis. Trends Plant Sci 15:573-581.
E. McQueen, and Rebeiz, M. (2020). Chapter Twelve - On the specificity of gene regulatory networks: How does network co-option affect subsequent evolution? Curr Top Dev Biol 139:375-405.
Edwards, K., Johnstone, C., and Thompson, C. (1991). A simple and rapid method for the preparation of plant genomic DNA for PCR analysis. Nucleic Acids Res 19:1349-1349.
Ernst, W. H. O. (2006). Evolution of metal tolerance in higher plants. For Snow Landsc Res 80:251-274.
Farre, E. M., Harmer, S. L., Harmon, F. G., Yanovsky, M. J., and Kay, S. A. (2005). Overlapping and distinct roles of PRR7 and PRR9 in the Arabidopsis circadian clock. Curr Biol 15:47-54.
Fasani, E., DalCorso, G., Varotto, C., Li, M., Visioli, G., Mattarozzi, M., and Furini, A. (2017). The MTP1 promoters from Arabidopsis halleri reveal cis-regulating elements for the evolution of metal tolerance. New Phytol 214:1614-1630.
Franco-Zorrilla, J. M., Lopez-Vidriero, I., Carrasco, J. L., Godoy, M., Vera, P., and Solano, R. (2014). DNA-binding specificities of plant transcription factors and their potential to define target genes. Proc Natl Acad Sci USA 111:2367-2372.
Gallagher, R. S. (1992). 3 - Quantitation of GUS Activity by Fluorometry. In Gus Protocols, pp. 47-59.
Goodspeed, D., Chehab, E. W., Min-Venditti, A., Braam, J., and Covington, M. F. (2012). Arabidopsis synchronizes jasmonate-mediated defense with insect circadian behavior. Proc Natl Acad Sci USA 109:4674-4677.
Grant, C. E., Bailey, T. L., and Noble, W. S. (2011). FIMO: Scanning for occurrences of a given motif. Bioinformics 27:1017-1018.
Green, R. M., and Tobin, E. M. (1999). Loss of the circadian clock-associated protein 1 in Arabidopsis results in altered clock-regulated gene expression. Proc Natl Acad Sci USA 96:4176-4179.
Gupta, S., Stamatoyannopoulos, J. A., Bailey, T. L., and Noble, W. S. (2007). Quantifying similarity between motifs. Genome Biol 8:R24.
Hammond, J. P., Bowen, H. C., White, P. J., Mills, V., Pyke, K. A., Baker, A. J. M., Whiting, S. N., May, S. T., and Broadley, M. R. (2006). A comparison of the Thlaspi caerulescens and Thlaspi arvense shoot transcriptomes. New Phytol 170:239-260.
Hanikenne, M., Talke, I. N., Haydon, M. J., Lanz, C., Nolte, A., Motte, P., Kroymann, J., Weigel, D., and Kramer, U. (2008). Evolution of metal hyperaccumulation required cis-regulatory changes and triplication of HMA4. Nature 453:391-395.
Hanikenne, M., Kroymann, J., Trampczynska, A., Bernal, M., Motte, P., Clemens, S., and Kramer, U. (2013). Hard selective sweep and ectopic gene conversion in a gene cluster affording environmental adaptation. PLoS Genet 9:e1003707.
Harmer, S. L., Hogenesch, J. B., Straume, M., Chang, H. S., Han, B., Zhu, T., Wang, X., Kreps, J. A., and Kay, S. A. (2000). Orchestrated transcription of key pathways in Arabidopsis by the circadian clock. Science 290:2110-2113.
Haydon, M. J., Bell, L. J., Webb, A. A. R. (2011) Interactions between plant circadian clocks and solute transport. J Exp Bot 62:2333-2348.
Hill, M. S., Vande Zande, P., and Wittkopp, P. J. (2021). Molecular and evolutionary processes generating variation in gene expression. Nat Rev Genet 22:203-215.
Hufford, M. B., Xu, X., Van Heerwaarden, J., Pyhajarvi, T., Chia, J. M., Cartwright, R. A., Elshire, R. J., Glaubitz, J. C., Guill, K. E., Kaeppler, S. M., et al. (2012). Comparative population genomics of maize domestication and improvement. Nat Genet 44:808-811.
Jacob, F., and Monod, J. (1961). Genetic regulatory mechanisms in the synthesis of proteins. J Mol Biol 3:318-356.
Jefferson, R. A., Kavanagh, T. A., and Bevan, M. W. (1987). GUS fusions: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6:3901-3907.
Kamioka, M., Takao, S., Suzuki, T., Taki, K., Higashiyam, T., Kinoshita, T., and Nakamichi, N. (2016). Direct repression of evening genes by CIRCADIAN CLOCK-ASSOCIATED1 in the Arabidopsis circadian clock. Plant Cell 28:696-711.
Kaplan-Levy, R. N., Brewer, P. B., Quon, T., and Smyth, D. R. (2012). The trihelix family of transcription factors - light, stress and development. Trends Plant Sci 17:163-171.
Kazemi-Dinan, A., Thomaschky, S., Stein, R. J., Kramer, U., and Muller, C. (2014). Zinc and cadmium hyperaccumulation act as deterrents towards specialist herbivores and impede the performance of a generalist herbivore. New Phytol 202:628-639.
King, M. C., and Wilson, A. C. (1975). Evolution at two levels in humans and chimpanzees. Science 188:107-116.
Kramer, U. (2010). Metal hyperaccumulation in plants. Annu Rev Plant Biol 61:517-534.
Kramer, U. (2024). Metal homeostasis in land plants: A perpetual balancing act beyond the fulfilment of metalloproteome cofactor demands. Annu Rev Plant Biol 75:27-65.
Krysan, P. J., Young, J. C., and Sussman, M. R. (1996). T-DNA as an Insertional Mutagen in Arabidopsis. Plant Cell 11:2283-2290.
Liu, Y., Du, H., Li, P., Shen, Y., Peng, H., Liu, S., Zhou, G. A., Zhang, H., Liu, Z., Shi, M., et al. (2020). Pan-genome of wild and cultivated soybeans. Cell 182:162-176.e13.
Lochlainn, S., Bowen, H. C., Fray, R. G., Hammond, J. P., King, G. J., White, P. J., Graham, N. S., and Broadley, M. R. (2011). Tandem quadruplication of HMA4 in the zinc (Zn) and cadmium (Cd) hyperaccumulator Noccaea caerulescens. PLoS ONE 6:e17814.
Lu, S. X., Knowles, S. M., Andronis, C., Ong, M. S., and Tobin, E. M. (2009). CIRCADIAN CLOCK ASSOCIATED1 and LATE ELONGATED HYPOCOTYL function synergistically in the circadian clock of Arabidopsis. Plant Physiol 150:834-843.
Lu, S. X., Webb, C. J., Knowles, S. M., Kim, S. H. J., Wang, Z., and Tobin, E. M. (2012). CCA1 and ELF3 Interact in the Control of Hypocotyl Length and Flowering Time in Arabidopsis. Plant Physiol 158:1079-1088.
Meyer, C., Kostecka, A. A., Saumitou-Laprade, P., Creach, A., Castric, V., Pauwels, M., and Frerot, H. (2010). Variability of zinc tolerance among and within populations of the pseudometallophyte species Arabidopsis halleri and possible role of directional selection. New Phytol 185:130-142.
Mizoguchi, T., Wheatley, K., Hanzawa, Y., Wright, L., Mizoguchi, M., Song, H. R., Carre, I. A., and Coupland, G. (2002). LHY and CCA1 are partially redundant genes required to maintain circadian rhythms in Arabidopsis. Dev Cell 2:629-641.
Nagano, A. J., Kawagoe, T., Sugisaka, J., Honjo, M. N., Iwayama, K., and Kudoh, H. (2019). Annual transcriptome dynamics in natural environments reveals plant seasonal adaptation. Nat Plants 5:74-83.
Nagel, D. H., Doherty, C. J., Pruneda-Paz, J. L., Schmitz, R. J., Ecker, J. R., and Kay, S. A. (2015). Genome-wide identification of CCA1 targets uncovers an expanded clock network in Arabidopsis. Proc Natl Acad Sci USA 112:E4802-E4810.
Nouet, C., Charlier, J. B., Carnol, M., Bosman, B., Farnir, F., Motte, P., and Hanikenne, M. (2015). Functional analysis of the three HMA4 copies of the metal hyperaccumulator Arabidopsis halleri. J Exp Bot 66:5783-5795.
Novikova, P. Y., Hohmann, N., and Van De Peer, Y. (2018). Polyploid Arabidopsis species originated around recent glaciation maxima. Curr Opin Plant Biol 42:8-15.
O’Malley, R. C., Huang, S. S. C., Song, L., Lewsey, M. G., Bartlett, A., Nery, J. R., Galli, M., Gallavotti, A., and Ecker, J. R. (2016). Cistrome and epicistrome features shape the regulatory DNA landscape. Cell 165:1280-1292.
Paape, T., Akiyama, R., Cereghetti, T., Onda, Y., Hirao, A. S., Kenta, T., and Shimizu, K. K. (2020). Experimental and field data support range expansion in an allopolyploid Arabidopsis owing to parental legacy of heavy metal hyperaccumulation. Front Genet 11:565854.
Perales, M., and Mas, P. (2007). A functional link between rhythmic changes in chromatin structure and the Arabidopsis biological clock. Plant Cell 19:2111-2123.
Rawat, R., Schwartz, J., Jones, M. A., Sairanen, I., Cheng, Y., Andersson, C. R., Zhao, Y., Ljung, K., and Harmer, S. L. (2009). REVEILLE1, a Myb-like transcription factor, integrates the circadian clock and auxin pathways. Proc Natl Acad Sci USA 106:16883-16888.
Reeves, R. D., van der Ent, A., and Baker, A. J. M. (2017). Agromining: farming for metals. In Global distribution and ecology of hyperaccumulator plants, pp. 75-92. Springer International Publishing.
Schmitz, R. J., Grotewold, E., and Stam, M. (2022). Cis-regulatory sequences in plants: Their importance, discovery, and future challenges. Plant Cell 34:718-741.
Sievers, F., Wilm, A., Dineen, D., Gibson, T. J., Karplus, K., Li, W., Lopez, R., McWilliam, H., Remmert, M., Soding, J., et al. (2011). Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol Syst Biol 7:539.
Sinclair, S. A., Senger, T., Talke, I. N., Cobbett, C. S., Haydon, M. J., and Kramer, U. (2018). Systemic upregulation of MTP2- and HMA2-mediated Zn partitioning to the shoot supplements local Zn deficiency responses. Plant Cell 30:2463-2479.
Song, J. M., Guan, Z., Hu, J., Guo, C., Yang, Z., Wang, S., Liu, D., Wang, B., Lu, S., Zhou, R., et al. (2020). Eight high-quality genomes reveal pan-genome architecture and ecotype differentiation of Brassica napus. Nat Plants 6:34-45.
Stein, R. J., Horeth, S., De Melo, J. R. F., Syllwasschy, L., Lee, G., Garbin, M. L., Clemens, S., and Kramer, U. (2017). Relationships between soil and leaf mineral composition are element-specific, environment-dependent and geographically structured in the emerging model Arabidopsis halleri. New Phytol 213:1274-1286.
Stern, D. L. (1998). A role of Ultrabithorax in morphological differences between Drosophila species. Nature 396:463-466.
Talke, I. N., Hanikenne, M., and Kramer, U. (2006). Zinc-dependent global transcriptional control, transcriptional deregulation, and higher gene copy number for genes in metal homeostasis of the hyperaccumulator Arabidopsis halleri. Plant Physiol 142:148-167.
True, J. R., and Carroll, S. B. (2002). Gene co-option in physiological and morphological evolution. Annu Rev Cell Dev Biol 18:53-80.
Van De Mortel, J. E., Almar Villanueva, L., Schat, H., Kwekkeboom, J., Coughlan, S., Moerland, P. D., Ver Loren Van Themaat, E., Koornneef, M., and Aarts, M. G. M. (2006). Large Expression Differences in Genes for Iron and Zinc Homeostasis, Stress Response, and Lignin Biosynthesis Distinguish Roots of Arabidopsis thaliana and the Related Metal Hyperaccumulator Thlaspi caerulescens. Plant Physiol 142:1127-1147.
Verbruggen, N., Hermans, C., and Schat, H. (2009). Molecular mechanisms of metal hyperaccumulation in plants. New Phytol 181:759-776.
Wang, Z. Y., and Tobin, E. M. (1998). Constitutive expression of the CIRCADIAN CLOCK ASSOCIATED 1 (CCA1) gene disrupts circadian rhythms and suppresses its own expression. Cell 93:1207-1217.
Wang, Z. Y., Kenigsbuch, D., Sun, L., Harel, E., Ong, M. S., and Tobin, E. M. (1997). A Myb-related transcription factor is involved in the phytochrome regulation of an Arabidopsis Lhcb gene. Plant Cell 9:491-507.
Wang, R. L., Stec, A., Hey, J., Lukens, L., and Doebley, J. (1999). The limits of selection during maize domestication. Nature 398:236-239.
Weber, M., Harada, E., Vess, C., Roepenack-Lahaye, E. V., and Clemens, S. (2004). Comparative microarray analysis of Arabidopsis thaliana and Arabidopsis halleri roots identifies nicotianamine synthase, a ZIP transporter and other genes as potential metal hyperaccumulation factors. Plant J 37:269-281.
Weigel, D., and Glazebrook, J. (2006). Setting Up Arabidopsis Crosses. Cold Spring Harbor Protocols 5:pdb.prot4623.
Willems, G., Drager, D. B., Courbot, M., Gode, C., Verbruggen, N., and Saumitou-Laprade, P. (2007). The genetic basis of zinc tolerance in the metallophyte Arabidopsis halleri ssp. halleri (Brassicaceae): An analysis of quantitative trait loci. Genetics 176:659-674.
Yakir, E., Hilman, D., Kron, I., Hassidim, M., Melamed-Book, N., and Green, R. M. (2009). Posttranslational Regulation of CIRCADIAN CLOCK ASSOCIATED1 in the Circadian Oscillator of Arabidopsis. Plant Physiol 150:844-857.
Yoon, J.-H., Abdelmohsen, K., Srikantan, S., Yang, X., Martindale, J. L., De, S., Huarte, M., Zhan, M., Becker, K. G., and Gorospe, M. (2012). LincRNA-p21 Suppresses Target mRNA Translation. Mol Cell 47:648-655.
Zhang, H., and Kramer, U. (2018). Differential Diel Translation of Transcripts with Roles in the Transfer and Utilization of Iron-Sulfur Clusters in Arabidopsis. Front Plant Sci 9:1641.
Zhang, H., Quintana, J., Utkur, K., Adrian, L., Hawer, H., Mayer, K., Gong, X., Castanedo, L., Schulten, A., Janina, N., et al. (2022). Translational fidelity and growth of Arabidopsis require stress-sensitive diphthamide biosynthesis. Nat Commun 13:4009.