[en] The study of disorders of consciousness (DoC) is very complex because patients suffer from a wide variety of lesions, affected brain mechanisms, different severity of symptoms, and are unable to communicate. Combining neuroimaging data and mathematical modeling can help us quantify and better describe some of these alterations. The goal of this study is to provide a new analysis and modeling pipeline for fMRI data leading to new diagnosis and prognosis biomarkers at the individual patient level. To do so, we project patients' fMRI data into a low-dimension latent-space. We define the latent space's dimension as the smallest dimension able to maintain the complexity, non-linearities, and information carried by the data, according to different criteria that we detail in the first part. This dimensionality reduction procedure then allows us to build biologically inspired latent whole-brain models that can be calibrated at the single-patient level. In particular, we propose a new model inspired by the regulation of neuronal activity by astrocytes in the brain. This modeling procedure leads to two types of model-based biomarkers (MBBs) that provide novel insight at different levels: (1) the connectivity matrices bring us information about the severity of the patient's diagnosis, and, (2) the local node parameters correlate to the patient's etiology, age and prognosis. Altogether, this study offers a new data processing framework for resting-state fMRI which provides crucial information regarding DoC patients diagnosis and prognosis. Finally, this analysis pipeline could be applied to other neurological conditions.
Disciplines :
Neurosciences & behavior
Author, co-author :
Zonca, Lou ; Center for Brain and Cognition, University Pompeu Fabra, Barcelona, Spain
Escrichs, Anira ; Center for Brain and Cognition, University Pompeu Fabra, Barcelona, Spain
Patow, Gustavo; Center for Brain and Cognition, University Pompeu Fabra, Barcelona, Spain ; Girona University, Girona, Spain
Manasova, Dragana ; Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, Paris, France ; Université Paris Cité, Paris, France
Sanz-Perl, Yonathan; Center for Brain and Cognition, University Pompeu Fabra, Barcelona, Spain
Annen, Jitka ; Université de Liège - ULiège > GIGA > GIGA Neurosciences - Coma Science Group
Gosseries, Olivia ; Université de Liège - ULiège > GIGA > GIGA Neurosciences - Coma Science Group
Laureys, Steven ; Université de Liège - ULiège > Département des sciences cliniques ; Joint International Research Unit on Consciousness, CERVO Brain Research Centre, Laval University, Quebec City, Quebec, Canada ; International Consciousness Science Institute, Hangzhou Normal University, Hangzhou, China
Sitt, Jacobo Diego; Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, Paris, France
Deco, Gustavo ; Center for Brain and Cognition, University Pompeu Fabra, Barcelona, Spain
Language :
English
Title :
Personalized models of disorders of consciousness reveal complementary roles of connectivity and local parameters in diagnosis and prognosis.
EU - European Union ERC - European Research Council ERDF - European Regional Development Fund Fondation Bettencourt Schueller F.R.S.-FNRS - Fonds de la Recherche Scientifique Fondation Léon Fredericq FWO - Research Foundation Flanders
Galadí JA. The mind-body problem: An overview of proposed solutions. The theory of mind under scrutiny: Psychopathology, neuroscience, philosophy of mind and artificial intelligence; 2024. p. 435–67.
Boring EG. The physical dimensions of consciousness. The Century Co.; 1933.
Laureys S, Owen AM, Schiff ND. Brain function in coma, vegetative state, and related disorders. Lancet Neurol. 2004;3(9):537–46. https://doi.org/10.1016/S1474-4422(04)00852-X PMID: 15324722
Jennett B, Plum F. Persistent vegetative state after brain damage. A syndrome in search of a name. Lancet. 1972;1(7753):734–7. https://doi.org/10.1016/s0140-6736(72)90242-5 PMID: 4111204
Giacino JT, Kalmar K. Diagnostic and prognostic guidelines for the vegetative and minimally conscious states. Neuropsychol Rehabil. 2005;15(3–4):166–74. https://doi.org/10.1080/09602010443000498 PMID: 16350959
Bruno M-A, Vanhaudenhuyse A, Thibaut A, Moonen G, Laureys S. From unresponsive wakefulness to minimally conscious PLUS and functional locked-in syndromes: Recent advances in our understanding of disorders of consciousness. J Neurol. 2011;258(7):1373–84. https://doi.org/10.1007/s00415-011-6114-x PMID: 21674197
Schiff ND. Cognitive motor dissociation following severe brain injuries. JAMA Neurol. 2015;72(12):1413–5. https://doi.org/10.1001/jamaneurol.2015.2899 PMID: 26502348
Laureys S, Schiff ND. Coma and consciousness: Paradigms (re)framed by neuroimaging. Neuroimage. 2012;61(2):478–91. https://doi.org/10.1016/j.neuroimage.2011.12.041 PMID: 22227888
Schiff ND. Mesocircuit mechanisms in the diagnosis and treatment of disorders of consciousness. Presse Med. 2023;52(2):104161. https://doi.org/10.1016/j.lpm.2022.104161 PMID: 36563999
Barra ME, Solt K, Yu X, Edlow BL. Restoring consciousness with pharmacologic therapy: Mechanisms, targets, and future directions. Neurotherapeutics. 2024;21(4):e00374. https://doi.org/10.1016/j.neurot.2024.e00374 PMID: 39019729
Zhuo M. Cortical synaptic basis of consciousness. Eur J Neurosci. 2024;59(5):796–806. https://doi.org/10.1111/ejn.16198 PMID: 38013403
Demertzi A, Antonopoulos G, Heine L, Voss HU, Crone JS, de Los Angeles C, et al. Intrinsic functional connectivity differentiates minimally conscious from unresponsive patients. Brain. 2015;138(Pt 9):2619–31. https://doi.org/10.1093/brain/awv169 PMID: 26117367
Stender J, Gosseries O, Bruno M-A, Charland-Verville V, Vanhaudenhuyse A, Demertzi A, et al. Diagnostic precision of PET imaging and functional MRI in disorders of consciousness: A clinical validation study. Lancet. 2014;384(9942):514–22. https://doi.org/10.1016/S0140-6736(14)60042-8 PMID: 24746174
Bodien YG, Allanson J, Cardone P, Bonhomme A, Carmona J, Chatelle C, et al. Cognitive motor dissociation in disorders of consciousness. New Engl J Med. 2024;391(7):598–608.
Egbebike J, Shen Q, Doyle K, Der-Nigoghossian CA, Panicker L, Gonzales IJ, et al. Cognitive-motor dissociation and time to functional recovery in patients with acute brain injury in the USA: A prospective observational cohort study. Lancet Neurol. 2022;21(8):704–13. https://doi.org/10.1016/S1474-4422(22)00212-5 PMID: 35841909
Thibaut A, Schiff N, Giacino J, Laureys S, Gosseries O. Therapeutic interventions in patients with prolonged disorders of consciousness. Lancet Neurol. 2019;18(6):600–14. https://doi.org/10.1016/S1474-4422(19)30031-6 PMID: 31003899
Saif M, Sharbatti SA, Nemmar A, Kumar SS, Prasad K, Khan AM. Outcomes of neurorehabilitation among patients with prolonged disorders of consciousness. Cureus. 2023;15(5).
Hopkins AR, Vitello MM, Thibaut A, Monti MM. Emerging treatment for patients with disorders of consciousness: The field of neuromodulation. Coma and disorders of consciousness. Springer; 2024. p. 147–208.
Deco G, Ponce-Alvarez A, Hagmann P, Romani GL, Mantini D, Corbetta M. How local excitation-inhibition ratio impacts the whole brain dynamics. J Neurosci. 2014;34(23):7886–98. https://doi.org/10.1523/JNEUROSCI.5068-13.2014 PMID: 24899711
Deco G, McIntosh AR, Shen K, Hutchison RM, Menon RS, Everling S, et al. Identification of optimal structural connectivity using functional connectivity and neural modeling. J Neurosci. 2014;34(23):7910–6. https://doi.org/10.1523/JNEUROSCI.4423-13.2014 PMID: 24899713
Deco G, Jirsa VK. Ongoing cortical activity at rest: Criticality, multistability, and ghost attractors. J Neurosci. 2012;32(10):3366–75. https://doi.org/10.1523/JNEUROSCI.2523-11.2012 PMID: 22399758
Panda R, Thibaut A, Lopez-Gonzalez A, Escrichs A, Bahri MA, Hillebrand A, et al. Disruption in structural-functional network repertoire and time-resolved subcortical fronto-temporoparietal connectivity in disorders of consciousness. Elife. 2022;11:e77462. https://doi.org/10.7554/eLife.77462 PMID: 35916363
Cabral J, Luckhoo H, Woolrich M, Joensson M, Mohseni H, Baker A, et al. Exploring mechanisms of spontaneous functional connectivity in MEG: How delayed network interactions lead to structured amplitude envelopes of band-pass filtered oscillations. Neuroimage. 2014;90:423–35. https://doi.org/10.1016/j.neuroimage.2013.11.047 PMID: 24321555
Barres BA. The mystery and magic of glia: A perspective on their roles in health and disease. Neuron. 2008;60(3):430–40. https://doi.org/10.1016/j.neuron.2008.10.013 PMID: 18995817
Allen NJ, Barres BA. Neuroscience: Glia – More than just brain glue. Nature. 2009;457(7230):675–7. https://doi.org/10.1038/457675a PMID: 19194443
Perea G, Navarrete M, Araque A. Tripartite synapses: Astrocytes process and control synaptic information. Trends Neurosci. 2009;32(8):421–31. https://doi.org/10.1016/j.tins.2009.05.001 PMID: 19615761
Dallérac G, Chever O, Rouach N. How do astrocytes shape synaptic transmission? Insights from electrophysiology. Front Cell Neurosci. 2013;7:159. https://doi.org/10.3389/fncel.2013.00159 PMID: 24101894
Chever O, Dossi E, Pannasch U, Derangeon M, Rouach N. Astroglial networks promote neuronal coordination. Sci Signal. 2016;9(410):ra6. https://doi.org/10.1126/scisignal.aad3066 PMID: 26758214
Wallraff A, Köhling R, Heinemann U, Theis M, Willecke K, Steinhäuser C. The impact of astrocytic gap junctional coupling on potassium buffering in the hippocampus. J Neurosci. 2006;26(20):5438–47. https://doi.org/10.1523/JNEUROSCI.0037-06.2006 PMID: 16707796
Pannasch U, Derangeon M, Chever O, Rouach N. Astroglial gap junctions shape neuronal network activity. Commun Integr Biol. 2012;5(3):248–54. https://doi.org/10.4161/cib.19410 PMID: 22896785
Tesler F, Linne M-L, Destexhe A. Modeling the relationship between neuronal activity and the BOLD signal: Contributions from astrocyte calcium dynamics. Sci Rep. 2023;13(1):6451. https://doi.org/10.1038/s41598-023-32618-0 PMID: 37081004
Haydon PG, Carmignoto G. Astrocyte control of synaptic transmission and neurovascular coupling. Physiol Rev. 2006;86(3):1009–31.
Filosa JA, Iddings JA. Astrocyte regulation of cerebral vascular tone. Am J Physiol Heart Circ Physiol. 2013;305(5):H609-19. https://doi.org/10.1152/ajpheart.00359.2013 PMID: 23792684
Iadecola C. The neurovascular unit coming of age: A journey through neurovascular coupling in health and disease. Neuron. 2017;96(1):17–42. https://doi.org/10.1016/j.neuron.2017.07.030 PMID: 28957666
Dossi E, Zonca L, Pivonkova H, Milior G, Moulard J, Vargova L, et al. Astroglial gap junctions strengthen hippocampal network activity by sustaining afterhyperpolarization via KCNQ channels. Cell Rep. 2024;43(5):114158. https://doi.org/10.1016/j.celrep.2024.114158 PMID: 38722742
Sibille J, Dao Duc K, Holcman D, Rouach N. The neuroglial potassium cycle during neurotransmission: Role of Kir4.1 channels. PLoS Comput Biol. 2015;11(3):e1004137. https://doi.org/10.1371/journal.pcbi.1004137 PMID: 25826753
Rouach N, Duc KD, Sibille J, Holcman D. Dynamics of ion fluxes between neurons, astrocytes and the extracellular space during neurotransmission. Opera Med Physiol. 2018;4(1).
Freeman MR, Rowitch DH. Evolving concepts of gliogenesis: A look way back and ahead to the next 25 years. Neuron. 2013;80(3):613–23. https://doi.org/10.1016/j.neuron.2013.10.034 PMID: 24183014
Verkhratsky A, Butt A. Glial physiology and pathophysiology. John Wiley & Sons. 2013.
Ingiosi AM, Hayworth CR, Harvey DO, Singletary KG, Rempe MJ, Wisor JP, et al. A role for astroglial calcium in mammalian sleep and sleep regulation. Curr Biol. 2020;30(22):4373-4383.e7. https://doi.org/10.1016/j.cub.2020.08.052 PMID: 32976809
Bojarskaite L, Bjørnstad DM, Pettersen KH, Cunen C, Hermansen GH, Åbjørsbråten KS, et al. Astrocytic Ca2+ signaling is reduced during sleep and is involved in the regulation of slow wave sleep. Nat Commun. 2020;11(1):3240. https://doi.org/10.1038/s41467-020-17062-2 PMID: 32632168
Choi I-S, Kim J-H, Jeong J-Y, Lee M-G, Suk K, Jang I-S. Astrocyte-derived adenosine excites sleep-promoting neurons in the ventrolateral preoptic nucleus: Astrocyte-neuron interactions in the regulation of sleep. Glia. 2022;70(10):1864–85. https://doi.org/10.1002/glia.24225 PMID: 35638268
Ingiosi AM, Frank MG. Goodnight, astrocyte: Waking up to astroglial mechanisms in sleep. FEBS J. 2023;290(10):2553–64. https://doi.org/10.1111/febs.16424 PMID: 35271767
Gao P, Ganguli S. On simplicity and complexity in the brave new world of large-scale neuroscience. Curr Opin Neurobiol. 2015;32:148–55. https://doi.org/10.1016/j.conb.2015.04.003 PMID: 25932978
Jazayeri M, Afraz A. Navigating the neural space in search of the neural code. Neuron. 2017;93(5):1003–14. https://doi.org/10.1016/j.neuron.2017.02.019 PMID: 28279349
Shine JM, Breakspear M, Bell PT, Ehgoetz Martens KA, Shine R, Koyejo O, et al. Human cognition involves the dynamic integration of neural activity and neuromodulatory systems. Nat Neurosci. 2019;22(2):289–96. https://doi.org/10.1038/s41593-018-0312-0 PMID: 30664771
Rué-Queralt J, Stevner A, Tagliazucchi E, Laufs H, Kringelbach ML, Deco G, et al. Decoding brain states on the intrinsic manifold of human brain dynamics across wakefulness and sleep. Commun Biol. 2021;4(1):854. https://doi.org/10.1038/s42003-021-02369-7 PMID: 34244598
Deco G, Vidaurre D, Kringelbach ML. Revisiting the global workspace orchestrating the hierarchical organization of the human brain. Nat Hum Behav. 2021;5(4):497–511. https://doi.org/10.1038/s41562-020-01003-6 PMID: 33398141
Perl YS, Geli S, Pérez-Ordoyo E, Zonca L, Idesis S, Vohryzek J, et al. Modelling low-dimensional interacting brain networks reveals organising principle in human cognition. Netw Neurosci. 2025;9(2):661–81. https://doi.org/10.1162/netn_a_00434 PMID: 40487363
Idesis S, Allegra M, Vohryzek J, Sanz Perl Y, Faskowitz J, Sporns O, et al. A low dimensional embedding of brain dynamics enhances diagnostic accuracy and behavioral prediction in stroke. Sci Rep. 2023;13(1):15698. https://doi.org/10.1038/s41598-023-42533-z PMID: 37735201
Perl YS, Pallavicini C, Piccinini J, Demertzi A, Bonhomme V, Martial C, et al. Low-dimensional organization of global brain states of reduced consciousness. Cell Rep. 2023;42(5):112491. https://doi.org/10.1016/j.celrep.2023.112491 PMID: 37171963
Yeo BT, Krienen FM, Sepulcre J, Sabuncu MR, Lashkari D, Hollinshead M. The organization of the human cerebral cortex estimated by intrinsic functional connectivity. J Neurophysiol. 2011.
Schaefer A, Kong R, Gordon EM, Laumann TO, Zuo X-N, Holmes AJ, et al. Local-global parcellation of the human cerebral cortex from intrinsic functional connectivity MRI. Cereb Cortex. 2018;28(9):3095–114. https://doi.org/10.1093/cercor/bhx179 PMID: 28981612
Tian Y, Margulies DS, Breakspear M, Zalesky A. Topographic organization of the human subcortex unveiled with functional connectivity gradients. Nat Neurosci. 2020;23(11):1421–32. https://doi.org/10.1038/s41593-020-00711-6 PMID: 32989295
Deco G, Kringelbach ML, Jirsa VK, Ritter P. The dynamics of resting fluctuations in the brain: Metastability and its dynamical cortical core. Sci Rep. 2017;7(1):3095. https://doi.org/10.1038/s41598-017-03073-5 PMID: 28596608
Zonca L, Holcman D. Modeling bursting in neuronal networks using facilitation-depression and afterhyperpolarization. Commun Nonlin Sci Numer Simul. 2021;94:105555. https://doi.org/10.1016/j.cnsns.2020.105555
Stephan KE, Weiskopf N, Drysdale PM, Robinson PA, Friston KJ. Comparing hemodynamic models with DCM. Neuroimage. 2007;38(3):387–401. https://doi.org/10.1016/j.neuroimage.2007.07.040 PMID: 17884583
Stephan KE, Kasper L, Harrison LM, Daunizeau J, den Ouden HEM, Breakspear M, et al. Nonlinear dynamic causal models for fMRI. Neuroimage. 2008;42(2):649–62. https://doi.org/10.1016/j.neuroimage.2008.04.262 PMID: 18565765
Wang Z, Bovik AC, Sheikh HR, Simoncelli EP. Image quality assessment: From error visibility to structural similarity. IEEE Trans Image Process. 2004;13(4):600–12. https://doi.org/10.1109/tip.2003.819861 PMID: 15376593
Ipiña IP, Kehoe PD, Kringelbach M, Laufs H, Ibañez A, Deco G, et al. Modeling regional changes in dynamic stability during sleep and wakefulness. Neuroimage. 2020;215:116833. https://doi.org/10.1016/j.neuroimage.2020.116833 PMID: 32289454
McInnes L, Healy J, Melville J. Umap: Uniform manifold approximation and projection for dimension reduction; 2018. https://arxiv.org/abs/1802.03426
Jeong M-H, Cai Y, Sullivan CJ, Wang S. Data depth based clustering analysis. In: Proceedings of the 24th ACM SIGSPATIAL international conference on advances in geographic information systems; 2016. p. 1–10. https://doi.org/10.1145/2996913.2996984
Atasoy S, Deco G, Kringelbach ML, Pearson J. Harmonic brain modes: A unifying framework for linking space and time in brain dynamics. Neuroscientist. 2018;24(3):277–93. https://doi.org/10.1177/1073858417728032 PMID: 28863720
Vohryzek J, Cabral J, Timmermann C, Atasoy S, Roseman L, Nutt DJ, et al. The flattening of spacetime hierarchy of the N,N-dimethyltryptamine brain state is characterized by harmonic decomposition of spacetime (HADES) framework. Natl Sci Rev. 2024;11(5):nwae124. https://doi.org/10.1093/nsr/nwae124 PMID: 38778818
Van Maldegem M, Vohryzek J, Atasoy S, Alnagger N, Cardone P, Bonhomme V, et al. Ketamine-induced unresponsiveness shows a harmonic shift from global to localised functional organisation. bioRxiv; 2024. p. 2024–06.
Deco G, Sanz Perl Y, Kringelbach ML. Complex harmonics reveal low-dimensional manifolds of critical brain dynamics. bioRxiv; 2024. p. 2024–06.
Dan T, Huang Z, Cai H, Lyday RG, Laurienti PJ, Wu G. Uncovering shape signatures of resting-state functional connectivity by geometric deep learning on Riemannian manifold. Hum Brain Mapp. 2022;43(13):3970–86. https://doi.org/10.1002/hbm.25897 PMID: 35538672
Dan T, Wei Z, Kim WH, Wu G. Exploring the enigma of neural dynamics through a scattering-transform mixer landscape for riemannian manifold; 2024. https://doi.org/arXiv:240516357
Poshtkohi A, Wade J, McDaid L, Liu J, Dallas M, Bithell A. Mathematical modelling of human P2X-mediated plasma membrane electrophysiology and calcium dynamics in microglia. PLoS Comput Biol. 2021;17(11):e1009520. https://doi.org/10.1371/journal.pcbi.1009520 PMID: 34723961
Vaughan LE, Ranganathan PR, Kumar RG, Wagner AK, Rubin JE. A mathematical model of neuroinflammation in severe clinical traumatic brain injury. J Neuroinflam. 2018;15(1):345. https://doi.org/10.1186/s12974-018-1384-1 PMID: 30563537
Gilson M, Deco G, Friston KJ, Hagmann P, Mantini D, Betti V, et al. Effective connectivity inferred from fMRI transition dynamics during movie viewing points to a balanced reconfiguration of cortical interactions. Neuroimage. 2018;180(Pt B):534–46. https://doi.org/10.1016/j.neuroimage.2017.09.061 PMID: 29024792
Tewarie P, Abeysuriya R, Panda R, Nunez P, Vitello MM, van der Lande G. Individual trajectories for recovery of neocortical activity in disorders of consciousness. bioRxiv; 2024. p. 2024–03.
López-González A, Panda R, Ponce-Alvarez A, Zamora-López G, Escrichs A, Martial C, et al. Loss of consciousness reduces the stability of brain hubs and the heterogeneity of brain dynamics. Commun Biol. 2021;4(1):1037. https://doi.org/10.1038/s42003-021-02537-9 PMID: 34489535
Escrichs A, Perl YS, Uribe C, Camara E, Türker B, Pyatigorskaya N, et al. Unifying turbulent dynamics framework distinguishes different brain states. Commun Biol. 2022;5(1):638. https://doi.org/10.1038/s42003-022-03576-6 PMID: 35768641
Beckmann CF, Smith SM. Probabilistic independent component analysis for functional magnetic resonance imaging. IEEE Trans Med Imaging. 2004;23(2):137–52. https://doi.org/10.1109/TMI.2003.822821 PMID: 14964560
Jenkinson M, Bannister P, Brady M, Smith S. Improved optimization for the robust and accurate linear registration and motion correction of brain images. Neuroimage. 2002;17(2):825–41. https://doi.org/10.1016/s1053-8119(02)91132-8 PMID: 12377157
Smith SM. Fast robust automated brain extraction. Hum Brain Mapp. 2002;17(3):143–55. https://doi.org/10.1002/hbm.10062 PMID: 12391568
Griffanti L, Salimi-Khorshidi G, Beckmann CF, Auerbach EJ, Douaud G, Sexton CE, et al. ICA-based artefact removal and accelerated fMRI acquisition for improved resting state network imaging. Neuroimage. 2014;95:232–47. https://doi.org/10.1016/j.neuroimage.2014.03.034 PMID: 24657355
Esteban O, Markiewicz CJ, Blair RW, Moodie CA, Isik AI, Erramuzpe A, et al. fMRIPrep: A robust preprocessing pipeline for functional MRI. Nat Methods. 2019;16(1):111–6. https://doi.org/10.1038/s41592-018-0235-4 PMID: 30532080
Weiler M, Casseb RF, de Campos BM, Crone JS, Lutkenhoff ES, Vespa PM, et al. Evaluating denoising strategies in resting-state functional magnetic resonance in traumatic brain injury (EpiBioS4Rx). Hum Brain Mapp. 2022;43(15):4640–9. https://doi.org/10.1002/hbm.25979 PMID: 35723510
Holcman D, Tsodyks M. The emergence of up and down states in cortical networks. PLoS Comput Biol. 2006;2(3):e23. https://doi.org/10.1371/journal.pcbi.0020023 PMID: 16557293
Dao Duc K, Lee C-Y, Parutto P, Cohen D, Segal M, Rouach N, et al. Bursting reverberation as a multiscale neuronal network process driven by synaptic depression-facilitation. PLoS One. 2015;10(5):e0124694. https://doi.org/10.1371/journal.pone.0124694 PMID: 26017681
Tsodyks MV, Markram H. The neural code between neocortical pyramidal neurons depends on neurotransmitter release probability. Proc Natl Acad Sci U S A. 1997;94(2):719–23. https://doi.org/10.1073/pnas.94.2.719 PMID: 9012851
Bart E, Bao S, Holcman D. Modeling the spontaneous activity of the auditory cortex. J Comput Neurosci. 2005;19(3):357–78. https://doi.org/10.1007/s10827-005-3099-4 PMID: 16502241
Zonca L, Holcman D. Emergence and fragmentation of the alpha-band driven by neuronal network dynamics. PLoS Comput Biol. 2021;17(12):e1009639. https://doi.org/10.1371/journal.pcbi.1009639 PMID: 34871305
Idesis S, Allegra M, Vohryzek J, Perl YS, Metcalf NV, Griffis JC, et al. Generative whole-brain dynamics models from healthy subjects predict functional alterations in stroke at the level of individual patients. Brain Commun. 2024;6(4):fcae237. https://doi.org/10.1093/braincomms/fcae237 PMID: 39077378