Article (Scientific journals)
Personalized models of disorders of consciousness reveal complementary roles of connectivity and local parameters in diagnosis and prognosis.
Zonca, Lou; Escrichs, Anira; Patow, Gustavo et al.
2025In PLoS ONE, 20 (9), p. 0328219
Peer Reviewed verified by ORBi
 

Files


Full Text
journal.pone.0328219.pdf
Publisher postprint (24.51 MB)
Download

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
Biomarkers; Humans; Magnetic Resonance Imaging; Prognosis; Female; Male; Adult; Middle Aged; Consciousness Disorders/diagnosis; Consciousness Disorders/physiopathology; Brain/physiopathology; Brain/diagnostic imaging; Models, Neurological
Abstract :
[en] The study of disorders of consciousness (DoC) is very complex because patients suffer from a wide variety of lesions, affected brain mechanisms, different severity of symptoms, and are unable to communicate. Combining neuroimaging data and mathematical modeling can help us quantify and better describe some of these alterations. The goal of this study is to provide a new analysis and modeling pipeline for fMRI data leading to new diagnosis and prognosis biomarkers at the individual patient level. To do so, we project patients' fMRI data into a low-dimension latent-space. We define the latent space's dimension as the smallest dimension able to maintain the complexity, non-linearities, and information carried by the data, according to different criteria that we detail in the first part. This dimensionality reduction procedure then allows us to build biologically inspired latent whole-brain models that can be calibrated at the single-patient level. In particular, we propose a new model inspired by the regulation of neuronal activity by astrocytes in the brain. This modeling procedure leads to two types of model-based biomarkers (MBBs) that provide novel insight at different levels: (1) the connectivity matrices bring us information about the severity of the patient's diagnosis, and, (2) the local node parameters correlate to the patient's etiology, age and prognosis. Altogether, this study offers a new data processing framework for resting-state fMRI which provides crucial information regarding DoC patients diagnosis and prognosis. Finally, this analysis pipeline could be applied to other neurological conditions.
Disciplines :
Neurosciences & behavior
Author, co-author :
Zonca, Lou ;  Center for Brain and Cognition, University Pompeu Fabra, Barcelona, Spain
Escrichs, Anira ;  Center for Brain and Cognition, University Pompeu Fabra, Barcelona, Spain
Patow, Gustavo;  Center for Brain and Cognition, University Pompeu Fabra, Barcelona, Spain ; Girona University, Girona, Spain
Manasova, Dragana ;  Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, Paris, France ; Université Paris Cité, Paris, France
Sanz-Perl, Yonathan;  Center for Brain and Cognition, University Pompeu Fabra, Barcelona, Spain
Annen, Jitka  ;  Université de Liège - ULiège > GIGA > GIGA Neurosciences - Coma Science Group
Gosseries, Olivia  ;  Université de Liège - ULiège > GIGA > GIGA Neurosciences - Coma Science Group
Laureys, Steven  ;  Université de Liège - ULiège > Département des sciences cliniques ; Joint International Research Unit on Consciousness, CERVO Brain Research Centre, Laval University, Quebec City, Quebec, Canada ; International Consciousness Science Institute, Hangzhou Normal University, Hangzhou, China
Sitt, Jacobo Diego;  Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, Paris, France
Deco, Gustavo ;  Center for Brain and Cognition, University Pompeu Fabra, Barcelona, Spain
Language :
English
Title :
Personalized models of disorders of consciousness reveal complementary roles of connectivity and local parameters in diagnosis and prognosis.
Publication date :
2025
Journal title :
PLoS ONE
eISSN :
1932-6203
Publisher :
Public Library of Science (PLoS), United States
Volume :
20
Issue :
9
Pages :
e0328219
Peer reviewed :
Peer Reviewed verified by ORBi
Name of the research project :
Human Brain Project
Funders :
EU - European Union
ERC - European Research Council
ERDF - European Regional Development Fund
Fondation Bettencourt Schueller
F.R.S.-FNRS - Fonds de la Recherche Scientifique
Fondation Léon Fredericq
FWO - Research Foundation Flanders
Available on ORBi :
since 05 October 2025

Statistics


Number of views
27 (0 by ULiège)
Number of downloads
26 (0 by ULiège)

Scopus citations®
 
0
Scopus citations®
without self-citations
0
OpenCitations
 
0
OpenAlex citations
 
0

Bibliography


Similar publications



Contact ORBi