[en] The immune system depends on integrins for adhesion and migration during leukocyte trafficking and for intracellular signalling. There is a causal relationship between dysregulation of integrin expression and the onset of pathological conditions, such as autoimmune diseases, inflammation, cancer, and infections. Therefore, integrins, such as α4β1, are considered important therapeutic targets. In this study, a series of novel compounds were synthesized and evaluated for affinity and potency towards α4β1, and selectivity towards α5β1, and αMβ2 integrins. Three compounds 3, 4, and 8 showed excellent binding affinities (Ki < 10 nM) for α4β1. In cell adhesion assays these three ligands behaved as antagonists of α4β1, as confirmed by integrin-mediated intracellular signalling with a functional selectivity over ERK1/2 signalling pathway. Notably, compound 4, a proline derivative, was an antagonist against α4β1 (IC50 15 ± 3 nM) and an agonist against αMβ2 integrin (EC50 23 ± 5 nM). Compound 2, a fluorinated β-lactam derivative, was a selective and potent agonist of α5β1 (EC50 45.98 ± 7.92 nM). Compound 5, although it seems to bind to a different site compared to LDV in α4β1 integrin, showed an agonist behaviour in cell adhesion mediated by α4β1 and α5β1 integrin (EC50 25 ± 3 and 4.8 ± 3.4 nM, respectively) and in activating α4β1 integrin-mediated ERK1/2 and Akt phosphorylation. Compound 8 was the most potent agonist of the series against αMβ2 (EC50 1.4 ± 0.2 nM). Overall, the present study provides new insights into the effects of new integrin ligands that could be considered as potential lead compounds for therapeutic applications in inflammatory diseases and cancer.
Disciplines :
Chemistry
Author, co-author :
Giraldi, Valentina; Department of Chemistry "Giacomo Ciamician" University of Bologna, Via Piero Gobetti, 85, 40129, Bologna, Italy
Maurizio, Andrea; Department of Pharmacy and Biotechnology, University of Bologna, Via Irnerio, 48, 40126, Bologna, Italy
Cirillo, Martina; Department of Chemistry "Giacomo Ciamician" University of Bologna, Via Piero Gobetti, 85, 40129, Bologna, Italy
Magnone, Paolo; Department of Chemistry "Giacomo Ciamician" University of Bologna, Via Piero Gobetti, 85, 40129, Bologna, Italy
Fedele, Emanuela ; Université de Liège - ULiège > GIGA ; Department of Chemistry "Giacomo Ciamician" University of Bologna, Via Piero Gobetti, 85, 40129, Bologna, Italy
Bedini, Andrea; Department of Pharmacy and Biotechnology, University of Bologna, Via Irnerio, 48, 40126, Bologna, Italy
Baiula, Monica ; Department of Pharmacy and Biotechnology, University of Bologna, Via Irnerio, 48, 40126, Bologna, Italy. Electronic address: monica.baiula@unibo.it
Giacomini, Daria ; Department of Chemistry "Giacomo Ciamician" University of Bologna, Via Piero Gobetti, 85, 40129, Bologna, Italy. Electronic address: daria.giacomini@unibo.it
Language :
English
Title :
Targeting α4β1 integrin: from cyclic to linear ligands, effects of chemical modifications.
MIUR - Ministero dell'Istruzione, dell'Università e della Ricerca UNIBO - Università di Bologna MIUR - Ministero dell'Istruzione, dell'Università e della Ricerca
Funding text :
This work was supported by the University of Bologna RFO 2023\u201324 and by The Project \u201CSynthesis and biomedical applications of tumor targeting peptidomimetics and conjugates\u201D by Ministero dell\u2019Istruzione, dell\u2019Universit\u00E0 e della Ricerca ( MIUR , PRIN2020), funding number 2020833Y75.
Sun, Z., Guo, S.S., Fassler, R., Integrin-mediated mechanotransduction. J. Cell Biol. 215 (2016), 445–456, 10.1083/jcb.2016090371.
Su, Y., Xia, W., Li, J., Walz, T., Humphries, M.J., Vestweber, D., Cabañas, C., Lu, C., Springer, T.A., Relating conformation to function in integrin α5β1. Proc. Natl. Acad. Sci. USA 113 (2016), E3872–E3881, 10.1073/pnas.1605074113.
Yunfeng, C., Zhenhai, L., Fang, K., Lining, A.J., Cheng, Z., Force-regulated spontaneous conformational changes of integrins α5β1 and αVβ3. ACS Nano 18 (2024), 299–313, 10.1021/acsnano.3c06253.
Li, Z., A molecular arm: the molecular bending–unbending mechanism of integrin. Biomech. Model. Mechanobiol. 23 (2024), 781–792, 10.1007/s10237-023-01805-3.
Barczyk, M., Carracedo, S., Gullberg, D., Integrins. Cell Tissue Res. 339 (2010), 269–280, 10.1007/s00441-009-0834-6.
Campbell, I.D., Humphries, M.J., Integrin structure, activation, and interactions. Cold Spring Harbor Perspect. Biol., 3, 2011, a004994, 10.1101/cshperspect.a004994.
Zhang, Q., Zhang, S., Chen, J., Xie, Z., The interplay between integrins and immune cells as a regulator in cancer immunology. Int. J. Mol. Sci., 24, 2023, 6170, 10.3390/ijms24076170.
Klaus, T., Hieber, C., Bros, M., Grabbe, S., Integrins in health and disease, suitable targets for treatment?. Cells, 13, 2024, 212, 10.3390/cells13030212.
Pang, X., He, X., Qiu, Z., Zhang, H., Xie, R., Liu, Z., Gu, Y., Zhao, N., Xiang, Q., Cui, Y., Targeting integrin pathways: mechanisms and advances in therapy. Signal Transduct. Targeted Ther., 8, 2023, 1, 10.1038/s41392-022-01259-6.
Abram, C.L., Lowell, C.A., The ins and outs of leukocyte integrin signaling. Annu. Rev. Immunol. 27 (2009), 339–362, 10.1146/annurev.immunol.021908.132554.
Sumagin, R., Prizant, H., Lomakina, E., Waugh, R.E., Sarelius, I.H., LFA-1 and Mac-1 define characteristically different intralumenal crawling and emigration patterns for monocytes and neutrophils in situ. J. Immunol. 49 (2010), 1841–1850, 10.4049/jimmunol.1001638.
Hyun, Y.M., Choe, Y.H., Park, S.A., Kim, M., LFA-1 (CD11a/CD18) and Mac-1 (CD11b/CD18) distinctly regulate neutrophil extravasation through hotspots I and II. Exp. Mol. Med. 51 (2019), 1–13, 10.1038/s12276-019-0227-1.
Conley, H.E., Sheats, M.K., Targeting neutrophil β2-integrins: a review of relevant resources, tools, and methods. Biomolecules, 13, 2023, 892, 10.3390/biom13060892.
Bouti, P., Klein, B.J.A.M., Verkuijlen, P.J.H., Schornagel, K., van Alphen, F.P.J., Taris, K.H., van den Biggelaar, M., Hoogendijk, A.J., van Bruggen, R., Kuijpers, T.W., Matlung, H.L., SKAP2 acts downstream of CD11b/CD18 and regulates neutrophil effector function. Front. Immunol., 15, 2024, 1344761, 10.3389/fimmu.2024.1344761.
Yonekawa, K., Harlan, J.M., Targeting leukocyte integrins in human diseases. J. Leukoc. Biol. 77 (2005), 129–140, 10.1189/jlb.0804460.
Mitroulis, I., Alexaki, V.I., Kourtzelis, I., Ziogas, A., Hajishengallis, G., Chavakis, T., Leukocyte integrins: role in leukocyte recruitment and as therapeutic targets in inflammatory disease. Pharmacol. Ther. 147 (2015), 123–135, 10.1016/j.pharmthera.2014.11.008.
Schittenhelm, L., Hilkens, C.M., Morrison, V.L., β2 Integrins as regulators of dendritic cell, monocyte, and macrophage function. Front. Immunol., 8, 2017, 1866, 10.3389/fimmu.2017.01866.
Kelly, A.J., Long, A., Targeting T-cell integrins in autoimmune and inflammatory diseases. Clin. Exp. Immunol. 215 (2024), 15–26, 10.1093/cei/uxad093.
Ławkowska, K., Bonowicz, K., Jerka, D., Bai, Y., Gagat, M., Integrins in cardiovascular health and disease: molecular mechanisms and therapeutic opportunities. Biomolecules, 15, 2025, 233, 10.3390/biom15020233.
Su, C., Mo, J., Dong, S., Liao, Z., Zhang, B., Zhu, P., Integrin β-1 in disorders and cancers: molecular mechanisms and therapeutic targets. Cell Commun. Signal., 22, 2024, 71, 10.1186/s12964-023-01338-3.
Bellavia, M.C., Nyiranshuti, L., Latoche, J.D., Ho, K.V., Fecek, R.J., Taylor, J.L., Day, K.E., Nigam, S., Pun, M., Gallazzi, F., Edinger, R.S., Storkus, W.J., Patel, R.B., Anderson, C.J., PET imaging of VLA-4 in a new BRAFV600E mouse model of melanoma. Mol. Imag. Biol. 24 (2022), 425–433, 10.1007/s11307-021-01666-1.
Hickman, A., Koetsier, J., Kurtanich, T., Nielsen, M.C., Winn, G., Wang, Y., Bentebibel, S.E., Shi, L., Punt, S., Williams, L., Haymaker, C., Chesson, C.B., Fa'ak, F., Dominguez, A.L., Jones, R., Kuiatse, I., Caivano, A.R., Khounlo, S., Warier, N.D., Marathi, U., Market, R.V., Biediger, R.J., Craft, J.W. Jr., Hwu, P., Davies, M.A., Woodside, D.G., Vanderslice, P., Diab, A., Overwijk, W.W., Hailemichael, Y., LFA-1 activation enriches tumor-specific T cells in a cold tumor model and synergizes with CTLA-4 blockade. J. Clin. Investig., 132, 2022, e154152, 10.1172/JCI154152.
Baiula, M., Spampinato, S., Gentilucci, L., Tolomelli, A., Novel ligands targeting α4β1 integrin: therapeutic applications and perspectives. Front. Chem., 7, 2019, 489, 10.3389/fchem.2019.00489.
He, T., Giacomini, D., Tolomelli, A., Baiula, M., Gentilucci, L., Conjecturing about small-molecule agonists and antagonists of α4β1 integrin: from mechanistic insight to potential therapeutic applications. Biomedicines, 12, 2024, 316, 10.3390/biomedicines12020316.
LaFoya, B., Munroe, J.A., Miyamoto, A., Detweiler, M.A., Crow, J.J., Gazdik, T., Albig, A.R., Beyond the matrix: the many non-ECM ligands for integrins. Int. J. Mol. Sci., 19, 2018, 449, 10.3390/ijms19020449.
Nishida, N., Xie, C., Shimaoka, M., Cheng, Y., Walz, T., Springer, T.A., Activation of leukocyte beta2 integrins by conversion from bent to extended conformations. Immunity 25 (2006), 583–594, 10.1016/j.immuni.2006.07.016.
Zheng, Y., Leftheris, K., Insights into protein-ligand interactions in integrin complexes: advances in structure determinations. J. Med. Chem. 63 (2020), 5675–5696, 10.1021/acs.jmedchem.9b01869.
Tselepis, V.H., Green, L.J., Humphries, M.J., An RGD to LDV motif conversion within the disintegrin kistrin generates an integrin antagonist that retains potency but exhibits altered receptor specificity. Evidence for a functional equivalence of acidic integrin-binding motifs. J. Biol. Chem. 272 (1997), 21341–21348, 10.1074/jbc.272.34.21341.
Viney, J.L., Jones, S., Chiu, H.H., Lagrimas, B., Renz, M.E., Presta, L.G., Jackson, D., Hillan, K.J., Lew, S., Fong, S., Mucosal addressing cell adhesion molecule-1: a structural and functional analysis demarcates the integrin binding motif. J. Immunol. 157 (1996), 2488–2497, 10.4049/jimmunol.157.6.2488.
Getter, T., Margalit, R., Kahremany, S., Levy, L., Blum, E., Khazanov, N., Keshet-Levy, N.Y., Tamir, T.Y., Ben Major, M., Lahav, R., Zilber, S., Senderowitz, H., Bradfield, P., Imhof, B.A., Alpert, E., Gruzman, A., Novel inhibitors of leukocyte transendothelial migration. Bioorg. Chem., 92, 2019, 103250, 10.1016/j.bioorg.2019.103250.
Gottschling, D., Boer, J., Schuster, A., Holzmann, B., Kessler, H., Combinatorial and rational strategies to develop nonpeptidic alpha4beta7-integrin antagonists from cyclic peptides. Angew Chem. Int. Ed. Engl. 41 (2002), 3007–3011, 10.1002/1521-3773(20020816)41:16<3007::AID-ANIE3007>3.0.CO;2-3.
Wu, J.P., Emeigh, J., Gao, D.A., Goldberg, D.R., Kuzmich, D., Miao, C., Potocki, I., Qian, K.C., Sorcek, R.J., Jeanfavre, D.D., Kishimoto, K., Mainolfi, E.A., Nabozny, G. Jr., Peng, C., Reilly, P., Rothlein, R., Sellati, R.H., Woska, J.R. Jr., Chen, S., Gunn, J.A., O'Brien, D., Norris, S.H., Kelly, T.A., Second-generation lymphocyte function-associated antigen-1 inhibitors: 1H-imidazo[1,2-alpha]imidazole-2-one derivatives. J. Med. Chem. 47 (2004), 5356–5366, 10.1021/jm049657b.
Cox, D., Brennan, M., Moran, N., Integrins as therapeutic targets: lessons and opportunities. Nat. Rev. Drug Discov. 9 (2010), 804–820, 10.1038/nrd3266 PMID: 20885411.
Ley, K., Rivera-Nieves, J., Sandborn, W.J., Shattil, S., Integrin-based therapeutics: biological basis, clinical use and new drugs. Nat. Rev. Drug Discov. 15 (2016), 173–183, 10.1038/nrd.2015.10.
Matsuoka, K., Watanabe, M., Ohmori, T., Nakajima, K., Ishida, T., Ishiguro, Y., Kanke, K., Kobayashi, K., Hirai, F., Watanabe, K., Mizusawa, H., Kishida, S., Miura, Y., Ohta, A., Kajioka, T., Hibi, T., AJM300 Study Group. AJM300 (carotegrast methyl), an oral antagonist of α4-integrin, as induction therapy for patients with moderately active ulcerative colitis: a multicentre, randomised, double-blind, placebo-controlled, phase 3 study, Lancet Gastroenterol. Hepatology 7 (2022), 648–657, 10.1016/S2468-1253(22)00022-X.
Baiula, M., Galletti, P., Martelli, G., Soldati, R., Belvisi, L., Civera, M., Dattoli, S.D., Spampinato, S.M., Giacomini, D., New β-lactam derivatives modulate cell adhesion and signaling mediated by RGD-binding and leukocyte integrins. J. Med. Chem. 59 (2016), 9721–9742, 10.1021/acs.jmedchem.6b00576.
Martelli, G., Baiula, M., Caligiana, A., Galletti, P., Gentilucci, L., Artali, R., Spampinato, S., Giacomini, D., Could dissecting the molecular framework of β-lactam integrin ligands enhance selectivity?. J. Med. Chem. 62 (2019), 10156–10166, 10.1021/acs.jmedchem.9b01000.
Martelli, G., Bloise, N., Merlettini, A., Bruni, G., Visai, L., Focarete, M.L., Giacomini, D., Combining biologically active β-lactams integrin agonists with poly(l-lactic acid) nanofibers: enhancement of human mesenchymal stem cell adhesion. Biomacromolecules 21 (2020), 1157–1170, 10.1021/acs.biomac.9b01550.
Cirillo, M., Martelli, G., Boanini, E., Rubini, K., Di Filippo, M., Torricelli, P., Pagani, S., Fini, M., Bigi, A., Giacomini, D., Strontium substituted hydroxyapatite with β-lactam integrin agonists to enhance mesenchymal cells adhesion and to promote bone regeneration. Colloids Surf. B Biointerfaces, 200, 2021, 111580, 10.1016/j.colsurfb.2021.111580.
Baldassarro, V.A., Giraldi, V., Giuliani, A., Moretti, M., Pagnotta, G., Flagelli, A., Clavenzani, P., Lorenzini, L., Giardino, L., Focarete, M.L., Giacomini, D., Calzà, L., Poly(l-lactic acid) scaffold releasing an α4β1 integrin agonist promotes nonfibrotic skin wound healing in diabetic mice. ACS Appl. Bio Mater. 16 (2023), 296–308, 10.1021/acsabm.2c00890.
Anselmi, M., Baiula, M., Spampinato, S., Artali, R., He, T., Gentilucci, L., Design and pharmacological characterization of α4β1 integrin cyclopeptide agonists: computational investigation of ligand determinants for agonism versus antagonism. J. Med. Chem. 66 (2023), 5021–5040, 10.1021/acs.jmedchem.2c02098.
Gillis, E.P., Eastman, K.J., Hill, M.D., Donnelly, D.J., Meanwell, N.A., Applications of fluorine in medicinal chemistry. J. Med. Chem. 58 (2015), 8315–8359, 10.1021/acs.jmedchem.5b00258.
Humphries, J.D., Askari, J.A., Zhang, X.P., Takada, Y., Humphries, M.J., Mould, A.P., Molecular basis of ligand recognition by integrin alpha5beta1. II. Specificity of Arg-Gly-Asp binding is determined by Trp157 of the alpha subunit. J. Biol. Chem. 275 (2000), 20337–20345, 10.1074/jbc.M000568200.
Xia, W., Springer, T.A., Metal ion and ligand binding of integrin α5β1. Proc. Natl. Acad. Sci. U. S. A 111 (2014), 17863–17868, 10.1073/pnas.1420645111.
Anderson, J.M., Li, J., Springer, T.A., Regulation of integrin α5β1 conformational states and intrinsic affinities by metal ions and the ADMIDAS. Mol. Biol. Cell, 33, 2022, ar56, 10.1091/mbc.E21-11-0536.
Li, J., Su, Y., Xia, W., Qin, Y., Humphries, M.J., Vestweber, D., Cabañas, C., Lu, C., Springer, T.A., Conformational equilibria and intrinsic affinities define integrin activation. EMBO J. 36 (2017), 629–645, 10.15252/embj.201695803.
Lin, F.Y., Li, J., Xie, Y., Zhu, J., Huong Nguyen, T.T., Zhang, Y., Zhu, J., Springer, T.A., A general chemical principle for creating closure-stabilizing integrin inhibitors. Cell 185 (2022), 3533–3550 e27, 10.1016/j.cell.2022.08.008.
Edwards, D.N., Salmeron, K., Lukins, D.E., Trout, A.L., Fraser, J.F., Bix, G.J., Integrin α5β1 inhibition by ATN-161 reduces neuroinflammation and is neuroprotective in ischemic stroke. J. Cerebr. Blood Flow Metabol. 40 (2020), 1695–1708, 10.1177/0271678X19880161.
Lamers, C., Plüss, C.J., Ricklin, D., The promiscuous profile of complement receptor 3 in ligand binding, immune modulation, and pathophysiology. Front. Immunol., 12, 2021, 662164, 10.3389/fimmu.2021.662164.
Nguyen, H., Podolnikova, N.P., Ugarova, T.P., Wang, X., αMI-domain of integrin Mac-1 binds the cytokine pleiotrophin using multiple mechanisms. Structure 32 (2024), 1184–1196, 10.1016/j.str.2024.04.013 e4.
Podolnikova, N.P., Podolnikov, A.V., Haas, T.A., Lishko, V.K., Ugarova, T.P., Ligand recognition specificity of leukocyte integrin αMβ2 (Mac-1, CD11b/CD18) and its functional consequences. Biochemistry 54 (2015), 1408–1420, 10.1021/bi5013782.
Maiguel, D., Faridi, M.H., Wei, C., Kuwano, Y., Balla, K.M., Hernandez, D., Barth, C.J., Lugo, G., Donnelly, M., Nayer, A., Moita, L.F., Schürer, S., Traver, D., Ruiz, P., Vazquez-Padron, R.I., Ley, K., Reiser, J., Gupta, V., Small molecule-mediated activation of the integrin CD11b/CD18 reduces inflammatory disease. Sci. Signal., 4, 2011, ra57, 10.1126/scisignal.2001811.
Nussinov, R., Zhang, M., Liu, Y., Jang, H., AlphaFold, allosteric, and orthosteric drug discovery: ways forward. Drug Discov. Today, 28, 2023, 103551, 10.1016/j.drudis.2023.103551.
DeNardo, D.G., Galkin, A., Dupont, J., Zhou, L., Bendell, J., GB1275, a first-in-class CD11b modulator: rationale for immunotherapeutic combinations in solid tumors. J. Immunother. Cancer, 9, 2021, e003005, 10.1136/jitc-2021-003005.
Bouti, P., Webbers, S.D.S., Fagerholm, S.C., Alon, R., Moser, M., Matlung, H.L., Kuijpers, T.W., β2 Integrin signaling cascade in neutrophils: more than a single function. Front. Immunol., 11, 2021, 619925, 10.3389/fimmu.2020.619925.
Geraghty, T., Rajagopalan, A., Aslam, R., Pohlman, A., Venkatesh, I., Zloza, A., Cimbaluk, D., DeNardo, D.G., Gupta, V., Positive allosteric modulation of CD11b as a novel therapeutic strategy against lung cancer. Front. Oncol., 10, 2020, 748, 10.3389/fonc.2020.00748.
Ruminski, P.G., Rettig, M.P., DiPersio, J.F., Development of VLA4 and CXCR4 antagonists for the mobilization of hematopoietic stem and progenitor cells. Biomolecules, 14, 2024, 1003, 10.3390/biom14081003.
He, T., Giacomini, D., Tolomelli, A., Baiula, M., Gentilucci, L., Conjecturing about small-molecule agonists and antagonists of α4β1 integrin: from mechanistic insight to potential therapeutic applications. Biomedicines, 12, 2024, 316, 10.3390/biomedicines12020316.
Merdanovic, M., Burston, S.G., Schmitz, A.L., Ehrmann, M., Activation by substoichiometric inhibition. Proc. Natl. Acad. Sci. USA 117 (2020), 1414–1418, 10.1073/pnas.1918721117.
Reuning, U., D'Amore, V.M., Hodivala-Dilke, K., Marinelli, L., Kessler, H., Importance of integrin transmembrane helical interactions for antagonistic versus agonistic ligand behavior: consequences for medical applications. Bioorg. Chem., 156, 2025, 108193, 10.1016/j.bioorg.2025.108193.
Yang, W., Carman, C.V., Kim, M., Salas, A., Shimaoka, M., Springer, T.A., A small molecule agonist of an integrin, αLβ2. J. Biol. Chem. 281 (2006), 37904–37912, 10.1074/jbc.M606888200.
Lin, F.Y., Zhu, J., Eng, E.T., Hudson, N.E., Springer, T.A., β-Subunit binding is sufficient for ligands to open the integrin αIIbβ3 headpiece. J. Biol. Chem. 291:9 (2016 Feb 26), 4537–4546, 10.1074/jbc.M115.705624 Epub 2015 Dec 2. PMID: 26631735; PMCID: PMC4813479.
Simon, D.I., Opening the field of integrin biology to "biased agonism". Circ. Res. 109 (2011), 1199–1201, 10.1161/CIRCRESAHA.111.257980.
Tolomelli, A., Galletti, P., Baiula, M., Giacomini, D., Can integrin agonists have cards to play against cancer? A literature survey of small molecules integrin activators. Cancers, 9, 2017, 78, 10.3390/cancers9070078.
Takada, Y.K., Shimoda, M., Takada, Y., CD40L activates platelet integrin αIIbβ3 by binding to the allosteric site (site 2) in a KGD-independent manner and HIGM1 mutations are clustered in the integrin-binding sites of CD40L. Cells, 12, 2023, 1977, 10.3390/cells12151977.
Mancuso, R.V., Schneider, G., Hürzeler, M., Gut, M., Zurflüh, J., Breitenstein, W., Bouitbir, J., Reisen, F., Atz, K., Ehrhardt, C., Duthaler, U., Gygax, D., Schmidt, A.G., Krähenbühl, S., Weitz-Schmidt, G., Allosteric targeting resolves limitations of earlier LFA-1 directed modalities. Biochem. Pharmacol., 211, 2023, 115504, 10.1016/j.bcp.2023.115504.
Takada, Y.K., Shimoda, M., Maverakis, E., Felding, B.H., Cheng, R.H., Takada, Y., Soluble CD40L activates soluble and cell-surface integrin αvβ3, α5β1, and α4β1 by binding to the allosteric ligand-binding site (site 2). J. Biol. Chem., 296, 2021, 100399, 10.1016/j.jbc.2021.100399.
Huang, Y., Hammond, P.S., Whirrett, B.R., Kuhner, R.J., Wu, L., Childers, S.R., Mach, R.H., Synthesis and quantitative structure−activity relationships of N-(1-benzylpiperidin-4-yl)phenylacetamides and related analogues as potent and selective σ1 receptor ligands. J. Med. Chem. 41 (1998), 2361–2370, 10.1021/jm980032l.
Bae, I., Kim, D., Choi, J., Kim, J., Kim, M., Park, B., Kim, Y.H., Ahn, Y.G., Kim, H.H., Kim, D.K., Design, synthesis and biological evaluation of new bivalent quinazoline analogues as IAP antagonists. Bioorg. Med. Chem. Lett., 34, 2021, 127676, 10.1016/j.bmcl.2020.127676.
Bräuer, T.M., Zhang, Q., Tiefenbacher, K., Iminium catalysis inside a self-assembled supramolecular capsule: modulation of enantiomeric excess. Angew. Chem. Int. Ed. 55 (2016), 7698–7701, 10.1002/anie.201602382.
Galletti, P., Soldati, R., Pori, M., Durso, M., Tolomelli, A., Gentilucci, L., Dattoli, S.D., Baiula, M., Spampinato, S., Giacomini, D., Targeting integrins αvβ3 and α5β1 with new β-lactam derivatives. Eur. J. Med. Chem. 83 (2014), 284–293, 10.1016/j.ejmech.2014.06.041.
Lee, J., Jin, M.-K., Kang, S.-U., Kim, S.Y., Lee, J., Shin, M., Hwang, J., Cho, S., Choi, Y.-S., Choi, H.-K., Kim, S.-E., Suh, Y.-G., Lee, Y.-S., Kim, Y.-H., Ha, H.-J., Toth, A., Pearce, L.V., Tran, R., Szabo, T., Welter, J.D., Lundberg, D.J., Wang, Y., Lazar, J., Pavlyukovets, V.A., Morgan, M.A., Blumberg, P.M., Analysis of structure–activity relationships for the ‘B-region’ of N-(4-t-butylbenzyl)-N′-[4-(methyl sulfonylamino) benzyl]-thiourea analogues as TRPV1 antagonists. Bioorg. Med. Chem. Lett. 15 (2005), 4143–4150, 10.1016/j.bmcl.2005.06.009.
Perron, V., Abbott, S., Moreau, N., Lee, D., Penney, C., Zacharie, B., A Method for the selective protection of aromatic amines in the presence of aliphatic amines. Synthesis 2 (2009), 283–289, 10.1055/s-0028-1083290.
Bolchi, C., Valoti, E., Fumagalli, L., Straniero, V., Ruggeri, P., Pallavicini, M., Enantiomerically pure dibenzyl esters of l-Aspartic and l-Glutamic acid. Org. Process Res. Dev. 19 (2015), 878–883, 10.1021/acs.oprd.5b00134.
Tokarski, R.J., Sharp, C.M., Huntsman, A.C., Mize, B.K., Ayinde, O.R., Stahl, E.H., Lerma, J.R., Reed, A., Carmichael, B., Muthusamy, N., Byrd, J.C., Fuchs, J.R., Bifunctional degraders of cyclin dependent kinase 9 (CDK9): probing the relationship between linker length, properties, and selective protein degradation. Eur. J. Med. Chem., 254, 2023, 115342, 10.1016/j.ejmech.2023.115342.
Dattoli, S.D., Baiula, M., De Marco, R., Bedini, A., Anselmi, M., Gentilucci, L., Spampinato, S., DS-70, a novel and potent α4 integrin antagonist, is an effective treatment for experimental allergic conjunctivitis in Guinea pigs. Br. J. Pharmacol. 175 (2018), 3891–3910.
Baiula, M., Anselmi, M., Musiani, F., Ghidini, A., Carbone, J., Caligiana, A., Maurizio, A., Spampinato, S., Gentilucci, L., Design, pharmacological characterization, and molecular docking of minimalist peptidomimetic antagonists of α4β1 integrin. Int. J. Mol. Sci., 24, 2023, 9588, 10.3390/ijms24119588.
Baiula, M., Cirillo, M., Martelli, G., Giraldi, V., Gasparini, E., Anelli, A.C., Spampinato, S.M., Giacomini, D., Selective integrin ligands promote cell internalization of the antineoplastic agent fluorouracil. ACS Pharmacol. Transl. Sci. 4 (2021), 1528–1542, 10.1021/acsptsci.1c00094.