Raphael, Marilyn N.; Department of Geography, University of California, Los Angeles, Los Angeles, United States
Clem, Kyle R.; School of Geography, Environment and Earth Sciences, Victoria University of Wellington, Wellington, New Zealand
Adjou, Mohamed; ISEN Engineering School, LaBISEN, Knowledge Learning and Information Modeling (KLaIM), Brest, France ; University of Brest, Institut Universitaire Européen de la Mer (IUEM) UAR3113, Plouzané, France
Adusumilli, Susheel; Scripps Institution of Oceanography, University of California, San Diego, United States
Amory, Charles; Université Grenoble Alpes, Institut des Géosciences de l’Environnement, IRD, CNRS, Grenoble INP, Grenoble, France
Bahrami, Mahsa; Department of Geography, Pennsylvania State University, State College, United States
Baiman, Rebecca; Department of Atmospheric and Oceanic Sciences, University of Colorado Boulder, Boulder, United States
Banwell, Alison F.; Earth Science and Observation Center, Cooperative Institute for Research in Environmental Sciences (ESOC/CIRES), University of Colorado Boulder, Boulder, United States
Barreira, Sandra; Argentine Naval Hydrographic Service, Buenos Aires, Argentina
Beadling, Rebecca L.; Department of Earth and Environmental Science, Temple University, Philadelphia, United States
Colwell, Steve; British Antarctic Survey, Cambridge, United Kingdom
Coy, Lawrence; Science Systems and Applications, Inc., United States ; NASA Goddard Space Flight Center, Greenbelt, United States
Datta, Rajashree T.; Department of Civil Engineering and Geosciences, TU Delft, Netherlands
De Laat, Jos; Royal Netherlands Meteorological Institute (KNMI), DeBilt, Netherlands
du Plessis, Marcel; Department of Marine Sciences, University of Gothenburg, Sweden
Fogt, Ryan L.; Department of Geography, Ohio University, Athens, United States
Fricker, Helen A.; Scripps Institution of Oceanography, University of California, San Diego, United States
Hancock, Alyce M.; Southern Ocean Observing System (SOOS), Institute for Marine and Antarctic Studies (IMAS), University of Tasmania, Hobart, Australia
Johnson, Bryan; NOAA/OAR Earth System Research Laboratory, Global Monitoring Division, Boulder, United States ; University of Colorado Boulder, Boulder, United States
Josey, Simon A.; National Oceanography Centre, Southampton, United Kingdom
Keller, Linda M.; Antarctic Meteorological Research and Data Center, Space Science and Engineering Center, University of Wisconsin-Madison, Madison, United States
Kittel, Christoph ; Université de Liège - ULiège > Département de géographie > Climatologie et Topoclimatologie ; Physical Geography Research Group, Department of Geography, Vrije Universiteit Brussel, Brussels, Belgium
Kramarova, Natalya A.; NASA Goddard Space Flight Center, Greenbelt, United States
Lait, Leslie R.; NASA Ames Research Center, Moffett Field, United States
Lazzara, Matthew A.; Antarctic Meteorological Research and Data Center, Space Science and Engineering Center, University of Wisconsin-Madison, Madison, United States ; Department of Physical Sciences, School of Arts and Sciences, Madison Area Technical College, United States
Lieser, Jan L.; Bureau of Meteorology, Hobart, Australia ; Institute for Marine and Antarctic Studies (IMAS), University of Tasmania, Hobart, Australia
Macferrin, Michael; Earth Science and Observation Center, Cooperative Institute for Research in Environmental Sciences (ESOC/CIRES), University of Colorado Boulder, Boulder, United States
Maclennan, Michelle L.; British Antarctic Survey, Cambridge, United Kingdom
Massom, Robert A.; Australian Antarctic Division, Australian Antarctic Program Partnership (AAPP), Australian Centre for Excellence in Antarctic Science (ACEAS), Hobart, Australia
Mikolajczyk, David E.; Antarctic Meteorological Research and Data Center, Space Science and Engineering Center, University of Wisconsin-Madison, Madison, United States
Milward, James; Department of Earth and Environmental Science, Temple University, Philadelphia, United States
Mote, Thomas L.; Department of Geography, University of Georgia, Athens, United States
Newman, Paul A.; NASA Goddard Space Flight Center, Greenbelt, United States
Norton, Taylor; Antarctic Meteorological Research and Data Center, Space Science and Engineering Center, University of Wisconsin-Madison, Madison, United States
Petropavlovskikh, Irina; NOAA/OAR Earth System Research Laboratory, Global Monitoring Division, Boulder, United States ; University of Colorado Boulder, Boulder, United States
Pezzi, Luciano P.; Laboratory of Ocean and Atmosphere Studies (LOA), Earth Observation and Geoinformatics Division (DIOTG), National Institute for Space Research (INPE), São José dos Campos, Brazil
Reid, Phillip; Bureau of Meteorology, Hobart, Australia ; Australian Antarctic Program Partnership (AAPP), Hobart, Australia
Ryan-Keogh, Thomas J.; Southern Ocean Carbon-Climate Observatory, Council for Scientific and Industrial Research (CSIR), Cape Town, South Africa
Santee, Michelle L.; NASA Jet Propulsion Laboratory, Pasadena, United States
Scambos, Theodore; Earth Science and Observation Center, Cooperative Institute for Research in Environmental Sciences (ESOC/CIRES), University of Colorado Boulder, Boulder, United States
Schulz, Cristina; Department of Marine and Environmental Sciences, Northeastern University, Boston, United States
Shi, Jia-Rui; Courant Institute of Mathematical Sciences, New York University, New York City, United States
Souza, Everaldo; Federal University of Pará (UFPA), Belém, Brazil
Stammerjohn, Sharon; Institute of Arctic and Alpine Research, University of Colorado Boulder, Boulder, United States
Thomalla, Sandy; Southern Ocean Carbon-Climate Observatory, Council for Scientific and Industrial Research (CSIR), Cape Town, South Africa ; Marine and Antarctic Research Centre for Innovation and Sustainability, Department of Oceanography, University of Cape Town, Cape Town, South Africa
Trusel, Luke; Department of Geography, Pennsylvania State University, State College, United States
Wille, Jonathan D.; Institute for Atmospheric and Climate Science, ETH Zürich, Zürich, Switzerland ; Institut des Géosciences de l’Environnement, IRD, CNRS, Grenoble INP, Saint Martin d’Hères, France
Agosta, C., and Coauthors, 2019: Estimation of the Antarctic surface mass balance using the regional climate model MAR (1979– 2015) and identification of dominant processes. Cryosphere, 13, 281–296, https://doi.org/10.5194/tc-13-281-2019.
AMRDC, 2022: Automatic Weather Station quality-controlled observational data. AMRDC Data Repository, accessed 30 January 2025, https://doi.org/10.48567/1hn2-nw60.
Banwell, A. F., D. R. MacAyeal, and O. V. Sergienko, 2013: Breakup of the Larsen B Ice Shelf triggered by chain reaction drainage of supraglacial lakes. Geophys. Res. Lett., 40, 5872–5876, https://doi.org/10.1002/2013GL057694.
Barbat, M. M., T. Rackow, C. Wesche, H. H. Hellmer, and M. M. Mata, 2021: Automated iceberg tracking with a machine learning approach applied to SAR imagery: A Weddell sea case study. ISPRS J. Photogramm. Remote Sens., 172, 189–206, https://doi.org/10.1016/j.isprsjprs.2020.12.006.
Beadling, R. L., N. M. Freeman, G. A. MacGilchrist, M. Mazloff, J.-R. Shi, A. F. Thompson, and E. Wilson, 2022: Southern Ocean [in “State of the Climate in 2021”]. Bull. Amer. Meteor. Soc., 103 (8), S329–S332, https://doi.org/10.1175/BAMS-D-22-0078.1.
Budge, J. S., and D. G. Long, 2018: A comprehensive database for Antarctic iceberg tracking using scatterometer data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 11, 434–442, https://doi. org/10.1109/JSTARS.2017.2784186.
Cai, W., and Coauthors, 2023: Southern Ocean warming and its climatic impacts. Sci. Bull., 68 (9), 946–960, https://doi. org/10.1016/j.scib.2023.03.049.
Cavalieri, D. J., C. L. Parkinson, P. Gloersen, and H. J. Zwally, 1996: Sea ice concentrations from Nimbus-7 SMMR and DMSP SS-M/I-SSMIS passive microwave data, version 1. NASA National Snow and Ice Data Center Distributed Active Archive Center, accessed 15 February 2025, https://doi.org/10.5067/8GQ-8LZQVL0VL.
Cheng, L., and Coauthors, 2022: Past and future ocean warming. Nat. Rev. Earth Environ., 3, 776–794, https://doi.org/10.1038/s43017-022-00345-1.
Clem, K. R., and Coauthors, 2022: Antarctica and the Southern Ocean [in “State of the Climate in 2021”]. Bull. Amer. Meteor. Soc., 103 (8), S307–S340, https://doi.org/10.1175/BAMS-D-22-0078.1.
Clem, K. R., and Coauthors, 2023: Antarctica and the Southern Ocean [in “State of the Climate in 2022”]. Bull. Amer. Meteor. Soc., 104 (9), S322–S365, https://doi.org/10.1175/BAMS-D-23-0077.1.
Clem, K. R., and Coauthors, 2024: Antarctica and the Southern Ocean [in “State of the Climate in 2023”]. Bull. Amer. Meteor. Soc., 105 (8), S331–S370, https://doi.org/10.1175/BAMS-D-24-0099.1.
Comiso, J. C., 2017: Bootstrap sea ice concentrations from Nimbus-7 SMMR and DMSP SSM/I-SSMIS, version 3. NASA National Snow and Ice Data Center Distributed Active Archive Center, accessed 2 February 2024, https://doi.org/10.5067/7Q8HC-CWS4I0R.
Davison, B. J., and Coauthors, 2023: Sea level rise from West Antarctic mass loss significantly modified by large snowfall anomalies. Nat. Commun., 14, 1479, https://doi.org/10.1038/s41467-023-36990-3.
de Boyer Montégut, C., G. Madec, A. S. Fischer, A. Lazar, and D. Ludicone, 2004: Mixed layer depth over the global ocean: An examination of profile data and a profile-based climatology. J. Geophys. Res., 109, C12003, https://doi.org/10.1029/2004JC002378.
Ferrigno, J. G., and W. G. Gould, 1987: Substantial changes in the coastline of Antarctica revealed by satellite imagery. Polar Rec., 23, 577–583, https://doi.org/10.1017/S003224740000807X.
Fraser, A. D., and Coauthors, 2023: Antarctic landfast sea ice: A review of its physics, biogeochemistry and ecology. Rev. Geophys., 61, e2022RG000770, https://doi. org/10.1029/2022RG000770.
Frölicher, T. L., J. L. Sarmiento, D. J. Paynter, J. P. Dunner, J. P. Krasting, and M. Winton, 2015: Dominance of the Southern Ocean in anthropogenic carbon and heat uptake in CMIP5 models. J. Climate, 28, 862–886, https://doi.org/10.1175/JCLI-D-14-00117.1.
Gelaro, R., and Coauthors, 2017: The Modern-Era Retrospective Analysis for Research and Applications, version 2 (MER-RA-2). J. Climate, 30, 5419–5454, https://doi.org/10.1175/JCLI-D-16-0758.1.
Gerrish, L., L. Ireland, P. Fretwell, and P. Cooper, 2023: High resolution vector polygons of the Antarctic coastline, version 7.8. UK Polar Data Centre, Natural Environment Research Council, UK Research & Innovation, accessed 8 February 2024, https://doi.org/10.5285/C7FE759D-E042-479A-9ECF-274255B4F0A1.
Gloersen, P., 2006: Nimbus-7 SMMR polar gridded radiances and sea ice concentrations, version 1. Subset: 37 & 19 GHz, h-polarization, 25 km grid, October 1979–April 1987. NASA National Snow and Ice Data Center Distributed Active Archive Center, accessed 5 May 2020, https://doi.org/10.5067/QOZIVYV3V9JP.
Gossart, A., S. Helsen, J. T. M. Lenaerts, S. V. Broucke, N. P. M. Van Lipzig, and N. Souverijns, 2019: An evaluation of surface climatology in state-of-the-art reanalyses over the Antarctic ice sheet. J. Climate, 32, 6899–6915, https://doi.org/10.1175/JCLI-D-19-0030.1.
Griggs, J. A., and J. L. Bamber, 2011: Antarctic ice-shelf thickness from satellite radar altimetry. J. Glaciol., 57, 485–498, https://doi.org/10.3189/002214311796905659.
Haid, V., D. Iovino, and S. Masina, 2017: Impacts of freshwater changes on Antarctic sea ice in an eddy-permitting sea-ice–ocean model. Cryosphere, 11, 1387–1402, https://doi. org/10.5194/tc-11-1387-2017.
Hanna, E., and Coauthors, 2024: Short-and long-term variability of the Antarctic and Greenland ice sheets. Nat. Rev. Earth Environ., 5, 193–210, https://doi.org/10.1038/s43017-023-00509-7.
Henley, S. F., and Coauthors, 2020: Changing biogeochemistry of the Southern Ocean and its ecosystem implications. Front. Mar. Sci., 7, 581, https://doi.org/10.3389/fmars.2020.00581.
Hersbach, H., and Coauthors, 2020: The ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc., 146, 1999–2049, https://doi. org/10.1002/qj.3803.
Hosking, J. S., A. Orr, T. J. Bracegirdle, and J. Turner, 2016: Future circulation changes off West Antarctica: Sensitivity of the Amundsen Sea Low to projected anthropogenic forcing. Geophys. Res. Lett., 43, 367–376, https://doi.org/10.1002/2015GL067143.
Hosking, J. S., A. Orr, G. J. Marshall, J. Turner, and T. Phillips, 2013: The influence of the Amundsen–Bellingshausen Seas low on the climate of West Antarctica and its representation in coupled climate model Ssimulations. J. Climate, 26, 6633–6648, https://doi.org/10.1175/JCLI-D-12-00813.1.
Huang, B., C. Liu, V. Banzon, E. Freeman, G. Graham, B. Hankins, T. Smith, and H.-M. Zhang, 2021: Improvements of the Daily Optimum Interpolation Sea Surface Temperature (DOISST) version 2.1. J. Climate, 34, 2923–2939, https://doi.org/10.1175/JCLI-D-20-0166.1.
Josey, S. A., J. P. Grist, J. V. Mecking, B. I. Moat, and E. Schulz, 2023: A clearer view of Southern Ocean air-sea interaction using surface heat flux asymmetry. Philos. Trans. Roy. Soc., A381, 20220067, https://doi.org/10.1098/rsta.2022.0067.
Josey, S. A., A. J. S. Meijers, A. T. Blaker, J. P. Grist, J. Mecking, and H. C. Ayres, 2024: Record-low Antarctic sea ice in 2023 increased ocean heat loss and storms. Nature, 636, 635–639, https://doi.org/10.1038/s41586-024-08368-y.
Kittel, C., and Coauthors, 2021: Diverging future surface mass balance between the Antarctic ice shelves and grounded ice sheet. Cryosphere, 15, 1215–1236, https://doi.org/10.5194/tc-15-1215-2021.
Kolbe, M., R. Bintanja, E. C. van der Linden, and R. R. Cordero, 2025: Vertical structure and surface impact of atmospheric rivers reaching Antarctic sea ice and land. Atmos. Res., 315, 107841, https://doi.org/10.1016/j.atmosres.2024.107841.
Kramarova, N. A., and Coauthors, 2024: 2023 Antarctic ozone hole [in “State of the Climate in 2023”]. Bull. Amer. Meteor. Soc., 105 (8), S358–S361, https://doi.org/10.1175/BAMS-D-24-0099.1.
Lenaerts, J. T. M., B. Medley, M. R. van den Broeke, and B. Wouters, 2019: Observing and modeling ice sheet surface mass balance. Rev. Geophys., 57, 376–420, https://doi. org/10.1029/2018RG000622.
Li, T., and Coauthors, 2017: The effect of seafloor topography in the Southern Ocean on tabular iceberg drifting and grounding. Sci. China Earth Sci., 60, 697–706, https://doi.org/10.1007/s11430-016-9014-5.
MacAyeal, D. R., M. H. Okal, J. E. Thom, K. M. Brunt, Y. J. Kim, and A. K. Bliss, 2008: Tabular iceberg collisions within the coastal regime. J. Glaciol., 54, 371–386, https://doi. org/10.3189/002214308784886180.
MacFerrin, M., T. Mote, H. Wang, L. Liu, L. Montgomery, and T. Scambos, 2021: Ice sheet seasonal melt extent and duration [in “State of the Climate in 2020”]. Bull. Amer. Meteor. Soc., 102, S331–S334, https://doi.org/10.1175/BAMS-D-21-0081.1.
MacFerrin, M., T. Mote, A. Banwell, and T. Scambos, 2022: Ice sheet seasonal melt extent and duration [in “State of the Climate in 2021”]. Bull. Amer. Meteor. Soc., 103 (8), S321–S323, https://doi. org/10.1175/2022BAMSStateoftheClimate.1.
MacFerrin, M., T. Mote, A. Banwell, and T. Scambos, 2023: Ice sheet seasonal melt extent and duration [in “State of the Climate in 2022”]. Bull. Amer. Meteor. Soc., 104 (9), S339–S341, https://doi.org/10.1175/BAMS-D-23-0077.1.
Maclennan, M. L., J. T. M. Lenaerts, C. Shields, and J. D. Wille, 2022: Contribution of atmospheric rivers to Antarctic precipitation. Geophys. Res. Lett., 49, e2022GL100585, https://doi. org/10.1029/2022GL100585.
Manney, G. L., and Coauthors, 2011: Jet characterization in the upper troposphere/lower stratosphere (UTLS): Applications to climatology and transport studies. Atmos. Chem. Phys., 11, 6115–6137, https://doi.org/10.5194/acp-11-6115-2011.
Marshall, G. J., 2003: Trends in the Southern Annular Mode from observations and reanalyses. J. Climate, 16, 4134–4143, https://doi.org/10.1175/1520-0442(2003)016<4134:TITSAM> 2.0.CO;2.
Martin, S., R. Drucker, R. Aster, F. Davey, E. Okal, T. Scambos, and D. MacAyeal, 2010: Kinematic and seismic analysis of giant tabular iceberg breakup at Cape Adare, Antarctica. J. Geophys. Res., 115, B06311, https://doi.org/10.1029/2009JB006700.
Maslanik, J., and J. Stroeve, 1999: Near-real-time DMSP SSM/I-SSMIS daily polar gridded sea ice concentrations (updated daily). National Snow and Ice Data Center, accessed 15 February 2025, https://nsidc.org/data/docs/daac/nsidc0081_ssmi_nrt_ seaice.gd.html.
Massom, R. A., T. A. Scambos, L. G. Bennetts, P. Reid, V. A. Squire, and S. E. Stammerjohn, 2018: Antarctic ice shelf disintegration triggered by sea ice loss and ocean swell. Nature, 558, 383– 389, https://doi.org/10.1038/s41586-018-0212-1.
Medley, B., and E. R. Thomas, 2019: Increased snowfall over the Antarctic Ice Sheet mitigated twentieth-century sea-level rise. Nat. Climate Change, 9, 34–39, https://doi.org/10.1038/s41558-018-0356-x.
Meier, W. N., H. Wilcox, M. A. Hardman, and J. S. Stewart, 2019: DMSP SSM/I-SSMIS daily polar gridded brightness temperatures, version 5. Subset: 37 & 19 GHz, h-polarization, 25 km grid, October 1987–April 2020. NASA National Snow and Ice Data Center Distributed Active Archive Center, accessed 11 February 2021, https://doi.org/10.5067/QU2UYQ6T0B3P.
Meredith, M. P., and M. A. Brandon, 2017: Oceanography and sea ice in the Southern Ocean. Sea Ice, D. Thomas, Ed., Wiley, 216–238.
Meredith, M. P., A. S. Meijers, A. C. Naveira Garabato, P. J. Brown, H. J. Venables, E. P. Abrahamsen, L. Jullion, and M. J. Messias, 2015: Circulation, retention, and mixing of waters within the Wed-dell-Scotia Confluence, Southern Ocean: The role of stratified Taylor columns. J. Geophys. Res. Oceans, 120, 547–562, https://doi.org/10.1002/2014JC010462.
Meredith, M. P., and Coauthors, 2023: Tracing the impacts of recent rapid sea ice changes and the A68 megaberg on the surface freshwater balance of the Weddell and Scotia Seas. Philos. Trans. Roy. Soc., A381, 20220162, https://doi.org/10.1098/rsta.2022.0162.
Merino, N., J. Le Sommer, G. Durand, N. C. Jourdain, G. Madec, P. Mathiot, and J. Tournadre, 2016: Antarctic icebergs melt over the Southern Ocean: Climatology and impact on sea ice. Ocean Modell., 104, 99–110, https://doi.org/10.1016/j.oce-mod.2016.05.001.
Morlighem, M., and Coauthors, 2020: Deep glacial troughs and stabilizing ridges unveiled beneath the margins of the Antarctic ice sheet. Nat. Geosci., 13, 132–137, https://doi.org/10.1038/s41561-019-0510-8.
Mote, T. L., 2007: Greenland surface melt trends 1973–2007: Evidence of a large increase in 2007. Geophys. Res. Lett., 34, L22507, https://doi.org/10.1029/2007GL031976.
Mote, T. L., 2014: MEaSUREs Greenland surface melt daily 25km EASE-Grid 2.0, version 1. NASA National Snow and Ice Data Center Distributed Active Archive Center, Accessed 1 December 2024, https://doi.org/10.5067/MEASURES/CRYOSPHERE/nsidc-0533.001.
Mote, T. L., and M. R. Anderson, 1995: Variations in snowpack melt on the Greenland ice sheet based on passive-microwave measurements. J. Glaciol., 41, 51–60, https://doi.org/10.3189/S0022143000017755.
Mottram, R., and Coauthors, 2021: What is the surface mass balance of Antarctica? An intercomparison of regional climate model estimates. Cryosphere, 15, 3751–3784, https://doi. org/10.5194/tc-15-3751-2021.
Neuhaus, S. U., and D. R. MacAyeal, 2012: Iceberg drift trajectory follows sea-floor spreading features. 2012 Fall Meeting, San Francisco, CA, Amer. Geophys. Union, Abstract T41B-2596.
Newman, P. A., J. S. Daniel, D. W. Waugh, and E. R. Nash, 2007: A new formulation of equivalent effective stratospheric chlorine (EESC). Atmos. Chem. Phys., 7, 4537–4552, https://doi. org/10.5194/acp-7-4537-2007.
Norwegian Polar Institute, 2018: Quantarctica v3.0, detailed base-map. Accessed 12 September 2020, https://www.npolar.no/quantarctica/.
Orsi, A. H., T. Whitworth III, and W. D. Nowlin Jr., 1995: On the meridional extent and fronts of the Antarctic Circumpolar Current. Deep-Sea. Res. I, 42, 641–673, https://doi.org/10.1016/0967-0637(95)00021-W.
Oschlies, A., P. Brandt, L. Stramma, and S. Schmidtko, 2018: Drivers and mechanisms of ocean deoxygenation. Nat. Geosci., 11, 467–473, https://doi.org/10.1038/s41561-018-0152-2.
Otosaka, I. N., and Coauthors, 2023: Mass balance of the Greenland and Antarctic ice sheets from 1992 to 2020. Earth Syst. Sci. Data, 15, 1597–1616, https://doi.org/10.5194/essd-15-1597-2023.
Park, Y.-H., E. Charriaud, and M. Fieux, 1998: Thermohaline structure of the Antarctic surface water/winter water in the Indian sector of the Southern Ocean. J. Mar. Syst., 17, 5–23, https://doi.org/10.1016/S0924-7963(98)00026-8.
Pezzi, L. P., and Coauthors, 2023: Southern Ocean [in “State of the Climate in 2022”]. Bull. Amer. Meteor. Soc., 104 (9), S351–S355, https://doi.org/10.1175/BAMS-D-23-0077.1.
Purich, A., and E. W. Doddridge, 2023: Record low Antarctic sea ice coverage indicates a new sea ice state. Commun. Earth Environ., 4, 314, https://doi.org/10.1038/s43247-023-00961-9.
Raphael, M. N., T. J. Maierhofer, R. L. Fogt, W. R. Hobbs, and M. S. Handcock, 2025: A twenty-first century structural change in Antarctica’s sea ice system. Commun. Earth Environ., 6, 131, https://doi.org/10.1038/s43247-025-02107-5.
Reid, P., S. Stammerjohn, R. A. Massom, S. Barreira, T. Scambos, and J. L. Lieser, 2024: Sea ice extent, concentration, and seasonality [in “State of the Climate in 2023”]. Bull. Amer. Meteor. Soc., 105 (8), S351–S354, https://doi.org/10.1175/BAMS-D-24-0099.1.
Reid, P., and R. A. Massom, 2022: Change and variability in Antarctic coastal exposure, 1979–2020. Nat. Commun., 13, 1164, https://doi.org/10.1038/s41467-022-28676-z.
Reynolds, R. W., N. A. Rayner, T. M. Smith, D. C. Stokes, and W. Wang, 2002: An improved in situ and satellite SST analysis for climate. J. Climate, 15, 1609–1625, https://doi.org/10.1175/1520-0442(2002)015<1609:AIISAS>2.0.CO;2.
Riihelä, A., R. M. Bright, and K. Anttila, 2021: Recent strengthening of snow and ice albedo feedback driven by Antarctic sea-ice loss. Nat. Geosci., 14, 832–836, https://doi.org/10.1038/s41561-021-00841-x.
Roemmich, D., and J. Gilson, 2009: The 2004–2008 mean and annual cycle of temperature, salinity, and steric height in the global ocean from the Argo Program. Prog. Oceanogr., 82, 81– 100, https://doi.org/10.1016/j.pocean.2009.03.004.
Sabu, P., S. A. Libera, R. Chacko, N. Anilkumar, M. P. Subeesh, and A. P. Thomas, 2020: Winter water variability in the Indian Ocean sector of Southern Ocean during austral summer. Deep-Sea Res. II, 178, 104852, https://doi.org/10.1016/j.dsr2.2020.104852.
Santee, M. L., and Coauthors, 2024: The influence of stratospheric hydration from the Hunga eruption on chemical processing in the 2023 Antarctic vortex. J. Geophys. Res. Atmos., 129, e2023JD040687, https://doi.org/10.1029/2023JD040687.
Sathyendranath, S., and Coauthors, 2019: An ocean-colour time series for use in climate studies: The experience of the Ocean-Colour Climate Change Initiative (OC-CCI). Sensors, 19, 4285, https://doi.org/10.3390/s19194285.
Scambos, T., R. Ross, R. Bauer, Y. Yermolin, P. Skvarca, D. Long, J. Bohlander, and T. Haran, 2008: Calving and ice-shelf breakup processes investigated by proxy: Antarctic tabular iceberg evolution during northward drift. J. Glaciol., 54, 579–591, https://doi.org/10.3189/002214308786570836.
Scambos, T., E. Berthier, T. Haran, C. A. Shuman, A. J. Cook, S. R. M. Ligtenberg, and J. Bohlander, 2014: Detailed ice loss pattern in the northern Antarctic Peninsula: Widespread decline driven by ice front retreats. Cryosphere, 8, 2135–2145, https://doi. org/10.5194/tc-8-2135-2014.
Scambos, T., and Coauthors, 2024: Life cycle of icebergs B-15 and C-19. 2024 Fall Meeting, Washington, D.C., Amer. Geophys. Union, Abstract C21F-0423.
Smith, B., and Coauthors, 2020: Pervasive ice sheet mass loss reflects competing ocean and atmosphere processes. Science, 368, 1239–1242, https://doi.org/10.1126/science.aaz5845.
Smith, B., S. Dickinson, B. P. Jelley, T. A. Neumann, D. Hancock, J. Lee, and K. Harbeck, 2022: ATLAS/ICESat-2 L3B slope-corrected land ice height time series, version 5. NASA National Snow and Ice Data Center Distributed Active Archive Center, accessed 18 February 2024, https://doi.org/10.5067/ATLAS/ATL11.005.
Spira, T., S. Swart, I. Giddy, and M. Du Plessis, 2024: The observed spatiotemporal variability of Antarctic Winter Water. J. Geophys. Res. Oceans, 129, e2024JC021017, https://doi. org/10.1029/2024JC021017.
Stammerjohn, S. E., D. G. Martinson, R. C. Smith, X. Yuan, and D. Rind, 2008: Trends in Antarctic annual sea ice retreat and advance and their relation to El Niño–Southern Oscillation and Southern Annular Mode variability. J. Geophys. Res., 113, C03S90, https://doi.org/10.1029/2007JC004269.
Stern, A. A., A. Adcroft, and O. Sergienko, 2019: Modeling ice shelf cavities and tabular icebergs using Lagrangian elements. J. Geophys. Res. Oceans, 124, 3378–3392, https://doi. org/10.1029/2018JC014876.
Swithinbank, C., K. Brunk, and J. Sievers, 1988: A glaciological map of Filchner-Ronne ice shelf, Antarctica. Ann. Glaciol., 11, 150– 155, https://doi.org/10.3189/S0260305500006467.
Taylor, G. I., 1922: The motion of a sphere in a rotating liquid. Proc. Roy. Soc. London, 102A, 180–189, https://doi.org/10.1098/rspa.1922.0079.
The Firn Symposium Team, 2024: Firn on ice sheets. Nat. Rev. Earth Environ., 5, 79–99, https://doi.org/10.1038/s43017-023-00507-9.
The IMBIE Team, 2019: Mass balance of the Greenland Ice Sheet from 1992 to 2018. Nature, 579, 233–239, https://doi. org/10.1038/s41586-019-1855-2.
Thomalla, S., S. Nicholson, T. J. Ryan-Keogh, and M. Smith, 2023: Widespread changes in Southern Ocean phytoplankton blooms linked to climate drivers. Nat. Climate Change, 13, 975–984, https://doi.org/10.1038/s41558-023-01768-4.
Thomalla, S., and Coauthors, 2024: Southern Ocean [in “State of the Climate in 2023”]. Bull. Amer. Meteor. Soc., 105 (8), S355–S356, https://doi.org/10.1175/BAMS-D-24-0099.1.
Thomas, D. N., Ed., 2017: Sea Ice. 3rd ed. Wiley-Blackwell, 664 pp.
Trusel, L. D., J. D. Kromer, and R. T. Datta, 2023: Atmospheric response to Antarctic sea-ice reductions drives ice sheet surface mass balance increases. J. Climate, 36, 6879–6896, https://doi.org/10.1175/JCLI-D-23-0056.1.
Turner, J., and Coauthors, 2004: The SCAR READER project: Toward a high-quality database of mean Antarctic meteorological observations. J. Climate, 17, 2890–2898, https://doi.org/10.1175/1520-0442(2004)017<2890:TSRPTA>2.0.CO;2.
Turner, J., and Coauthors, 2019: The dominant role of extreme precipitation events in Antarctic snowfall variability. Geophys. Res. Lett., 46, 3502–3511, https://doi.org/10.1029/2018GL081517.
van Wessem, J. M., and Coauthors, 2018: Modelling the climate and surface mass balance of polar ice sheets using RACMO2 – Part 2: Antarctica (1979–2016). Cryosphere, 12, 1479–1498, https://doi.org/10.5194/tc-12-1479-2018.
Wang, H., J. G. Fyke, J. T. M. Lenaerts, J. M. Nusbaumer, H. Singh, D. Noone, P. J. Rasch, and R. Zhang, 2020: Influence of sea-ice anomalies on Antarctic precipitation using source attribution in the Community Earth System Model. Cryosphere, 14, 429–444, https://doi.org/10.5194/tc-14-429-2020.
Wang, Y., D. Zhou, A. Bunde, and S. Havlin, 2016: Testing reanalysis data sets in Antarctica: Trends, persistence properties, and trend significance. J. Geophys. Res. Atmos., 121, 12 839–12 855, https://doi.org/10.1002/2016JD024864.
Wiese, D. N., D.-N. Yuan, C. Boening, F. W. Landerer, and M. M. Watkins, 2023a: JPL GRACE Mascon ocean, ice, and hydrology equivalent water height RL06.1 CRI filtered version 03. Ver. RL06.1Mv03. PO.DAAC, accessed 10 February 2023, https://doi.org/10.5067/TEMSC-3JC63.
Wiese, D. N., D.-N. Yuan, C. Boening, F. W. Landerer, and M. M. Watkins, 2023b: Tellus level-4 ocean mass anomaly time series from JPL GRACE/GRACE-FO Mascon CRI filtered release 06.1 version 03. Ver. RL06.1Mv03. PO.DAAC, accessed 10 February 2023, https://doi.org/10.5067/TEMSC-AT613.
Wille, J. D., and Coauthors, 2021: Antarctic atmospheric river climatology and precipitation impacts. J. Geophys. Res. Atmos., 126, e2020JD033788, https://doi.org/10.1029/2020JD033788.
Wong, A. P. S., and Coauthors, 2020: Argo data 1999–2019: Two million temperature-salinity profiles and subsurface velocity observations from a global array of profiling floats. Front. Mar. Sci., 7, 700, https://doi.org/10.3389/fmars.2020.00700.