Oceanography; Geophysics; Geochemistry and Petrology; Earth and Planetary Sciences (miscellaneous); Space and Planetary Science
Abstract :
[en] The Antarctic coastal marine region is a unique and highly complex environment, of which landfast ice and polynyas are key features, especially in the context of dense water formation. Current large-scale ocean-sea ice models used in climate studies simulate hardly any Antarctic landfast ice, which has presumably negative implications on sea ice and polynya dynamics. Here we develop, implement, and evaluate an empirical circumpolar Antarctic landfast-ice representation for large-scale ocean-sea ice models. This representation is based on the restoring of sea ice velocity to zero where and when landfast ice is observed, according to a recently released circum-Antarctic landfast ice database. Using 2001–2017 hindcast simulations with the NEMO- (Formula presented.) model, we demonstrate that prescribing landfast ice not only ensures accurate landfast ice coverage, as expected, but also largely improves the simulated landfast ice thickness and polynya dynamics. This includes more realistic polynya coverage, individual polynya shape, frequency, and ice production rates. Additionally, the model low bias in summer ice extent is reduced, as prescribing landfast ice locks thicker ice near the coast, taking longer to melt. Our simulations also give the first estimate of landfast ice volume, representing 10.6% of the pan-Antarctic total, compared to 3.8% of the total Antarctic sea ice extent. We argue that velocity restoring is appropriate for some investigations of the Antarctic landfast ice over the recent past, but not for the remote past or future projections, for which a physical representation of landfast ice drivers, particularly iceberg-sea ice interactions, is necessary.
Disciplines :
Earth sciences & physical geography
Author, co-author :
Pirlet, N. ; Earth and Life Institute, Earth and Climate Research Center, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
Fichefet, T.; Earth and Life Institute, Earth and Climate Research Center, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
Vancoppenolle, M. ; Sorbonne Université, CNRS, IRD, MNHN, Laboratoire d'Océanographie et du Climat: Expérimentations et Approches Numériques, LOCEAN/IPSL, Paris, France
Fraser, A.D. ; Institute for Marine and Antarctic Studies, University of Tasmania, Nipaluna/Hobart, Australia ; Australian Antarctic Program Partnership, Institute for Marine and Antarctic Studies, University of Tasmania, Nipaluna/Hobart, Australia
Mathiot, P. ; CNRS/IRD/G-INP/INRAE, Institut des Geosciences de l’Environnement, Université Grenoble Alpes, Grenoble, France
Rousset, C.; Sorbonne Université, CNRS, IRD, MNHN, Laboratoire d'Océanographie et du Climat: Expérimentations et Approches Numériques, LOCEAN/IPSL, Paris, France
Barthélemy, A.; Earth and Life Institute, Earth and Climate Research Center, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
Barriat, P.-Y.; Earth and Life Institute, Earth and Climate Research Center, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
Pelletier, C. ; European Centre for Medium-Range Weather Forecasts, Bonn, Germany
Madec, G.; Sorbonne Université, CNRS, IRD, MNHN, Laboratoire d'Océanographie et du Climat: Expérimentations et Approches Numériques, LOCEAN/IPSL, Paris, France
Kittel, Christoph ; Université de Liège - ULiège > Département de géographie > Climatologie et Topoclimatologie ; CNRS/IRD/G-INP/INRAE, Institut des Geosciences de l’Environnement, Université Grenoble Alpes, Grenoble, France ; Earth System Science and Department of Geography, Vrije Universiteit Brussel, Brussels, Belgium
Language :
English
Title :
Benefits of a Landfast Ice Representation on Simulated Antarctic Sea Ice and Coastal Polynya Dynamics
The authors thank the two anonymous reviewers for their valuable comments and suggestions, which significantly helped improve the manuscript. We are also grateful to Q. Dalaiden for his assistance in adapting the atmospheric forcing and for many insightful discussions. We thank S. Nihashi for providing the polynya data associated with Nihashi and Ohshima ( 2015 ), and B. Richaud for proofreading the manuscript. This research was conducted within the Belgian National Fund of Scientific Research (FNRS), project LICEPOD, PDR Grant T.0079.22. Computational resources have been provided by the supercomputing facilities of the UCLouvain (CISM/UCL) and the Consortium des Equipements de Calcul Intensif en F\u00E9d\u00E9ration Wallonie Bruxelles (CECI), funded by the Fonds de la Recherche Scientifique\u2014FNRS (F.R.S.\u2013FNRS) (convention no. 2.5020.11) and by the Walloon Region. This project has received grant funding from Agence Nationale de la Recherche\u2014France 2030 as part of the PEPR TRACCS programme under Grant ANR\u201022\u2010EXTR\u2010008, and from the Australian Government as part of the Antarctic Science Collaboration Initiative program. ADF is supported by ARC Grants FT230100234, LP170101090, LE220100103, and DP240100325, and acknowledges the generous support of the Harris Charitable Trust through the Antarctic Science Foundation. We acknowledge the use of ChatGPT ( https://chat.openai.com/ ) to improve the writing style of a few paragraphs.
Ackermann, L., Rackow, T., Himstedt, K., Gierz, P., Knorr, G., & Lohmann, G. (2024). A comprehensive Earth system model (AWI-ESM2.1) with interactive icebergs: Effects on surface and deep-ocean characteristics. Geoscientific Model Development, 17(8), 3279–3301. https://doi.org/10.5194/gmd-17-3279-2024
Barnier, B., Madec, G., Penduff, T., Molines, J.-M., Treguier, A.-M., Le Sommer, J., et al. (2006). Impact of partial steps and momentum advection schemes in a global ocean circulation model at eddy-permitting resolution. Ocean Dynamics, 56(5–6), 543–567. https://doi.org/10.1007/s10236-006-0082-1
Barthélemy, A., Goosse, H., Fichefet, T., & Lecomte, O. (2018). On the sensitivity of Antarctic sea ice model biases to atmospheric forcing uncertainties. Climate Dynamics, 51(4), 1585–1603. https://doi.org/10.1007/s00382-017-3972-7
Bett, D. T., Holland, P. R., Naveira Garabato, A. C., Jenkins, A., Dutrieux, P., Kimura, S., & Fleming, A. (2020). The impact of the Amundsen Sea freshwater balance on ocean melting of the West Antarctic Ice Sheet. Journal of Geophysical Research: Oceans, 125(9), e2020JC016305. https://doi.org/10.1029/2020JC016305
Bitz, C. M., Holland, M. M., Weaver, A. J., & Eby, M. (2001). Simulating the ice-thickness distribution in a coupled climate model. Journal of Geophysical Research, 106(C2), 2441–2463. https://doi.org/10.1029/1999JC000113
Boucher, O., Servonnat, J., Albright, A. L., Aumont, O., Balkanski, Y., Bastrikov, V., et al. (2020). Presentation and evaluation of the IPSL-CM6A-LR climate model. Journal of Advances in Modeling Earth Systems, 12(7), e2019MS002010. https://doi.org/10.1029/2019MS002010
Brearley, J. A., Meredith, M. P., Naveira Garabato, A. C., Venables, H. J., & Inall, M. E. (2017). Controls on turbulent mixing on the West Antarctic Peninsula shelf. Deep Sea Research Part II: Topical Studies in Oceanography, 139, 18–30. https://doi.org/10.1016/j.dsr2.2017.02.011
Bromwich, D. H., & Kurtz, D. D. (1984). Katabatic wind forcing of the Terra Nova Bay polynya. Journal of Geophysical Research, 89(C3), 3561–3572. https://doi.org/10.1029/JC089iC03p03561
Caton Harrison, T., Biri, S., Bracegirdle, T. J., King, J. C., Kent, E. C., Vignon, E., & Turner, J. (2022). Reanalysis representation of low-level winds in the Antarctic near-coastal region. Weather and Climate Dynamics, 3(4), 1415–1437. https://doi.org/10.5194/wcd-3-1415-2022
Dammann, D. O., Eriksson, L. E. B., Mahoney, A. R., Eicken, H., & Meyer, F. J. (2019). Mapping pan-Arctic landfast sea ice stability using Sentinel-1 interferometry. The Cryosphere, 13(2), 557–577. https://doi.org/10.5194/tc-13-557-2019
De Lavergne, C., Vic, C., Madec, G., Roquet, F., Waterhouse, A. F., Whalen, C. B., et al. (2020). A parameterization of local and remote tidal mixing. Journal of Advances in Modeling Earth Systems, 12(5), e2020MS002065. https://doi.org/10.1029/2020MS002065
Dupont, F., Dumont, D., Lemieux, J.-F., Dumas-Lefebvre, E., & Caya, A. (2022). A probabilistic seabed–ice keel interaction model. The Cryosphere, 16(5), 1963–1977. https://doi.org/10.5194/tc-16-1963-2022
Engedahl, H. (1995). Use of the flow relaxation scheme in a three-dimensional baroclinic ocean model with realistic topography. Tellus A, 47(3), 365–382. https://doi.org/10.3402/tellusa.v47i3.11523
Fedotov, V. I., Cherepanov, N. V., & Tyshko, K. P. (1998). Some features of the growth, structure and metamorphism of East Antarctic landfast sea ice. In Antarctic sea ice: Physical processes, interactions and variability (pp. 343–354). American Geophysical Union (AGU). https://doi.org/10.1029/AR074p0343
Fichefet, T., & Maqueda, M. A. M. (1999). Modelling the influence of snow accumulation and snow-ice formation on the seasonal cycle of the Antarctic sea-ice cover. Climate Dynamics, 15(4), 251–268. https://doi.org/10.1007/s003820050280
Flather, R. A. (1994). A storm surge prediction model for the northern Bay of Bengal with application to the cyclone disaster in April 1991. Journal of Physical Oceanography, 24(1), 172–190. https://doi.org/10.1175/1520-0485(1994)024〈0172:ASSPMF〉2.0.CO;2
Fraser, A. D., Massom, R. A., Handcock, M. S., Reid, P., Ohshima, K. I., Raphael, M. N., et al. (2021). Eighteen-year record of circum-Antarctic landfast sea ice distribution allows detailed baseline characterisation, reveals trends and variability. The Cryosphere, 15(11), 5061–5077. https://doi.org/10.5194/tc-15-5061-2021
Fraser, A. D., Massom, R. A., Michael, K. J., Galton-Fenzi, B. K., & Lieser, J. L. (2012). East Antarctic landfast sea ice distribution and variability, 2000–08. Journal of Climate, 25(4), 1137–1156. https://doi.org/10.1175/JCLI-D-10-05032.1
Fraser, A. D., Massom, R. A., Ohshima, K. I., Willmes, S., Kappes, P. J., Cartwright, J., & Porter-Smith, R. (2020). High-resolution mapping of circum-Antarctic landfast sea ice distribution, 2000–2018. Earth System Science Data, 12(4), 2987–2999. https://doi.org/10.5194/essd-12-2987-2020
Fraser, A. D., Ohshima, K. I., Nihashi, S., Massom, R. A., Tamura, T., Nakata, K., et al. (2019). Landfast ice controls on sea-ice production in the Cape Darnley Polynya: A case study. Remote Sensing of Environment, 233, 111315. https://doi.org/10.1016/j.rse.2019.111315
Fraser, A. D., Wongpan, P., Langhorne, P. J., Klekociuk, A. R., Kusahara, K., Lannuzel, D., et al. (2023). Antarctic landfast sea ice: A review of its physics, biogeochemistry and ecology. Reviews of Geophysics, 61(2), e2022RG000770. https://doi.org/10.1029/2022RG000770
Gent, P. R., & Mcwilliams, J. C. (1990). Isopycnal mixing in ocean circulation models. Journal of Physical Oceanography, 20(1), 150–155. https://doi.org/10.1175/1520-0485(1990)020〈0150:IMIOCM〉2.0.CO;2
Giles, K. A., Laxon, S. W., & Worby, A. P. (2008). Antarctic sea ice elevation from satellite radar altimetry. Geophysical Research Letters, 35(3), 2007GL031572. https://doi.org/10.1029/2007GL031572
Gordon, A. L., Visbeck, M., & Huber, B. (2001). Export of Weddell Sea deep and bottom water. Journal of Geophysical Research, 106(C5), 9005–9017. https://doi.org/10.1029/2000JC000281
Griffies, S. M., Biastoch, A., Böning, C., Bryan, F., Danabasoglu, G., Chassignet, E. P., et al. (2009). Coordinated Ocean-ice reference experiments (COREs). Ocean Modelling, 26(1–2), 1–46. https://doi.org/10.1016/j.ocemod.2008.08.007
Grotti, M., Soggia, F., Ianni, C., & Frache, R. (2005). Trace metals distributions in coastal sea ice of Terra Nova Bay, Ross Sea, Antarctica. Antarctic Science, 17(2), 289–300. https://doi.org/10.1017/S0954102005002695
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., et al. (2020). The ERA5 global reanalysis. Quarterly Journal of the Royal Meteorological Society, 146(730), 1999–2049. https://doi.org/10.1002/qj.3803
Heuzé, C. (2021). Antarctic bottom water and North Atlantic deep water in CMIP6 models. Ocean Science, 17(1), 59–90. https://doi.org/10.5194/os-17-59-2021
Hunke, E. C., & Comeau, D. (2011). Sea ice and iceberg dynamic interaction. Journal of Geophysical Research, 116(C5), C05008. https://doi.org/10.1029/2010JC006588
Huot, P.-V., Kittel, C., Fichefet, T., Jourdain, N. C., Sterlin, J., & Fettweis, X. (2021). Effects of the atmospheric forcing resolution on simulated sea ice and polynyas off Adélie Land, East Antarctica. Ocean Modelling, 168, 101901. https://doi.org/10.1016/j.ocemod.2021.101901
Inall, M. E., Brearley, J. A., Henley, S. F., Fraser, A. D., & Reed, S. (2022). Landfast ice controls on turbulence in Antarctic coastal seas. Journal of Geophysical Research: Oceans, 127(1), e2021JC017963. https://doi.org/10.1029/2021JC017963
Jeong, H., Turner, A. K., Roberts, A. F., Veneziani, M., Price, S. F., Asay-Davis, X. S., et al. (2023). Southern Ocean polynyas and dense water formation in a high-resolution, coupled Earth system model. The Cryosphere, 17(7), 2681–2700. https://doi.org/10.5194/tc-17-2681-2023
Kimmritz, M., Danilov, S., & Losch, M. (2016). The adaptive EVP method for solving the sea ice momentum equation. Ocean Modelling, 101, 59–67. https://doi.org/10.1016/j.ocemod.2016.03.004
Kittel, C., Amory, C., Agosta, C., Jourdain, N. C., Hofer, S., Delhasse, A., et al. (2021). Diverging future surface mass balance between the Antarctic ice shelves and grounded ice sheet. The Cryosphere, 15(3), 1215–1236. https://doi.org/10.5194/tc-15-1215-2021
König Beatty, C., & Holland, D. M. (2010). Modeling landfast sea ice by adding tensile strength. Journal of Physical Oceanography, 40(1), 185–198. https://doi.org/10.1175/2009JPO4105.1
Kusahara, K., Hasumi, H., & Tamura, T. (2010). Modeling sea ice production and dense shelf water formation in coastal polynyas around East Antarctica. Journal of Geophysical Research, 115(C10), 2010JC006133. https://doi.org/10.1029/2010JC006133
Kusahara, K., Williams, G. D., Tamura, T., Massom, R., & Hasumi, H. (2017). Dense shelf water spreading from Antarctic coastal polynyas to the deep Southern Ocean: A regional circumpolar model study. Journal of Geophysical Research: Oceans, 122(8), 6238–6253. https://doi.org/10.1002/2017JC012911
Langhorne, P. J., Haas, C., Price, D., Rack, W., Leonard, G. H., Brett, G. M., & Urbini, S. (2023). Fast ice thickness distribution in the western Ross Sea in late spring. Journal of Geophysical Research: Oceans, 128(2), e2022JC019459. https://doi.org/10.1029/2022JC019459
Large, W., & Yeager, S. (2004). Diurnal to decadal global forcing for ocean and sea-ice models: The data sets and flux climatologies (Technical Report). UCAR/NCAR. https://doi.org/10.5065/D6KK98Q6
Lecomte, O., Fichefet, T., Flocco, D., Schroeder, D., & Vancoppenolle, M. (2015). Interactions between wind-blown snow redistribution and melt ponds in a coupled ocean–sea ice model. Ocean Modelling, 87, 67–80. https://doi.org/10.1016/j.ocemod.2014.12.003
Lemieux, J.-F., Dupont, F., Blain, P., Roy, F., Smith, G. C., & Flato, G. M. (2016). Improving the simulation of landfast ice by combining tensile strength and a parameterization for grounded ridges. Journal of Geophysical Research: Oceans, 121(10), 7354–7368. https://doi.org/10.1002/2016JC012006
Lemieux, J.-F., Tremblay, L. B., Dupont, F., Plante, M., Smith, G. C., & Dumont, D. (2015). A basal stress parameterization for modeling landfast ice. Journal of Geophysical Research: Oceans, 120(4), 3157–3173. https://doi.org/10.1002/2014JC010678
Lin, X., Massonnet, F., Fichefet, T., & Vancoppenolle, M. (2023). Impact of atmospheric forcing uncertainties on Arctic and Antarctic sea ice simulations in CMIP6 OMIP models. The Cryosphere, 17(5), 1935–1965. https://doi.org/10.5194/tc-17-1935-2023
Lipscomb, W. H. (2001). Remapping the thickness distribution in sea ice models. Journal of Geophysical Research, 106(C7), 13989–14000. https://doi.org/10.1029/2000JC000518
Liu, Y., Losch, M., Hutter, N., & Mu, L. (2022). A new parameterization of coastal drag to simulate landfast ice in deep marginal seas in the Arctic. Journal of Geophysical Research: Oceans, 127(6), e2022JC018413. https://doi.org/10.1029/2022JC018413
Locarnini, M., Mishonov, A., Baranova, O., Boyer, T., Zweng, M., Garcia, H., et al. (2018). World Ocean Atlas 2018, Volume 1: Temperature (Report). Archimer. Retrieved from https://archimer.ifremer.fr/doc/00651/76338/
Madec, G., Bell, M., Blaker, A., Bricaud, C., Bruciaferri, D., Castrillo, M., et al. (2023). NEMO ocean engine reference manual [Dataset]. Zenodo. https://doi.org/10.5281/ZENODO.1464816
Mahoney, A. R., Eicken, H., Gaylord, A. G., & Gens, R. (2014). Landfast sea ice extent in the Chukchi and Beaufort Seas: The annual cycle and decadal variability. Cold Regions Science and Technology, 103, 41–56. https://doi.org/10.1016/j.coldregions.2014.03.003
Massom, R. A., Giles, A. B., Fricker, H. A., Warner, R. C., Legrésy, B., Hyland, G., et al. (2010). Examining the interaction between multi-year landfast sea ice and the Mertz Glacier Tongue, East Antarctica: Another factor in ice sheet stability? Journal of Geophysical Research, 115(C12), 2009JC006083. https://doi.org/10.1029/2009JC006083
Massom, R. A., Harris, P., Michael, K. J., & Potter, M. (1998). The distribution and formative processes of latent-heat polynyas in East Antarctica. Annals of Glaciology, 27, 420–426. https://doi.org/10.3189/1998AoG27-1-420-426
Massom, R. A., Hill, K. L., Lytle, V. I., Worby, A. P., Paget, M., & Allison, I. (2001). Effects of regional fast-ice and iceberg distributions on the behaviour of the Mertz Glacier polynya, East Antarctica. Annals of Glaciology, 33, 391–398. https://doi.org/10.3189/172756401781818518
Massom, R. A., Scambos, T. A., Bennetts, L. G., Reid, P., Squire, V. A., & Stammerjohn, S. E. (2018). Antarctic ice shelf disintegration triggered by sea ice loss and ocean swell. Nature, 558(7710), 383–389. https://doi.org/10.1038/s41586-018-0212-1
Massom, R. A., & Stammerjohn, S. E. (2010). Antarctic sea ice change and variability – Physical and ecological implications. Polar Science, 4(2), 149–186. https://doi.org/10.1016/j.polar.2010.05.001
Mathiot, P., Barnier, B., Gallée, H., Molines, J. M., Sommer, J. L., Juza, M., & Penduff, T. (2010). Introducing katabatic winds in global ERA40 fields to simulate their impacts on the Southern Ocean and sea-ice. Ocean Modelling, 35(3), 146–160. https://doi.org/10.1016/j.ocemod.2010.07.001
Mathiot, P., Jenkins, A., Harris, C., & Madec, G. (2017). Explicit representation and parametrised impacts of under ice shelf seas in the z* coordinate ocean model NEMO 3.6. Geoscientific Model Development, 10(7), 2849–2874. https://doi.org/10.5194/gmd-10-2849-2017
Mathiot, P., & Jourdain, N. C. (2023). Southern Ocean warming and Antarctic ice shelf melting in conditions plausible by late 23rd century in a high-end scenario. Ocean Science, 19(6), 1595–1615. https://doi.org/10.5194/os-19-1595-2023
Meiners, K. M., Vancoppenolle, M., Carnat, G., Castellani, G., Delille, B., Delille, D., et al. (2018). Chlorophyll-a in Antarctic landfast sea ice: A first synthesis of historical ice core data. Journal of Geophysical Research: Oceans, 123(11), 8444–8459. https://doi.org/10.1029/2018JC014245
Mohrmann, M., Heuzé, C., & Swart, S. (2021). Southern Ocean polynyas in CMIP6 models. The Cryosphere, 15(9), 4281–4313. https://doi.org/10.5194/tc-2021-23
Morales Maqueda, M. A., Willmott, A. J., & Biggs, N. R. T. (2004). Polynya dynamics: A review of observations and modeling. Reviews of Geophysics, 42(1), 2002RG000116. https://doi.org/10.1029/2002RG000116
Nakamura, K., Wakabayashi, H., Uto, S., Ushio, S., & Nishio, F. (2009). Observation of sea-ice thickness using ENVISAT data from Lützow-Holm Bay, East Antarctica. IEEE Geoscience and Remote Sensing Letters, 6(2), 277–281. https://doi.org/10.1109/LGRS.2008.2011061
Nakata, K., Ohshima, K. I., & Nihashi, S. (2021). Mapping of active frazil for Antarctic coastal polynyas, with an estimation of sea-ice production. Geophysical Research Letters, 48(6), e2020GL091353. https://doi.org/10.1029/2020GL091353
Nihashi, S., & Ohshima, K. I. (2015). Circumpolar mapping of Antarctic coastal polynyas and landfast sea ice: Relationship and variability. Journal of Climate, 28(9), 3650–3670. https://doi.org/10.1175/JCLI-D-14-00369.1
Nihashi, S., Ohshima, K. I., & Tamura, T. (2023). Reconstruct the AMSR-E/2 thin ice thickness algorithm to create a long-term time series of sea-ice production in Antarctic coastal polynyas. Polar Science, 39, 100978. https://doi.org/10.1016/j.polar.2023.100978
Ohshima, K. I., Fukamachi, Y., Ito, M., Nakata, K., Simizu, D., Ono, K., et al. (2022). Dominant frazil ice production in the Cape Darnley polynya leading to Antarctic Bottom Water formation. Science Advances, 8(42), eadc9174. https://doi.org/10.1126/sciadv.adc9174
Ohshima, K. I., Fukamachi, Y., Williams, G. D., Nihashi, S., Roquet, F., Kitade, Y., et al. (2013). Antarctic Bottom Water production by intense sea-ice formation in the Cape Darnley polynya. Nature Geoscience, 6(3), 235–240. https://doi.org/10.1038/ngeo1738
Ohshima, K. I., Nihashi, S., & Iwamoto, K. (2016). Global view of sea-ice production in polynyas and its linkage to dense/bottom water formation. Geoscience Letters, 3(1), 13. https://doi.org/10.1186/s40562-016-0045-4
Prather, M. J. (1986). Numerical advection by conservation of second-order moments. Journal of Geophysical Research, 91(D6), 6671–6681. https://doi.org/10.1029/JD091iD06p06671
Rintoul, S. R., & Bullister, J. L. (1999). A late winter hydrographic section from Tasmania to Antarctica. Deep Sea Research Part I: Oceanographic Research Papers, 46(8), 1417–1454. https://doi.org/10.1016/S0967-0637(99)00013-8
Roquet, F., Madec, G., McDougall, T. J., & Barker, P. M. (2015). Accurate polynomial expressions for the density and specific volume of seawater using the TEOS-10 standard. Ocean Modelling, 90, 29–43. https://doi.org/10.1016/j.ocemod.2015.04.002
Rousset, C., Vancoppenolle, M., Madec, G., Fichefet, T., Flavoni, S., Barthélemy, A., et al. (2015). The Louvain-La-Neuve sea ice model LIM3.6: Global and regional capabilities. Geoscientific Model Development, 8(10), 2991–3005. https://doi.org/10.5194/gmd-8-2991-2015
Sterlin, J., Orval, T., Lemieux, J.-F., Rousset, C., Fichefet, T., Massonnet, F., & Raulier, J. (2024). Influence of the representation of landfast ice on the simulation of the Arctic sea ice and Arctic Ocean halocline. Ocean Dynamics, 74(5), 407–437. https://doi.org/10.1007/s10236-024-01611-0
Storkey, D., Blaker, A. T., Mathiot, P., Megann, A., Aksenov, Y., Blockley, E. W., et al. (2018). UK Global Ocean GO6 and GO7: A traceable hierarchy of model resolutions. Geoscientific Model Development, 11(8), 3187–3213. https://doi.org/10.5194/gmd-11-3187-2018
Tamura, T., Ohshima, K. I., Fraser, A. D., & Williams, G. D. (2016). Sea ice production variability in Antarctic coastal polynyas. Journal of Geophysical Research: Oceans, 121(5), 2967–2979. https://doi.org/10.1002/2015JC011537
Tamura, T., Ohshima, K. I., Enomoto, H., Tateyama, K., Muto, A., Ushio, S., & Massom, R. A. (2006). Estimation of thin sea-ice thickness from NOAA AVHRR data in a polynya off the Wilkes Land coast, East Antarctica. Annals of Glaciology, 44, 269–274. https://doi.org/10.3189/172756406781811745
Tamura, T., Ohshima, K. I., & Nihashi, S. (2008). Mapping of sea ice production for Antarctic coastal polynyas. Geophysical Research Letters, 35(7), 2007GL032903. https://doi.org/10.1029/2007GL032903
Van Achter, G., Fichefet, T., Goosse, H., Pelletier, C., Sterlin, J., Huot, P.-V., et al. (2022). Modelling landfast sea ice and its influence on ocean–ice interactions in the area of the Totten Glacier, East Antarctica. Ocean Modelling, 169, 101920. https://doi.org/10.1016/j.ocemod.2021.101920
Vancoppenolle, M., Fichefet, T., Goosse, H., Bouillon, S., Madec, G., & Maqueda, M. A. M. (2009). Simulating the mass balance and salinity of Arctic and Antarctic sea ice. 1. Model description and validation. Ocean Modelling, 27(1–2), 33–53. https://doi.org/10.1016/j.ocemod.2008.10.005
Vancoppenolle, M., Rousset, C., Blockley, E., Aksenov, Y., Feltham, D., Fichefet, T., et al. (2023). SI3, the NEMO sea ice engine [Dataset]. Zenodo. https://doi.org/10.5281/zenodo.7534900
Williams, G. D., Herraiz-Borreguero, L., Roquet, F., Tamura, T., Ohshima, K. I., Fukamachi, Y., et al. (2016). The suppression of Antarctic bottom water formation by melting ice shelves in Prydz Bay. Nature Communications, 7(1), 12577. https://doi.org/10.1038/ncomms12577
Wongpan, P., Meiners, K. M., Vancoppenolle, M., Fraser, A. D., Moreau, S., Saenz, B. T., et al. (2024). Gross primary production of Antarctic landfast sea ice: A model-based estimate. Journal of Geophysical Research: Oceans, 129(10), e2024JC021348. https://doi.org/10.1029/2024JC021348
Wongpan, P., Vancoppenolle, M., Langhorne, P. J., Smith, I. J., Madec, G., Gough, A. J., et al. (2021). Sub-ice platelet layer physics: Insights from a mushy-layer sea ice model. Journal of Geophysical Research: Oceans, 126(6), e2019JC015918. https://doi.org/10.1029/2019JC015918
Zalesak, S. T. (2012). The design of flux-corrected transport (FCT) algorithms for structured grids. In D. Kuzmin, R. Löhner, & S. Turek (Eds.), Flux-corrected transport: Principles, algorithms, and applications (pp. 23–65). Springer Netherlands. https://doi.org/10.1007/978-94-007-4038-9_2
Zuo, H., Balmaseda, M. A., Tietsche, S., Mogensen, K., & Mayer, M. (2019). The ECMWF operational ensemble reanalysis–analysis system for ocean and sea ice: A description of the system and assessment. Ocean Science, 15(3), 779–808. https://doi.org/10.5194/os-15-779-2019
Zweng, M., Reagan, J., Seidov, D., Boyer, T., Locarnini, M., Garcia, H., et al. (2019). World ocean atlas 2018, volume 2: Salinity (Vol. 61). NOAA Atlas NESDIS.