[en] The increasing presence of pharmaceuticals, such as ibuprofen, in wastewater poses significant environmental and public health challenges, particularly in developing regions. In this study, we developed photocatalytic materials by doping natural Cameroonian clay with ZnO and TiO₂ to achieve efficient ibuprofen mineralization and bacterial inactivation under ultraviolet (UV) light. Characterization confirmed the successful integration of semiconductors into the clay matrix, which enhanced the surface area to 325 m²/g for TiO₂-based composites. Under UVA irradiation (1.2 mW/cm²), the Cu-doped TiO₂/clay composite achieved 48 % ibuprofen mineralization, measured by Total Organic Carbon (TOC) reduction, within 4 h, while ZnO-based composites reached up to 23 % under similar conditions. Antibacterial tests demonstrated complete inhibition of Shigella spp., total coliforms, and faecal streptococci at a catalyst dosage of 1 g/L under UVA, highlighting the dual functionality of the materials. These low-cost, locally sourced photocatalysts show promise for integrated pharmaceutical and microbial removal in decentralized wastewater treatment systems, offering a sustainable solution for water purification in resource-limited settings.
Disciplines :
Materials science & engineering Chemical engineering
Farcy, Antoine ; Université de Liège - ULiège > Chemical engineering
Rekik, Hela; Centre-Eau Terre Environnement, Institut National de la Recherche Scientifique (INRS), Université du Québec, Québec, Canada
Wouamba, Steven; Department of Chemistry, Higher Teacher Training College, University of Yaounde I, SPO, Yaounde, Cameroon ; Université de Montpellier, INRAE, Montpellier SupAgro, Montpellier, France
Djoufac Woumfo, Emmanuel; Laboratoire de Physico-chimie des matériaux minéraux, University of Yaounde, Yaounde, Cameroon
Mahy, Julien ; Université de Liège - ULiège > Chemical engineering
Language :
English
Title :
Dual-function Cameroonian clay-supported ZnO and TiO₂ photocatalysts for ibuprofen mineralization and bacterial inactivation
Adeleye, A.S., Xue, J., Zhao, Y., Taylor, A.A., Zenobio, J.E., Sun, Y., Han, Z., Salawu, O.A., Zhu, Y., Abundance, fate, and effects of pharmaceuticals and personal care products in aquatic environments. J. Hazard Mater., 424, 2022, 10.1016/j.jhazmat.2021.127284.
Caban, M., Lis, E., Kumirska, J., Stepnowski, P., Determination of pharmaceutical residues in drinking water in Poland using a new SPE-GC-MS(SIM) method based on speedisk extraction disks and DIMETRIS derivatization. Sci. Total Environ. 538 (2015), 402–411, 10.1016/j.scitotenv.2015.08.076.
Kenmogne, G.R.K., Rosillon, F., Mpakam, H.G., Nono, A., Enjeux sanitaires, socio-économiques et environnementaux liés à la réutilisation des eaux usées dans le maraîchage urbain: cas du bassin versant de l'Abiergué (Yaoundé-Cameroun). VertigOLa Rev. Électron. En. Sci. De. l'Environ., 2010.
Organisation mondiale de la santé, NOTE D'ORIENTATION TECHNIQUE RELATIVE À L'EAU, L'ASSAINISSEMENT ET L'HYGIÈNE ET LA GESTION DES EAUX USÉES POUR PRÉVENIR LES INFECTIONS ET RÉDUIRE LA PROPAGATION DE LA RÉSISTANCE AUX ANTIMICROBIENS, 2020. 〈https://iris.who.int/bitstream/handle/10665/336678/9789240014831-fre.pdf〉 (accessed June 17, 2025).
Walczak, N., Krzyszczak-Turczyn, A., Czech, B., Unveiling the effect of SWCNT as the dopants of TiO2 in pharmaceutical mixture photocatalytic removal from water and wastewater. J. Photochem. Photobio. A Chem., 467, 2025, 10.1016/j.jphotochem.2025.116437.
Dammak, N., Fakhfakh, N., Fourmentin, S., Benzina, M., Natural clay as raw and modified material for efficient o-xylene abatement. J. Environ. Chem. Eng. 1 (2013), 667–675, 10.1016/j.jece.2013.07.001.
Eskandarian, M.R., Choi, H., Fazli, M., Rasoulifard, M.H., Effect of UV-LED wavelengths on direct photolytic and TiO2 photocatalytic degradation of emerging contaminants in water. Chem. Eng. J. 300 (2016), 414–422, 10.1016/j.cej.2016.05.049.
Villarreal-Lucio, D.S., Galván-Romero, V.S., López-Saldaña, C., Loera-García, B.V., Vargas-Berrones, K.X., Ocampo-Pérez, R., Serna-Carrizalez, J.C., Flores-Ramírez, R., Molecularly imprinted polymer with photocatalytic activity for ibuprofen adsorption, degradation, and detection in real water samples. J. Contam. Hydrol., 273, 2025, 10.1016/j.jconhyd.2025.104600.
Gros, M., Petrović, M., Ginebreda, A., Barceló, D., Removal of pharmaceuticals during wastewater treatment and environmental risk assessment using hazard indexes. Environ. Int 36 (2010), 15–26, 10.1016/j.envint.2009.09.002.
Bashir, N., Sawaira, T., Jamil, A., Awais, M., Habib, A., Afzal, A., Challenges and prospects of main-group metal-doped TiO2 photocatalysts for sustainable water remediation. Mater. Today Sustain., 27, 2024, 10.1016/j.mtsust.2024.100869.
Din, M.I., Khalid, R., Photocatalysis of pharmaceuticals and organic dyes in the presence of silver-doped TiO2 photocatalyst–a critical review. Int J. Environ. Anal. Chem. 105 (2025), 276–300, 10.1080/03067319.2023.2258795.
Douven, S., Mahy, J.G., Wolfs, C., Reyserhove, C., Poelman, D., Devred, F., Gaigneaux, E.M., Lambert, S.D., Efficient N, fe Co-Doped TiO2 active under Cost-Effective visible LED light: from powders to films. Catalysts, 10, 2020, 547, 10.3390/catal10050547.
Mahy, J.G., Mbognou, M.H.T., Léonard, C., Fagel, N., Woumfo, E.D., Lambert, S.D., Natural clay modified with ZnO/TiO2 to enhance pollutant removal from water. Catalysts, 12, 2022, 10.3390/catal12020148.
Mahy, J.G., Wolfs, C., Vreuls, C., Drot, S., Dircks, S., Boergers, A., Tuerk, J., Hermans, S., Lambert, S.D., Advanced oxidation processes for waste water treatment: from lab-scale model water to on-site real waste water. Environ. Technol. 42 (2021), 3974–3986, 10.1080/09593330.2020.1797894.
Benhebal, H., Wolfs, C., Kadi, S., Tilkin, R.G., Allouche, B., Lambert, D., Mahy, J.G., Visible light sensitive SnO2/ZnCo2O4 material for the photocatalytic removal of organic pollutants in water. Inorganics, 7, 2019, 77.
Trigueiro, P., Jerônimo, A.G., Albuquerque, W.A., da Silva, W.L., Osajima, J.A., Jaber, M., Peña-Garcia, R.R., Shaping a ZnO-alginate-hectorite nanocomposite for improved photocatalytic drug removal. Appl. Mater. Today, 44, 2025, 10.1016/j.apmt.2025.102680.
Trigueiro, P., Albuquerque, W.A., Jerônimo, A.G., Barbosa, R., Jaber, M., Peña-Garcia, R.R., Tailoring Y-doped ZnO loaded onto eco-friendly support alginate-hectorite for azo dye removal. Appl. Surf. Sci., 704, 2025, 10.1016/j.apsusc.2025.163461.
Albuquerque, W., Trigueiro, P., Silva, B.V., Neves, L., Almeida, L.C., Peña-Garcia, R.R., A novel RuO₂@ZnO-Alginate-Halloysite composite for the effective degradation of eosin yellow dye and ciprofloxacin drug. Mater. Res Bull., 182, 2025, 10.1016/j.materresbull.2024.113178.
Trigueiro, P., Albuquerque, W.A., Jerônimo, A.G., Rodrigues, M.S., França, E.L.T., Peña-Garcia, R.R., CuO-TiO2–Saponite ternary nanocomposite for efficient removal of bromocresol Green dye. Minerals, 14, 2024, 10.3390/min14121268.
Feitosa, R.P., de Lima, I.S., Guerra, Y., da Silva-Filho, E.C., Furtini, M.B., Almeida, L., Peña-Garcia, R.R., Martín, I.B., Cecília, J.A., Osajima, J.A., Cerium-Doped TiO2 and sepiolite nanocomposites for tetracycline inactivation in water treatment. ACS Appl. Nano Mater. 8 (2025), 4324–4338, 10.1021/acsanm.4c01068.
Hamarawf, R.F., Tofiq, D.I., Aziz, K.H.H., Hassan, H.Q., Abdalkarim, K.A., Mohammed, S.J., Antibacterial activity and photo-Fenton catalytic degradation of a novel FeII/FeIII mixed-valency porous coordination polymer. J. Environ. Chem. Eng., 13, 2025, 10.1016/j.jece.2025.116765.
Aziz, K.H.H., Omer, K.M., Mahyar, A., Miessner, H., Mueller, S., Moeller, D., Application of photocatalytic falling film reactor to elucidate the degradation pathways of pharmaceutical diclofenac and ibuprofen in aqueous solutions. Coatings, 9, 2019, 10.3390/coatings9080465.
Soares, A.S., Araujo, F.P., França, R., Osajima, J.A., Guerra, Y., Castro-Lopes, S., Silva-Filho, E.C., Santos, F.E., Almeida, L.C., Viana, B.C., Peña-Garcia, R.R., Effect of ph on the growth and ibuprofen photocatalytic response of Zn1 − xCoxO compound synthesized by the co-precipitation method. J. Mater. Res 38 (2023), 2439–2452, 10.1557/s43578-023-00980-4.
Mahy, J.G., Lejeune, L., Haynes, T., Body, N., De Kreijger, S., Elias, B., Marcilli, R.H.M., Fustin, C.A., Hermans, S., Crystalline ZnO photocatalysts prepared at ambient temperature: influence of morphology on p-nitrophenol degradation in water. Catalysts, 11, 2021, 10.3390/catal11101182.
Méndez-Arriaga, F., Esplugas, S., Giménez, J., Photocatalytic degradation of non-steroidal anti-inflammatory drugs with TiO2 and simulated solar irradiation. Water Res 42 (2008), 585–594, 10.1016/j.watres.2007.08.002.
Adesina, M.O., Alfred, M.O., Seitz, H., Brennenstuhl, K., Rawel, H.M., Wessig, P., Kim, J., Wedel, A., Koopman, W., Günter, C., Unuabonah, E.I., Taubert, A., Orange peel biochar/clay/titania composites: low cost, high performance, and easy-to-reuse photocatalysts for the degradation of tetracycline in water. Environ. Sci. 10 (2024), 1432–1450, 10.1039/d4ew00037d.
Chauhan, M., Saini, V.K., Suthar, S., Ti-pillared montmorillonite clay for adsorptive removal of amoxicillin, imipramine, diclofenac-sodium, and paracetamol from water. J. Hazard Mater., 399, 2020, 10.1016/j.jhazmat.2020.122832.
Garrido-Ramírez, E.G., Theng, B.K.G., Mora, M.L., Clays and oxide minerals as catalysts and nanocatalysts in Fenton-like reactions - a review. Appl. Clay Sci. 47 (2010), 182–192, 10.1016/j.clay.2009.11.044.
Bel Hadjltaief, H., Da Costa, P., Galvez, M.E., Ben Zina, M., Influence of operational parameters in the heterogeneous photo-fenton discoloration of wastewaters in the presence of an iron-pillared clay. Ind. Eng. Chem. Res 52 (2013), 16656–16665, 10.1021/ie4018258.
Mbognou, M.H.T., Lambert, S.D., Caucheteux, J., Farcy, A., Alié, C., Fagel, N., Woumfo, E.D., Mahy, J.G., Hybrid clay-based materials for organic dyes and pesticides elimination in water. J. Solgel Sci. Technol. 105 (2023), 461–470, 10.1007/s10971-022-06005-6.
Hama Aziz, K.H., Miessner, H., Mueller, S., Kalass, D., Moeller, D., Khorshid, I., Rashid, M.A.M., Degradation of pharmaceutical diclofenac and ibuprofen in aqueous solution, a direct comparison of ozonation, photocatalysis, and non-thermal plasma. Chem. Eng. J. 313 (2017), 1033–1041, 10.1016/j.cej.2016.10.137.
Candido, J.P., Andrade, S.J., Fonseca, A.L., Silva, F.S., Silva, M.R.A., Kondo, M.M., Ibuprofen removal by heterogeneous photocatalysis and ecotoxicological evaluation of the treated solutions. Environ. Sci. Pollut. Res. 23 (2016), 19911–19920, 10.1007/s11356-016-6947-z.
Benhebal, H., Chaib, M., Leonard, A., Lambert, S.D., Crine, M., Photodegradation of phenol and benzoic acid by sol-gel-synthesized alkali metal-doped ZnO. Mater. Sci. Semicond. Process 15 (2012), 264–269, 10.1016/j.mssp.2011.12.001.
Mahy, J.G., Léonard, G.L.-M., Pirard, S., Wicky, D., Daniel, A., Archambeau, C., Liquet, D., Heinrichs, B., Aqueous sol-gel synthesis and film deposition methods for the large-scale manufacture of coated steel with self-cleaning properties. J. Solgel Sci. Technol. 81 (2017), 27–35, 10.1007/s10971-016-4020-5.
Schreier, M., J.R. Regalbuto, a fundamental study of pt tetraammine impregnation of silica: 1. The electrostatic nature of platinum adsorption. J. Catal. 225 (2004), 190–202, 10.1016/j.jcat.2004.03.034.
Claude, V., Mahy, J.G., Lohay, T., Tilkin, R.G., Micheli, F., Lambert, S.D., Sol – gel synthesis of Ni/Al2O3 catalysts for toluene reforming: support modification with alkali, alkaline earth or rare-earth dopant (Ca,K,Mg or Ce). Surf. Interfaces, 20, 2020, 100511, 10.1016/j.surfin.2020.100511.
Mustafa, F.S., Hama Aziz, K.H., Heterogeneous catalytic activation of persulfate for the removal of rhodamine b and diclofenac pollutants from water using iron-impregnated biochar derived from the waste of black seed pomace. Process Saf. Environ. Prot. 170 (2023), 436–448, 10.1016/j.psep.2022.12.030.
Malengreaux, C.M., Léonard, G.M.-L., Pirard, S.L., Cimieri, I., Lambert, S.D., Bartlett, J.R., Heinrichs, B., How to modify the photocatalytic activity of TiO2 thin films through their roughness by using additives. A relation between kinetics, morphology and synthesis. Chem. Eng. J. 243 (2014), 537–548, 10.1016/j.cej.2013.11.031.
Sá, A.S., Feitosa, R.P., Honório, L., Peña-Garcia, R., Almeida, L.C., Dias, J.S., Brazuna, L.P., Tabuti, T.G., Triboni, E.R., Osajima, J.A., da Silva-Filho, E.C., A brief photocatalytic study of zno containing cerium towards ibuprofen degradation. Materials, 14, 2021, 10.3390/ma14195891.
Shafeei, N., Asadollahfardi, G., Moussavi, G., Boojar, M.M.Akbar, Degradation of ibuprofen in the photocatalytic process with doped TiO 2 as catalyst and UVA-LED as existing source. Desalin. Water Treat. 142 (2019), 341–352, 10.5004/dwt.2019.23214.
Anucha, C.B., Altin, I., Bacaksiz, E., Degirmencioglu, I., Kucukomeroglu, T., Yılmaz, S., Stathopoulos, V.N., Immobilized tio2/zno sensitized copper (Ii) phthalocyanine heterostructure for the degradation of ibuprofen under uv irradiation. Separations 8 (2021), 1–21, 10.3390/separations8030024.
Farcy, A., Mathy, M., Lejeune, L., Eloy, P., Hermans, S., Drogui, P., Mahy, J.G., Ce2O3 and TiO2 p-n heterojunction for enhanced degradation of p-nitrophenol under visible light. J. Photochem. Photobio. A Chem., 463, 2025, 10.1016/j.jphotochem.2025.116284.
Saab, H.B., Nassif, N., El Samrani, A.G., Daoud, R., Medawar, S., Ouaïni, N., Survey of bacteriological surface water quality (Nahr Ibrahin River, Lebanon). Rev. Des. Sci. De. l'Eau 20 (2007), 341–352, 10.7202/016909ar.
Zerjav, G., Zizek, K., Zavasnik, J., Pintar, A., Brookite vs. Rutile vs. Anatase: What's behind their various photocatalytic activities?. J. Environ. Chem. Eng., 10, 2022, 10.1016/j.jece.2022.107722.
Freitas, W.A., Soares, B.E.C.F., Rodrigues, M.S., Trigueiro, P., Honorio, L.M.C., Peña-Garcia, R., Alcântara, A.C.S., Silva-Filho, E.C., Fonseca, M.G., Furtini, M.B., Osajima, J.A., Facile synthesis of ZnO-clay minerals composites using an ultrasonic approach for photocatalytic performance. J. Photochem. Photobio. A Chem., 429, 2022, 10.1016/j.jphotochem.2022.113934.
World Health Organization (WHO), Guidelines for Drinking-water Quality FOURTH EDITION INCORPORATING THE FIRST ADDENDUM, Geneva, 2017.
Rahman, K.O., Aziz, K.H.H., Utilizing scrap printed circuit boards to fabricate efficient Fenton-like catalysts for the removal of pharmaceutical diclofenac and ibuprofen from water. J. Environ. Chem. Eng., 10, 2022, 10.1016/j.jece.2022.109015.
Li, C., Sun, Z., Zhang, W., Yu, C., Zheng, S., Highly efficient g-C3N4/TiO2/kaolinite composite with novel three-dimensional structure and enhanced visible light responding ability towards ciprofloxacin and S. Aureus. Appl. Catal. B 220 (2018), 272–282, 10.1016/j.apcatb.2017.08.044.
Yuan, L., Huang, D., Guo, W., Yang, Q., Yu, J., TiO2/montmorillonite nanocomposite for removal of organic pollutant. Appl. Clay Sci. 53 (2011), 272–278, 10.1016/j.clay.2011.03.013.
Bai, N., Liu, X., Li, Z., Ke, X., Zhang, K., Wu, Q., High-efficiency TiO2/ZnO nanocomposites photocatalysts by sol–gel and hydrothermal methods. J. Solgel Sci. Technol. 99 (2021), 92–100, 10.1007/s10971-021-05552-8.
Karchiyappan, T., Rao, R., Mohammad, K., Dehghani, H., Water science and technology library industrial wastewater treatment emerging technologies for sustainability. 2022, Springer 〈https://www.springer.com/gp/〉.
Ali, S., Aljarrah, M.T., Al-Otoom, A., Abdelaziz, N., Development and testing of robust 3D printed ZnO/Clay photocatalysts for sustainable wastewater treatment. ACS Omega, 2025, 10.1021/acsomega.4c09879.
Reza, K.M., Kurny, A., Gulshan, F., Parameters affecting the photocatalytic degradation of dyes using TiO2: a review. Appl. Water Sci. 7 (2017), 1569–1578, 10.1007/s13201-015-0367-y.
Tanveer, M., Guyer, G.T., Abbas, G., Photocatalytic degradation of ibuprofen in water using TiO2 and ZnO under artificial UV and solar irradiation. Water Environ. Res. 91 (2019), 822–829, 10.1002/wer.1104.
Loaiza-Ambuludi, S., Panizza, M., Oturan, N., Oturan, M.A., Removal of the anti-inflammatory drug ibuprofen from water using homogeneous photocatalysis. Catal. Today 224 (2014), 29–33, 10.1016/j.cattod.2013.12.018.
Méndez-Arriaga, F., Torres-Palma, R.A., Pétrier, C., Esplugas, S., Gimenez, J., Pulgarin, C., Mineralization enhancement of a recalcitrant pharmaceutical pollutant in water by advanced oxidation hybrid processes. Water Res 43 (2009), 3984–3991, 10.1016/j.watres.2009.06.059.
Jiménez-Salcedo, M., Monge, M., Tena, M.T., Photocatalytic degradation of ibuprofen in water using TiO2/UV and g-C3N4/visible light: study of intermediate degradation products by liquid chromatography coupled to high-resolution mass spectrometry. Chemosphere 215 (2019), 605–618, 10.1016/j.chemosphere.2018.10.053.
Pylarinou, M., Sakellis, E., Gardelis, S., Psycharis, V., Kostakis, M.G., Thomaidis, N.S., Likodimos, V., Bilayer TiO2/Mo-BiVO4 photoelectrocatalysts for ibuprofen degradation. Materials, 18, 2025, 10.3390/ma18020344.
Braz, F.S., Silva, M.R.A., Silva, F.S., Andrade, S.J., Fonseca, A.L., Kondo, M.M., Photocatalytic degradation of ibuprofen using TiO2 and ecotoxicological assessment of degradation intermediates against Daphnia similis
Gong, H., Chu, W., Lam, S.H., Lin, A.Y.C., Ibuprofen degradation and toxicity evolution during Fe2+/Oxone/UV process. Chemosphere 167 (2017), 415–421, 10.1016/j.chemosphere.2016.10.027.
Feng, Z., Synthesis and full-spectrum-responsive photocatalytic activity from UV/Vis to near-infrared region of S-O decorated YMnO3 nanoparticles for photocatalytic degradation of ibuprofen. Front Chem., 12, 2024, 10.3389/fchem.2024.1424548.