[en] Chenodeoxycholic acid (CDCA), a primary bile acid (BA), has been demonstrated to play an important role as a signaling molecule in various physiological functions. However, the role of CDCA in regulating intestinal epithelial cell (IEC) function remains largely unknown. Herein, porcine intestinal epithelial cells (IPEC-J2) were used as an in vitro model to investigate the effects of CDCA on IEC proliferation and explore the underlying mechanisms. IPEC-J2 cells were treated with CDCA, and flow cytometry and transcriptome analysis were adopted to investigate the effects and potential molecular mechanisms of CDCA on the proliferation of IECs. Our results indicated that adding 50 μmol/L of CDCA in the media significantly increased the proliferation of IPEC-J2 cells. In addition, CDCA treatment also hindered cell apoptosis, increased the proportion of G0/G1 phase cells in the cell cycle progression, reduced intracellular ROS, and MDA levels, and increased mitochondrial membrane potential, antioxidation enzyme activity (T-AOC and CAT), and intracellular ATP level (p < 0.05). RNA-seq results showed that CDCA significantly upregulated the expression of genes related to cell cycle progression (Cyclin-dependent kinase 1 (CDK1), cyclin G2 (CCNG2), cell-cycle progression gene 1 (CCPG1), Bcl-2 interacting protein 5 (BNIP5), etc.) and downregulated the expression of genes related to mitochondrial biogenesis (ND1, ND2, COX3, ATP6, etc.). Further KEGG pathway enrichment analysis showed that CDCA significantly enriched the signaling pathways of DNA replication, cell cycle, and p53. Collectively, this study demonstrated that CDCA could promote IPEC-J2 proliferation by regulating cell cycle progression and mitochondrial function. These findings provide a new strategy for promoting the intestinal health of pigs by regulating intestinal BA metabolism.
Disciplines :
Animal production & animal husbandry
Author, co-author :
Xu, Lei; Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
Li, Yanpin; Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
Wei, Zixi ; Université de Liège - ULiège > TERRA Research Centre ; Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
Bai, Rong; Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China ; Department of Business Economics, Wageningen University, 6700 EW Wageningen, The Netherlands
Gao, Ge; Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
Sun, Wenjuan; Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
Jiang, Xianren; Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
Wang, Junjun ; State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
Li, Xilong; Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
Pi, Yu ; Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
Language :
English
Title :
Chenodeoxycholic Acid (CDCA) Promoted Intestinal Epithelial Cell Proliferation by Regulating Cell Cycle Progression and Mitochondrial Biogenesis in IPEC-J2 Cells.
NSCF - National Natural Science Foundation of China
Funding text :
This research was financially supported by the National Natural Science Foundation of China (to Y.P.) (no. 32002189), the Central Public-interest Scientific Institution Basal Research Fund (to Y.P.) (no. 1610382022004), and the Elite Youth Program of the Chinese Academy of Agricultural Sciences (to X.L.).
Thomas C. Gioiello A. Noriega L. Strehle A. Oury J. Rizzo G. Macchiarulo A. Yamamoto H. Mataki C. Pruzanski M. et al. TGR5-mediated bile acid sensing controls glucose homeostasis Cell Metab. 2009 10 167 177 10.1016/j.cmet.2009.08.001 19723493
Zheng X.J. Chen T.L. Jiang R.Q. Zhao A.H. Wu Q. Kuang J.L. Sun D.N. Ren Z.X. Li M.C. Zhao M.L. et al. Hyocholic acid species improve glucose homeostasis through a distinct TGR5 and FXR signaling mechanism Cell Metab. 2021 33 791 803 10.1016/j.cmet.2020.11.017 33338411
Kuipers F. de Boer J.F. Staels B. Microbiome modulation of the host adaptive immunity through bile acid modification Cell Metab. 2020 31 445 447 10.1016/j.cmet.2020.02.006
Cai J. Sun L.L. Gonzalez F.J. Gut microbiota-derived bile acids in intestinal immunity, inflammation, and tumorigenesis Cell Host Microbe 2022 30 289 300 10.1016/j.chom.2022.02.004 35271802
Dossa A.Y. Escobar O. Golden J. Frey M.R. Ford H.R. Gayer C.P. Bile acids regulate intestinal cell proliferation by modulating EGFR and FXR signaling Am. J. Physiol.-Gastrointest. Liver Physiol. 2016 310 G81 G92 10.1152/ajpgi.00065.2015
Booth D.M. Murphy J.A. Mukherjee R. Awais M. Neoptolemos J.P. Gerasimenko O.V. Tepikin A.V. Petersen O.H. Sutton R. Criddle D.N. Reactive oxygen species induced by bile acid induce apoptosis and protect against necrosis in pancreatic acinar cells Gastroenterology 2011 140 2116 2125 10.1053/j.gastro.2011.02.054
Mu C.L. Pi Y. Zhang C.J. Zhu W.Y. Microbiomes in the intestine of developing pigs: Implications for nutrition and health Recent Advances in Animal Nutrition and Metabolism Wu G. Springer International Publishing Berlin/Heidelberg, Germany 2022 161 176
Petroni M.L. Jazrawi R.P. Pazzi P. Lanzini A. Zuin M. Pigozzi M.G. Fracchia M. Galatola G. Alvisi V. Heaton K.W. et al. Ursodeoxycholic acid alone or with chenodeoxycholic acid for dissolution of cholesterol gallstones: A randomized multicentre trial Aliment. Pharmacol. Ther. 2001 15 123 128
Molinaro A. Wahlstrom A. Marschall H.U. Role of bile acids in metabolic control Trends Endocrinol. Metab. 2018 29 31 41 10.1016/j.tem.2017.11.002
Teodoro J.S. Machado I.F. Castela A.C. Amorim J.A. Jarak I. Carvalho R.A. Palmeira C.M. Rolo A.P. Chenodeoxycholic acid has non-thermogenic, mitodynamic anti-obesity effects in an in vitro CRISPR/Cas9 model of bile acid receptor TGR5 knockdown Int. J. Mol. Sci. 2021 22 11738 10.3390/ijms222111738
Broeders E.P.M. Nascimento E.B.M. Havekes B. Brans B. Roumans K.H.M. Tailleux A. Schaart G. Kouach M. Charton J. Deprez B. et al. The bile acid chenodeoxycholic acid increases human brown adipose tissue activity Cell Metab. 2015 22 418 426 10.1016/j.cmet.2015.07.002
Shihabudeen M.S. Roy D. James J. Thirumurugan K. Chenodeoxycholic acid, an endogenous FXR ligand alters adipokines and reverses insulin resistance Mol. Cell Endocrinol. 2015 414 19 28 10.1016/j.mce.2015.07.012
Meyer-Gerspach A.C. Steinert R.E. Keller S. Malarski A. Schulte F.H. Beglinger C. Effects of chenodeoxycholic acid on the secretion of gut peptides and fibroblast growth factors in healthy humans J. Clin. Endocrinol. Metab. 2013 98 3351 3358 10.1210/jc.2012-4109
Song M. Zhang F.L. Chen L. Yang Q. Su H. Yang X.H. He H.W. Ling M.F. Zheng J.S. Duan C. et al. Dietary chenodeoxycholic acid improves growth performance and intestinal health by altering serum metabolic profiles and gut bacteria in weaned piglets Anim. Nutr. 2021 7 365 375 10.1016/j.aninu.2020.07.011
van der Meer Y. Gerrits W.J.J. van den Bosch M. Holst J.J. Moreto M. Buurman W.A. Kulik W. van Kempen T.A.T.G. Chenodeoxycholic acid reduces intestinal permeability in newly weaned piglets J. Anim. Sci. 2012 90 302 304 10.2527/jas.50998
Song M. Ye J.Y. Zhang F.L. Su H. Yang X.H. He H.W. Liu F.F. Zhu X.T. Wang L.N. Gao P. et al. Chenodeoxycholic acid (CDCA) protects against the lipopolysaccharide-induced impairment of the intestinal epithelial barrier function via the FXR-MLCK pathway J. Agr. Food Chem. 2019 67 8868 8874 10.1021/acs.jafc.9b03173
van der Flier L.G. Clevers H. Stem cells, self-renewal, and differentiation in the intestinal epithelium Annu. Rev. Physiol. 2009 71 241 260 10.1146/annurev.physiol.010908.163145
Chen Z.G. Yuan Q.L. Xu G.R. Chen H.Y. Lei H.Y. Su J.M. Effects of quercetin on proliferation and H2O2-induced apoptosis of intestinal porcine enterocyte cells Molecules 2018 23 2012 10.3390/molecules23082012
Williams K.L. Fuller C.R. Dieleman L.A. DaCosta C.M. Haldeman K.M. Sartor R.B. Lund P.K. Enhanced survival and mucosal repair after dextran sodium sulfate—Induced colitis in transgenic mice that overexpress growth hormone Gastroenterology 2001 120 925 937 10.1053/gast.2001.22470
Wang M. Wu H. Lu L. Jiang L. Yu Q. Lactobacillus reuteri promotes intestinal development and regulates mucosal immune function in newborn piglets Front. Vet. Sci. 2020 7 42 10.3389/fvets.2020.00042
Ishizuka S. Shiwaku M. Hagio M. Suzuki T. Hira T. Hara H. Glycochenodeoxycholic acid promotes proliferation of intestinal epithelia via reduction of cyclic AMP and increase in H2AX phosphorylation after exposure to gamma-rays Biomed. Res. 2012 33 159 165 10.2220/biomedres.33.159
Krishna-Subramanian S. Hanski M.L. Loddenkemper C. Choudhary B. Pages G. Zeitz M. Hanski C. UDCA slows down intestinal cell proliferation by inducing high and sustained ERK phosphorylation Int. J. Cancer 2012 130 2771 2782 10.1002/ijc.26336 21805474
Song M. Yang Q. Zhang F.L. Chen L. Su H. Yang X.H. He H.W. Liu F.F. Zheng J.S. Ling M.F. et al. Hyodeoxycholic acid (HDCA) suppresses intestinal epithelial cell proliferation through FXR-PI3K/AKT pathway, accompanied by alteration of bile acids metabolism profiles induced by gut bacteria FASEB J. 2020 34 7103 7117 10.1096/fj.201903244R 32246800
Schierack P. Nordhoff M. Pollmann M. Weyrauch K.D. Amasheh S. Lodemann U. Jores J. Tachu B. Kleta S. Blikslager A. et al. Characterization of a porcine intestinal epithelial cell line for in vitro studies of microbial pathogenesis in swine Histochem. Cell Biol. 2006 125 293 305 10.1007/s00418-005-0067-z 16215741
Li B. Dewey C.N. RSEM: Accurate transcript quantification from RNA-Seq data with or without a reference genome BMC Bioinform. 2011 12 323 10.1186/1471-2105-12-323 21816040
Robinson M.D. McCarthy D.J. Smyth G.K. edgeR: A Bioconductor package for differential expression analysis of digital gene expression data Bioinformatics 2010 26 139 140 10.1093/bioinformatics/btp616
Klopfenstein D.V. Zhang L. Pedersen B.S. Ramirez F. Warwick Vesztrocy A. Naldi A. Mungall C.J. Yunes J.M. Botvinnik O. Weigel M. et al. GOATOOLS: A python library for gene ontology analyses Sci. Rep. 2018 8 10872 10.1038/s41598-018-28948-z
Xie C. Mao X.Z. Huang J.J. Ding Y. Wu J.M. Dong S. Kong L. Gao G. Li C.Y. Wei L.P. KOBAS 2.0: A web server for annotation and identification of enriched pathways and diseases Nucleic Acids Res. 2011 39 W316 W322 10.1093/nar/gkr483
Szklarczyk D. Franceschini A. Wyder S. Forslund K. Heller D. Huerta-Cepas J. Simonovic M. Roth A. Santos A. Tsafou K.P. et al. STRING v10: Protein-protein interaction networks, integrated over the tree of life Nucleic Acids Res. 2015 43 D447 D452 10.1093/nar/gku1003
Luo Z. Luo W. Li S. Zhao S. Sho T. Xu X. Zhang J. Xu W. Xu J.X. Reactive oxygen species mediated placental oxidative stress, mitochondrial content, and cell cycle progression through mitogen-activated protein kinases in intrauterine growth restricted pigs Reprod. Biol. 2018 18 422 431 10.1016/j.repbio.2018.09.002
Huber K. Mestres-Arenas A. Fajas L. Leal-Esteban L.C. The multifaceted role of cell cycle regulators in the coordination of growth and metabolism FEBS J. 2020 288 3813 3833 10.1111/febs.15586
Marzec M. Kasprzycka M. Lai R. Gladden A.B. Wlodarski P. Tomczak E. Nowell P. Deprimo S.E. Sadis S. Eck S. et al. Mantle cell lymphoma cells express predominantly cyclin D1a isoform and are highly sensitive to selective inhibition of CDK4 kinase activity Blood 2006 108 1744 1750 10.1182/blood-2006-04-016634
Nurse P. Universal control mechanism regulating onset of M-phase Nature 1990 344 503 508 10.1038/344503a0
Sung W.W. Lin Y.M. Wu P.R. Yen H.H. Lai H.W. Su T.C. Huang R.H. Wen C.K. Chen C.Y. Chen C.J. et al. High nuclear/cytoplasmic ratio of Cdk1 expression predicts poor prognosis in colorectal cancer patients BMC Cancer 2014 14 951 10.1186/1471-2407-14-951
Xiong Y. Hannon G.J. Zhang H. Casso D. Kobayashi R. Beach D. p21 is a universal inhibitor of cyclin kinases Nature 1993 366 701 704 10.1038/366701a0
Zimmermann M. Arachchige-Don A.S. Donaldson M.S. Dallapiazza R.F. Cowan C.E. Horne M.C. Elevated cyclin G2 expression intersects with DNA damage checkpoint signaling and is required for a potent G2/M checkpoint arrest response to doxorubicin J. Biol. Chem. 2012 287 22838 22853 10.1074/jbc.M112.376855
Huang Q. Hsueh C.Y. Guo Y. Wu X.F. Li J.Y. Zhou L. Lack of miR-1246 in small extracellular vesicle blunts tumorigenesis of laryngeal carcinoma cells by regulating Cyclin G2 IUBMB Life 2020 72 1491 1503 10.1002/iub.2274
Harris S.L. Levine A.J. The p53 pathway: Positive and negative feedback loops Oncogene 2005 24 2899 2908 10.1038/sj.onc.1208615
Karimian A. Ahmadi Y. Yousefi B. Multiple functions of p21 in cell cycle, apoptosis and transcriptional regulation after DNA damage DNA Repair 2016 42 63 71 10.1016/j.dnarep.2016.04.008
Bomzon A. Holt S. Moore K. Bile acids, oxidative stress, and renal function in biliary obstruction Semin. Nephrol. 1997 17 549 562
Rolo A.P. Oliveira P.J. Moreno A.J.M. Palmeira C.M. Bile acids affect liver mitochondrial bioenergetics: Possible relevance for cholestasis therapy Toxicol. Sci. 2000 57 177 185 10.1093/toxsci/57.1.177
Palmeira C.M. Rolo A.P. Mitochondrially-mediated toxicity of bile acids Toxicology 2004 203 1 15 10.1016/j.tox.2004.06.001 15363577
Abrigo J. Olguín H. Gutierrez D. Tacchi F. Arrese M. Cabrera D. Valero-Breton M. Elorza A.A. Simon F. Cabello-Verrugio C. Bile acids induce alterations in mitochondrial function in skeletal muscle fibers Antioxidants 2022 11 1706 10.3390/antiox11091706 36139784
Spivey J.R. Bronk S.F. Gores G.J. Glycochenodeoxycholate-induced lethal hepatocellular injury in rat hepatocytes. Role of ATP depletion and cytosolic free calcium J. Clin. Investig. 1993 92 17 24 10.1172/JCI116546 8325981
Heidari R. Abdoli N. Ommati M.M. Jamshidzadeh A. Niknahad H. Mitochondrial impairment induced by chenodeoxycholic acid: The protective effect of taurine and carnosine supplementation Trends Pharm. Sci. 2018 4 99 108
Detloff S.J. Khan N. Ao M. Movva B. Nair T. Sirajuddin H. Domingue J. Rao M. Sarathy J. The Yin and Yang of bile acid (BA) action on tight junctions (TJ) in colonic epithelia: A putative role for pro-inflammatory cytokine (PiC) FASEB J. 2016 30 1223 1229
Raimondi F. Santoro P. Barone M.V. Pappacoda S. Barretta M.L. Nanayakkara M. Apicella C. Capasso L. Paludetto R. Bile acids modulate tight junction structure and barrier function of Caco-2 monolayers via EGFR activation Am. J. Physiol.-Gastrointest. Liver Physiol. 2008 294 G906 G913 10.1152/ajpgi.00043.2007
Kehrein K. Bonnefoy N. Ott M. Mitochondrial protein synthesis: Efficiency and accuracy Antioxid. Redox Sign. 2013 19 1928 1939 10.1089/ars.2012.4896
Szczepanowska J. Malinska D. Wieckowski M.R. Duszynski J. Effect of mtDNA point mutations on cellular bioenergetics BBA-Bioenerg. 2012 1817 1740 1746 10.1016/j.bbabio.2012.02.028
Lenaz G. Baracca A. Carelli V. D’Aurelio M. Sgarbi G. Solaini G. Bioenergetics of mitochondrial diseases associated with mtDNA mutations BBA-Bioenerg. 2004 1658 89 94 10.1016/j.bbabio.2004.03.013
Hayashi G. Cortopassi G. Oxidative stress in inherited mitochondrial diseases Free Radic. Biol. Med. 2015 88 10 17 10.1016/j.freeradbiomed.2015.05.039
Tao S.Y. Xiong Y. Han D.D. Pi Y. Zhang H.L. Wang J.J. N-(3-oxododecanoyl)-l-homoserine lactone disrupts intestinal epithelial barrier through triggering apoptosis and collapsing extracellular matrix and tight junction J. Cell Physiol. 2021 236 5771 5784 10.1002/jcp.30261
Yang Y. Zong M. Xu W. Zhang Y. Wang B. Yang M. Tao L. Natural pyrethrins induces apoptosis in human hepatocyte cells via Bax- and Bcl-2-mediated mitochondrial pathway Chem. Biol. Interact. 2017 262 38 45 10.1016/j.cbi.2016.12.006
Du C. Fang M. Li Y. Li L. Wang X. Smac, a mitochondrial protein that promotes Cytochrome c—Dependent caspase activation by eliminating IAP inhibition Cell 2000 102 33 42 10.1016/S0092-8674(00)00008-8
Adams J.M. Cory S. Bcl-2-regulated apoptosis: Mechanism and therapeutic potential Curr. Opin. Immunol. 2007 19 488 496 10.1016/j.coi.2007.05.004
Taylor R.C. Cullen S.P. Martin S.J. Apoptosis: Controlled demolition at the cellular level Nat. Rev. Mol. Cell Biol. 2008 9 231 241 10.1038/nrm2312
Lee J. You J. Lee G.S. Hyun S.H. Lee E. Pig Oocytes with a Large Perivitelline Space Matured In Vitro Show Greater Developmental Competence After Parthenogenesis and Somatic Cell Nuclear Transfer Mol. Reprod. Dev. 2013 80 753 762 10.1002/mrd.22205
Yin B.X. Ren H.Y. Cai H. Jiang Y.Q. Zhao S.H. Wang H. Dynamics of cardiomyocyte and muscle stem cell proliferation in pig Exp. Cell Res. 2020 388 111854 10.1016/j.yexcr.2020.111854
Ding H.X. Yang Y.Z. Wei S.L. Spicer L.J. Kenez A. Xu W. Liu Y. Feng T. Influence of N-acetylcysteine on steroidogenesis and gene expression in porcine placental trophoblast cells Theriogenology 2021 161 49 56 10.1016/j.theriogenology.2020.11.005
Zhu L.H. Cai X. Guo Q. Chen X.L. Zhu S.W. Xu J.X. Effect of N-acetyl cysteine on enterocyte apoptosis and intracellular signalling pathways’ response to oxidative stress in weaned piglets Br. J. Nutr. 2013 110 1938 1947 10.1017/S0007114513001608
Shibutani M. Mori T. Miyano T. Miyake M. Removal of O-GlcNAcylation is important for pig preimplantation development J. Reprod. Dev. 2015 61 341 350 10.1262/jrd.2014-173 26004176
Cai L. Wei Z.X. Zhao X.M. Li Y.P. Li X.L. Jiang X.R. Gallic acid mitigates LPS-induced inflammatory response via suppressing NF-kappa B signalling pathway in IPEC-J2 cells J. Anim. Physiol. Anim. Nutr. 2022 106 1000 1008 10.1111/jpn.13612 34288130
Huang S.M. Wu Z.H. Li T.T. Liu C. Han D.D. Tao S.Y. Pi Y. Li N. Wang J.J. Perturbation of the lipid metabolism and intestinal inflammation in growing pigs with low birth weight is associated with the alterations of gut microbiota Sci. Total Environ. 2020 719 137382 10.1016/j.scitotenv.2020.137382 32114228
Radtke J. Geissler S. Schutkowski A. Brandsch C. Kluge H. Duranti M.M. Keller S. Jahreis G. Hirche F. Stangl G.I. Lupin protein isolate versus casein modifies cholesterol excretion and mRNA expression of intestinal sterol transporters in a pig model Nutr. Metab. 2014 11 1 11 10.1186/1743-7075-11-9
Lin M. Zhang B.L. Yu C.N. Li J.L. Zhang L. Sun H. Gao F. Zhou G.H. L-Glutamate supplementation improves small intestinal architecture and enhances the expressions of jejunal mucosa amino acid receptors and transporters in weaning piglets PLoS ONE 2014 9 e111950 10.1371/journal.pone.0111950
WWeller M.M.D.C.A. Alebrante L. Campos P.H.R.F. Saraiva A. Silva B.A.N. Donzele J.L. Oliveira R.F.M. Silva F.F. Gasparino E. Lopes P.S. et al. Effect of heat stress and feeding phosphorus levels on pig electron transport chain gene expression Animal 2013 7 1985 1993 10.1017/S1751731113001535
Jia Y. Song H. Gao G. Cai D. Yang X. Zhao R. Maternal betaine supplementation during gestation enhances expression of mtDNA-encoded genes through D-loop DNA hypomethylation in the skeletal muscle of newborn piglets J. Agric. Food Chem. 2015 63 10152 10160 10.1021/acs.jafc.5b04418