Advancing Neonatal Screening for Pyridoxine-Dependent Epilepsy-ALDH7A1 Through Combined Analysis of 2-OPP, 6-Oxo-Pipecolate and Pipecolate in a Butylated FIA-MS/MS Workflow.
[en] Pyridoxine-dependent epilepsy (PDE) represents a group of rare developmental and epileptic encephalopathies. The most common PDE is caused by biallelic pathogenic variants in ALDH7A1 (PDE-ALDH7A1; OMIM #266100), which encodes α-aminoadipate semialdehyde (α-AASA) dehydrogenase, a key enzyme in lysine catabolism. Affected individuals present with seizures unresponsive to conventional anticonvulsant medications but responsive to high-dose of pyridoxine (vitamin B6). Adjunctive lysine restriction and arginine supplementation have also shown potential in improving neurodevelopmental outcomes. Given the significant benefit of early intervention, PDE-ALDH7A1 is a strong candidate for newborn screening (NBS). However, traditional biomarkers are biochemically unstable at room temperature (α-AASA and piperideine-6-carboxylate) or lack sufficient specificity (pipecolate), limiting their utility for biomarker-based NBS. The recent identification of two novel and stable biomarkers, 2S,6S-/2S,6R-oxopropylpiperidine-2-carboxylate (2-OPP) and 6-oxo-pipecolate (oxo-PIP), offers renewed potential for biochemical NBS. We evaluated the feasibility of incorporating 2-OPP, oxo-PIP, and pipecolate into routine butylated FIA-MS/MS workflows used for biochemical NBS. A total of 9402 dried blood spots (DBS), including nine confirmed PDE-ALDH7A1 patients and 9393 anonymized controls were analyzed using a single multiplex assay. 2-OPP emerged as the most sensitive biomarker, identifying all PDE-ALDH7A1 patients with 100% sensitivity and a positive predictive value (PPV) of 18.4% using a threshold above the 99.5th percentile. Combining elevated 2-OPP (above the 99.5th percentile) with either pipecolate or oxo-PIP (above the 85.0th percentile) as secondary marker detected within the same multiplex FIA-MS/MS assay further improved the PPVs to 60% and 45%, respectively, while maintaining compatibility with butanol-derivatized method. Notably, increasing the 2-OPP threshold above the 99.89th percentile, in combination with either pipecolate or oxo-PIP above the 85.0th percentile resulted in both 100% sensitivity and 100% PPV. This study supports the strong potential of 2-OPP-based neonatal screening for PDE-ALDH7A1 within existing NBS infrastructures. The ability to multiplex 2-OPP, pipecolate and oxo-PIP within a single assay offers a robust, practical, high-throughput and cost-effective approach. These results support the inclusion of PDE-ALDH7A1 in existing biochemical NBS panels. Further prospective studies in larger cohorts are needed to refine cutoffs and confirm clinical performance.
Disciplines :
Pediatrics
Author, co-author :
Donge, Mylène; Department of Pediatric Neurology, Kannerklinik Centre Hospitalier du Luxembourg, L-1210 Luxembourg, Luxembourg
Marie, Sandrine; Biochemical Genetics and Newborn Screening Laboratory, Department of Laboratory Medicine, Cliniques Universitaires Saint-Luc, UCLouvain, B-1200 Brussels, Belgium
Pochet, Amandine; Louvain Centre for Toxicology and Applied Pharmacology, Institut de Recherche Experimentale et Clinique, UCLouvain, B-1200 Brussels, Belgium
Marcelis, Lionel; Laboratory of Paediatric Research and Newborn Screening, Université Libre de Bruxelles, B-1020 Brussels, Belgium
LUIS, Géraldine ; Centre Hospitalier Universitaire de Liège - CHU > > Service de génétique
Boemer, François ; Université de Liège - ULiège > Département de pharmacie > Chimie médicale
Prouteau, Clément ; Department of Medical Genetics, Angers University Hospital, F-49000 Angers, France
Mesli, Samir; Department of Biochemistry, Centre Hospitalier Universitaire de Bordeaux, F-33404 Bordeaux, France
Cuykx, Matthias ; Clinical Chemistry and Newborn Screening Center, UZ Antwerpen, B-2650 Antwerpen, Belgium
Nguyen-Khoa, Thao ; Laboratoire du Centre Régional de Dépistage Néonatal de l'Ile de France, Hôpital Necker-Enfants Malades, AP-HP Centre Université Paris Cité, 161, rue de Sèvres, F-75015 Paris, France ; INSERM U1151, Institut Necker Enfants Malades, F-75015 Paris, France
Guénet, David; Laboratory of Biochemistry, Normandie Université, UNICAEN, CHU of Caen Normandie, F-14000 Caen, France
Empain, Aurélie ; Nutrition and Metabolic Clinic, Brussels University Hospital, Academic Children Hospital Queen Fabiola, Université Libre de Bruxelles, B-1020 Brussels, Belgium
Barth, Magalie; Department of Medical Genetics, Angers University Hospital, F-49000 Angers, France
Dauriat, Benjamin; Medical Genetics and Cytogenetics Department, Limoges Universitary Hospital, F-87000 Limoges, France
Laroche-Raynaud, Cécile; Centre de Compétence des Maladies Héréditaires du Métabolisme, Centre Hospitalier Universitaire de Limoges, F-87000 Limoges, France
De Laet, Corinne; Nutrition and Metabolic Clinic, Brussels University Hospital, Academic Children Hospital Queen Fabiola, Université Libre de Bruxelles, B-1020 Brussels, Belgium
Verloo, Patrick ; Department of Pediatric Neurology, Center for Inherited Metabolic Disorders, University Hospital Ghent, B-9000 Ghent, Belgium
Jonckheere, An I; Centre for Metabolic Diseases, University Hospital Antwerp, University of Antwerp, B-2650 Antwerpen, Belgium
Schiff, Manuel ; Reference Center for Inborn Errors of Metabolism, Necker University Hospital, AP-HP Centre Université Paris Cité, Filière G2M, F-75015 Paris, France ; INSERM UMRS_1163, Institut Imagine, F-75015 Paris, France
Nassogne, Marie-Cécile ; Department of Pediatric Neurology, Cliniques Universitaires Saint-Luc, UCLouvain, B-1200 Brussels, Belgium ; Institut des Maladies Rares, Cliniques Universitaires Saint-Luc, UCLouvain, B-1200 Brussels, Belgium
Dewulf, Joseph P ; Biochemical Genetics and Newborn Screening Laboratory, Department of Laboratory Medicine, Cliniques Universitaires Saint-Luc, UCLouvain, B-1200 Brussels, Belgium ; Louvain Centre for Toxicology and Applied Pharmacology, Institut de Recherche Experimentale et Clinique, UCLouvain, B-1200 Brussels, Belgium ; Institut des Maladies Rares, Cliniques Universitaires Saint-Luc, UCLouvain, B-1200 Brussels, Belgium
Advancing Neonatal Screening for Pyridoxine-Dependent Epilepsy-ALDH7A1 Through Combined Analysis of 2-OPP, 6-Oxo-Pipecolate and Pipecolate in a Butylated FIA-MS/MS Workflow.
UCL Saint-Luc - Cliniques Universitaires Saint-Luc Fondation Saint Luc
Funding text :
Funding for the BUSARD study was provided to J.P.D. by the “Fonds de Recherche Clinique” of the Cliniques universitaires Saint-Luc, (“Crédits de recherche—starting grant”), and toM.C.N. by the “Fondation Saint Luc”. J.P.D. is a “Specialiste post-doctorant” of the F.N.R.S.
Basura G.J. Hagland S.P. Wiltse A.M. Gospe S.M. Jr. Clinical features and the management of pyridoxine-dependent and pyridoxine-responsive seizures: Review of 63 North American cases submitted to a patient registry Eur. J. Pediatr. 2009 168 697 704 10.1007/s00431-008-0823-x
Mills P.B. Struys E. Jakobs C. Plecko B. Baxter P. Baumgartner M. Willemsen M.A. Omran H. Tacke U. Uhlenberg B. et al. Mutations in antiquitin in individuals with pyridoxine-dependent seizures Nat. Med. 2006 12 307 309 10.1038/nm1366
Plecko B. Paul K. Paschke E. Stoeckler-Ipsiroglu S. Struys E. Jakobs C. Hartmann H. Luecke T. di Capua M. Korenke C. et al. Biochemical and molecular characterization of 18 patients with pyridoxine-dependent epilepsy and mutations of the antiquitin (ALDH7A1) gene Hum. Mutat. 2007 28 19 26 10.1002/humu.20433
Bok L.A. Struys E. Willemsen M.A. Been J.V. Jakobs C. Pyridoxine-dependent seizures in Dutch patients: Diagnosis by elevated urinary alpha-aminoadipic semialdehyde levels Arch. Dis. Child. 2007 92 687 689 10.1136/adc.2006.103192 17088338
Struys E.A. Bok L.A. Emal D. Houterman S. Willemsen M.A. Jakobs C. The measurement of urinary Delta(1)-piperideine-6-carboxylate, the alter ego of alpha-aminoadipic semialdehyde, in Antiquitin deficiency J. Inherit. Metab. Dis. 2012 35 909 916 10.1007/s10545-011-9443-0 22249334
Sadilkova K. Gospe S.M. Jr. Hahn S.H. Simultaneous determination of alpha-aminoadipic semialdehyde, piperideine-6-carboxylate and pipecolic acid by LC-MS/MS for pyridoxine-dependent seizures and folinic acid-responsive seizures J. Neurosci. Methods 2009 184 136 141 10.1016/j.jneumeth.2009.07.019 19631689
Plecko B. Hikel C. Korenke G.C. Schmitt B. Baumgartner M. Baumeister F. Jakobs C. Struys E. Erwa W. Stockler-Ipsiroglu S. Pipecolic acid as a diagnostic marker of pyridoxine-dependent epilepsy Neuropediatrics 2005 36 200 205 10.1055/s-2005-865727
Plecko B. Stockler-Ipsiroglu S. Paschke E. Erwa W. Struys E.A. Jakobs C. Pipecolic acid elevation in plasma and cerebrospinal fluid of two patients with pyridoxine-dependent epilepsy Ann. Neurol. 2000 48 121 125 10.1002/1531-8249(200007)48:1<121::AID-ANA20>3.0.CO;2-V 10894227
Kawasaki H. Hori T. Nakajima M. Takeshita K. Plasma levels of pipecolic acid in patients with chronic liver disease Hepatology 1988 8 286 289 10.1002/hep.1840080216
Peduto A. Baumgartner M.R. Verhoeven N.M. Rabier D. Spada M. Nassogne M.C. Poll-The B.T. Bonetti G. Jakobs C. Saudubray J.M. Hyperpipecolic acidaemia: A diagnostic tool for peroxisomal disorders Mol. Genet. Metab. 2004 82 224 230 10.1016/j.ymgme.2004.04.010
Houten S.M. Te Brinke H. Denis S. Ruiter J.P. Knegt A.C. de Klerk J.B. Augoustides-Savvopoulou P. Haberle J. Baumgartner M.R. Coskun T. et al. Genetic basis of hyperlysinemia Orphanet J. Rare Dis. 2013 8 57 10.1186/1750-1172-8-57
Bok L.A. Halbertsma F.J. Houterman S. Wevers R.A. Vreeswijk C. Jakobs C. Struys E. Van Der Hoeven J.H. Sival D.A. Willemsen M.A. Long-term outcome in pyridoxine-dependent epilepsy Dev. Med. Child Neurol. 2012 54 849 854 10.1111/j.1469-8749.2012.04347.x 22804844
Coughlin C.R. Tseng L.A. Bok L.A. Hartmann H. Footitt E. Striano P. Tabarki B.M. Lunsing R.J. Stockler-Ipsiroglu S. Gordon S. et al. Association Between Lysine Reduction Therapies and Cognitive Outcomes in Patients With Pyridoxine-Dependent Epilepsy Neurology 2022 99 e2627 e2636 10.1212/WNL.0000000000201222
Coughlin C.R. II van Karnebeek C.D. Al-Hertani W. Shuen A.Y. Jaggumantri S. Jack R.M. Gaughan S. Burns C. Mirsky D.M. Gallagher R.C. et al. Triple therapy with pyridoxine, arginine supplementation and dietary lysine restriction in pyridoxine-dependent epilepsy: Neurodevelopmental outcome Mol. Genet. Metab. 2015 116 35 43 10.1016/j.ymgme.2015.05.011
Mahajnah M. Corderio D. Austin V. Herd S. Mutch C. Carter M. Struys E. Mercimek-Mahmutoglu S. A Prospective Case Study of the Safety and Efficacy of Lysine-Restricted Diet and Arginine Supplementation Therapy in a Patient With Pyridoxine-Dependent Epilepsy Caused by Mutations in ALDH7A1 Pediatr. Neurol. 2016 60 60 65 10.1016/j.pediatrneurol.2016.03.008
Mercimek-Mahmutoglu S. Cordeiro D. Cruz V. Hyland K. Struys E.A. Kyriakopoulou L. Mamak E. Novel therapy for pyridoxine dependent epilepsy due to ALDH7A1 genetic defect: L-arginine supplementation alternative to lysine-restricted diet Eur. J. Paediatr. Neurol. 2014 18 741 746 10.1016/j.ejpn.2014.07.001
van Karnebeek C.D. Hartmann H. Jaggumantri S. Bok L.A. Cheng B. Connolly M. Coughlin C.R. 2nd Das A.M. Gospe S.M. Jr. Jakobs C. et al. Lysine restricted diet for pyridoxine-dependent epilepsy: First evidence and future trials Mol. Genet. Metab. 2012 107 335 344 10.1016/j.ymgme.2012.09.006 23022070
Yuzyuk T. Thomas A. Viau K. Liu A. De Biase I. Botto L.D. Pasquali M. Longo N. Effect of dietary lysine restriction and arginine supplementation in two patients with pyridoxine-dependent epilepsy Mol. Genet. Metab. 2016 118 167 172 10.1016/j.ymgme.2016.04.015
Al Teneiji A. Bruun T.U. Cordeiro D. Patel J. Inbar-Feigenberg M. Weiss S. Struys E. Mercimek-Mahmutoglu S. Phenotype, biochemical features, genotype and treatment outcome of pyridoxine-dependent epilepsy Metab. Brain Dis. 2017 32 443 451 10.1007/s11011-016-9933-8
Falsaperla R. Vari M.S. Toldo I. Murgia A. Sartori S. Vecchi M. Suppiej A. Burlina A. Mastrangelo M. Leuzzi V. et al. Pyridoxine-dependent epilepsies: An observational study on clinical, diagnostic, therapeutic and prognostic features in a pediatric cohort Metab. Brain Dis. 2018 33 261 269 10.1007/s11011-017-0150-x 29178011
van Karnebeek C.D. Tiebout S.A. Niermeijer J. Poll-The B.T. Ghani A. Coughlin C.R. 2nd Van Hove J.L. Richter J.W. Christen H.J. Gallagher R. et al. Pyridoxine-Dependent Epilepsy: An Expanding Clinical Spectrum Pediatr. Neurol. 2016 59 6 12 10.1016/j.pediatrneurol.2015.12.013
Mills P.B. Footitt E.J. Mills K.A. Tuschl K. Aylett S. Varadkar S. Hemingway C. Marlow N. Rennie J. Baxter P. et al. Genotypic and phenotypic spectrum of pyridoxine-dependent epilepsy (ALDH7A1 deficiency) Brain 2010 133 2148 2159 10.1093/brain/awq143
Mercimek-Mahmutoglu S. Horvath G.A. Coulter-Mackie M. Nelson T. Waters P.J. Sargent M. Struys E. Jakobs C. Stockler-Ipsiroglu S. Connolly M.B. Profound neonatal hypoglycemia and lactic acidosis caused by pyridoxine-dependent epilepsy Pediatrics 2012 129 e1368 e1372 10.1542/peds.2011-0123
Dowa Y. Shiihara T. Akiyama T. Hasegawa K. Inoue F. Watanabe M. A case of pyridoxine-dependent epilepsy with novel ALDH7A1 mutations Oxf. Med. Case Rep. 2020 2020 omaa008 10.1093/omcr/omaa008 32395249
Coughlin C.R. 2nd Tseng L.A. van Karnebeek C.D.M. A case for newborn screening for pyridoxine-dependent epilepsy Mol. Case Stud. 2022 8 a006197 10.1101/mcs.a006197 35217564
Hess-Homeier D.L. Cunniff C. Grinspan Z.M. Priorities for Newborn Screening of Genetic Epilepsy Pediatr. Neurol. 2019 101 83 85 10.1016/j.pediatrneurol.2019.07.009
Wempe M.F. Kumar A. Kumar V. Choi Y.J. Swanson M.A. Friederich M.W. Hyland K. Yue W.W. Van Hove J.L.K. Coughlin C.R. 2nd Identification of a novel biomarker for pyridoxine-dependent epilepsy: Implications for newborn screening J. Inherit. Metab. Dis. 2019 42 565 574 10.1002/jimd.12059
Jung S. Tran N.T. Gospe S.M. Jr. Hahn S.H. Preliminary investigation of the use of newborn dried blood spots for screening pyridoxine-dependent epilepsy by LC-MS/MS Mol. Genet. Metab. 2013 110 237 240 10.1016/j.ymgme.2013.07.017
Mathew E.M. Moorkoth S. Lewis L. Rao P. Biomarker Profiling for Pyridoxine Dependent Epilepsy in Dried Blood Spots by HILIC-ESI-MS Int. J. Anal. Chem. 2018 2018 2583215 10.1155/2018/2583215
Engelke U.F. van Outersterp R.E. Merx J. van Geenen F.A. van Rooij A. Berden G. Huigen M.C. Kluijtmans L.A. Peters T.M. Al-Shekaili H.H. et al. Untargeted metabolomics and infrared ion spectroscopy identify biomarkers for pyridoxine-dependent epilepsy J. Clin. Investig. 2021 131 e148272 10.1172/JCI148272 34138754
Damiano R. Della Bona M. Procopio E. Guerrini R. Bettiol A. la Marca G. Inclusion of pyridoxine dependent epilepsy in expanded newborn screening programs by tandem mass spectrometry: Set up of first and second tier tests Clin. Chem. Lab. Med. 2025 63 1344 1353 10.1515/cclm-2024-1230
Pauly K. Woontner M. Abdenur J.E. Chaudhari B.P. Gosselin R. Kripps K.A. Thomas J.A. Wempe M.F. Gospe S.M. Jr. Coughlin C.R. 2nd Feasibility of newborn screening for pyridoxine-dependent epilepsy Mol. Genet. Metab. 2025 144 109002 10.1016/j.ymgme.2024.109002 39729892
Dewulf J.P. Chevalier N. Marie S. Veiga-da-Cunha M. DBS are suitable for 1,5-anhydroglucitol monitoring in GSD1b and G6PC3-deficient patients taking SGLT2 inhibitors to treat neutropenia Mol. Genet. Metab. 2023 140 107712 10.1016/j.ymgme.2023.107712 38353183
Trinh M.U. Blake J. Harrison J.R. Gerace R. Ranieri E. Fletcher J.M. Johnson D.W. Quantification of glutamine in dried blood spots and plasma by tandem mass spectrometry for the biochemical diagnosis and monitoring of ornithine transcarbamylase deficiency Clin. Chem. 2003 49 681 684 10.1373/49.4.681 12651832
Li X. Ding Y. Liu Y. Ma Y. Song J. Wang Q. Yang Y. Five Chinese patients with 5-oxoprolinuria due to glutathione synthetase and 5-oxoprolinase deficiencies Brain Dev. 2015 37 952 959 10.1016/j.braindev.2015.03.005
Mills P.B. Footitt E.J. Ceyhan S. Waters P.J. Jakobs C. Clayton P.T. Struys E.A. Urinary AASA excretion is elevated in patients with molybdenum cofactor deficiency and isolated sulphite oxidase deficiency J. Inherit. Metab. Dis. 2012 35 1031 1036 10.1007/s10545-012-9466-1