[en] Greenland Ice Sheet
—K. Poinar, J. E. Box, T. L. Mote, X. Fettweis, B. D. Loomis, B. E. Smith, B. C. Medley, K. D. Mankoff, T. G. Askjaer, J. H. Scheller, R. S. Fausto, and M. Tedesco
The Greenland Ice Sheet loses mass when the sum of surface melt, surface water vapor flux, submarine melt, and discharge of solid ice exceeds the accumulated snowfall and rainfall. Net mass loss has occurred annually since the 1990s (Mouginot et al. 2019; Mankoff et al. 2021). Three independent estimates of the mass balance of the ice sheet over the 2024 mass balance year (1 September 2023 to 31 August 2024) are presented: input–output-derived mass balance of −76±48 Gt, gravity-derived mass balance of −55±35 Gt, and elevation-derived mass balance of −98±63 Gt. These three independent values agree within measurement uncertainties. All three measurements indicate that the Greenland Ice Sheet lost mass; however, the loss was 50%−80% less than the 2002 − 23 annual average.
Research Center/Unit :
SPHERES - ULiège
Disciplines :
Earth sciences & physical geography
Author, co-author :
Thoman, R. L.; International Arctic Research Center, University of Alaska Fairbanks, Fairbanks, Alaska
Moon, T. A.; National Snow and Ice Data Center, Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, Colorado
Druckenmiller, M. L.; National Snow and Ice Data Center, Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, Colorado
Askjaer, Thomas G.; Danish Meteorological Institute, Copenhagen, Denmark
Ballinger, Thomas J.; International Arctic Research Center, University of Alaska Fairbanks, Fairbanks, Alaska
Bhatt, Uma S.; Geophysical Institute, University of Alaska Fairbanks, Fairbanks, Alaska
Berner, Logan T.; School of Informatics, Computing, and Cyber Systems, Northern Arizona University, Flagstaff, Arizona
Bernhard, Germar H.; Biospherical Instruments Inc., San Diego, California
Bigalke, Siiri; Department of Geography, Portland State University, Portland, Oregon
Bjerke, Jarle W.; Norwegian Institute for Nature Research, Trondheim, Norway, FRAM – High North Research Centre for Climate and the Environment, Tromsø, Norway
Bliss, Angela; NASA Goddard Space Flight Center, Greenbelt, Maryland
Box, Jason E.; Geological Survey of Denmark and Greenland (GEUS), Copenhagen, Denmark
Brady, Mike; Climate Research Division, Environment and Climate Change Canada, Toronto, Canada
Hanna, Edward; Department of Geography and Lincoln Climate Research Group, Lincoln, United Kingdom
Hendricks, Stefan; Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
Howell, Stephen; Climate Research Division, Environment and Climate Change Canada, Toronto, Canada
Ialongo, Iolanda; Finnish Meteorological Institute, Helsinki, Finland
Isaksen, Ketil; Norwegian Meteorological Institute, Oslo, Norway
Jia, Gensuo; Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China
Johnsen, Bjørn; Norwegian Radiation and Nuclear Safety Authority, Østerås, Norway
Kaleschke, Lars; Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
Kim, Seong-Joong; Korea Polar Research Institute, Incheon, South Korea
Labe, Zachary M.; Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey
Lader, Rick; International Arctic Research Center, University of Alaska Fairbanks, Fairbanks, Alaska
Lakkala, Kaisa; Finnish Meteorological Institute, Sodankylä, Finland
Lara, Mark J.; Department of Plant Biology, University of Illinois, Urbana, Illinois, Department of Geography, University of Illinois, Urbana, Illinois
Lee, Simon H.; School of Earth and Environmental Sciences, University of St Andrews, St Andrews, United Kingdom
Loomis, Bryant D.; NASA Goddard Space Flight Center, Greenbelt, Maryland
Luojus, Kari; Arctic Research Centre, Finnish Meteorological Institute, Helsinki, Finland
Macander, Matthew J.; Alaska Biological Research, Inc., Fairbanks, Alaska
Magnússon, Rúna Í.; Plant Ecology and Nature Conservation Group, Wageningen University & Research, Wageningen, Netherlands
Mankoff, Ken D.; Business Integra, New York, New York, NASA Goddard Institute for Space Studies, New York, New York
McClelland, James W.; Marine Biological Laboratory, Woods Hole, Massachusetts
Medley, Brooke; Cryospheric Sciences Laboratory, NASA Goddard Space Flight Center, Greenbelt, Maryland
Meier, Walter N.; National Snow and Ice Data Center, Cooperative Institute for Research in Environment Sciences, University of Colorado, Boulder, Colorado
Montesano, Paul M.; NASA Goddard Space Flight Center, Greenbelt, Maryland
Mote, Thomas L.; University of Georgia, Athens, Georgia
Motrøen Gjelten, Herdis; Norwegian Meteorological Institute, Oslo, Norway
Mudryk, Lawrence; Climate Research Division, Environment and Climate Change Canada, Toronto, Canada
Neigh, Christopher S. R.; NASA Goddard Space Flight Center, Greenbelt, Maryland
Nyland, Kelsey E.; George Washington University, Washington, DC
Overland, James E.; NOAA/OAR Pacific Marine Environmental Laboratory, Seattle, Washington
Perovich, Donald K.; Dartmouth College, Hanover, New Hampshire
Petty, Alek; NASA Goddard Space Flight Center, Greenbelt, Maryland
Phoenix, Gareth K.; School of Biosciences, University of Sheffield, Sheffield, United Kingdom
Poinar, Kristin; University at Buffalo, Buffalo, New York
Ricker, Robert; NORCE Norwegian Research Centre, Tromsø, Norway
Romanovsky, Vladimir E.; Geophysical Institute, University of Alaska Fairbanks, Fairbanks, Alaska
Scheller, Johan H.; Department of Ecoscience, Arctic Research Centre Aarhus University, Roskilde, Denmark
Serreze, Mark C.; National Snow and Ice Data Center, Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, Colorado
Shiklomanov, Alexander I.; University of New Hampshire, Durham, New Hampshire, Arctic and Antarctic Research Institute, St. Petersburg, Russia
Shiklomanov, Nikolay I.; George Washington University, Washington, DC
Smith, Benjamin E.; Polar Science Center, Applied Physics Laboratory, University of Washington, Seattle, Washington
Spencer, Robert G. M.; Florida State University, Tallahassee, Florida
Streletskiy, Dmitry A.; George Washington University, Washington, DC
Suslova, Anya; Woodwell Climate Research Center, Falmouth, Massachusetts
Svendby, Tove; The Climate and Environmental Research Institute NILU, Kjeller, Norway
Tank, Suzanne E.; University of Alberta, Edmonton, Canada
Tian-Kunze, Xiangshan; Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
Tedesco, Marco; Lamont-Doherty Earth Observatory, Columbia University, Palisades, New York
Timmermans, Mary-Louise; Yale University, New Haven, Connecticut
Tømmervik, Hans; Norwegian Institute for Nature Research, Trondheim, Norway, FRAM – High North Research Centre for Climate and the Environment, Tromsø, Norway
Tretiakov, Mikhail; Arctic and Antarctic Research Institute, St. Petersburg, Russia
Waigl, Christine F.; Geophysical Institute, University of Alaska Fairbanks, Fairbanks, Alaska
Walker, Donald (Skip) A.; Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, Alaska
Walsh, John E.; International Arctic Research Center, University of Alaska Fairbanks, Fairbanks, Alaska
Wang, Muyin; NOAA/OAR Pacific Marine Environmental Laboratory, Seattle, Washington, Cooperative Institute for Climate, Ocean, and Ecosystem Studies, University of Washington, Seattle, Washington
Webster, Melinda; Polar Science Center, Applied Physics Laboratory, University of Washington, Seattle, Washington
Yang, Dedi; Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee
Zolkos, Scott; Woodwell Climate Research Center, Falmouth, Massachusetts
AghaKouchak, A., and Coauthors, 2020: Climate extremes and compound hazards in a warming world. Annu. Rev. Earth Planet. Sci., 48, 519–548, https://doi.org/10.1146/an-nurev-earth-071719-055228.
Arctic Council, 2024: An archipelago in transformation: Climate scientist Ketil Isaksen on record-breaking changes on Svalbard. Arctic Council, accessed 13 February 2025, https://arctic-coun- cil.org/news/an-archipelago-in-transformation-climate-scien- tist-ketil-isaksen-on-record-breaking-changes-on-svalbard/.
Baldwin, M. P., and Coauthors, 2021: Sudden stratospheric warmings. Rev. Geophys., 59, e2020RG000708, https://doi.org/10.1029/2020RG000708.
Barrett, A. P., J. C. Stroeve, and M. C. Serreze, 2020: Arctic Ocean precipitation from atmospheric reanalyses and comparisons with North Pole drifting stations. J. Geophys. Res. Oceans, 125, e2019JC015415, https://doi.org/10.1029/2019JC015415.
Becker, A., P. Finger, A. Meyer-Christoffer, B. Rudolf, K. Schamm, U. Schneider, and M. Ziese, 2013: A description of the global land-surface precipitation data products of the Global Precipitation Climatology Centre with sample applications including centennial (trend) analysis from 1901–present. Earth Syst. Sci. Data, 5, 71–99, https://doi.org/10.5194/essd-5-71-2013.
Benestad, R., and Coauthors, 2023: Extreme weather and climate events in 2022 [in “State of the Climate in 2022”]. Bull. Amer. Meteor. Soc., 104 (8), S15–S17, https://doi.org/10.1175/BAMS-D-23-0079.1.
Berner, L. T., J. J. Assmann, S. Normand, and S. J. Goetz, 2023: ‘Land- satTS’: an R package to facilitate retrieval, cleaning, cross-calibration, and phenological modeling of Landsat time series data. Ecography, 2023, e06768, https://doi.org/10.1111/ecog.06768.
Bernhard, G., and Coauthors, 2015: Comparison of OMI UV observations with ground-based measurements at high northern latitudes. Atmos. Chem. Phys., 15, 7391–7412, https://doi.org/10.5194/acp-15-7391-2015.
Bhartia, P. K., and C. W. Wellemeyer, 2002: TOMS-V8 total O3 algorithm. OMI Algorithm Theoretical Basis Document Volume II. NASA Goddard Space Flight Center Tech. Doc. ATBD-OMI-02, 91 pp., https://eospso.gsfc.nasa.gov/sites/default/files/atbd/ ATBD-OMI-02.pdf.
Bigalke, S., and J. E. Walsh, 2022: Future changes of snow in Alaska and the Arctic under stabilized global warming scenarios. Atmosphere, 13, 541, https://doi.org/10.3390/atmos13040541.
Box, J. E., and Coauthors, 2019: Key indicators of Arctic climate change: 1971–2017. Environ. Res. Lett., 14, 045010, https://doi.org/10.1088/1748-9326/aafc1b.
Box, J. E., and Coauthors, 2021: Recent developments in Arctic climate observation indicators. AMAP Arctic Climate Change Update 2021: Key Trends and Impacts, Arctic Monitoring and Assessment Programme, 7–29, https://www.amap.no/documents/ doc/amap-arctic-climate-change-update-2021-key-trends- and-impacts/3594.
Brown, R., and Coauthors, 2017: Arctic terrestrial snow cover. Snow, Water, Ice and Permafrost in the Arctic (SWIPA) 2017, Arctic Monitoring and Assessment Programme (AMAP), 25– 64, https://www.amap.no/documents/doc/snow-water-ice- and-permafrost-in-the-arctic-swipa-2017/1610.
Cheng, V. Y. S., F. Wu, M. Beauchemin, and L. Chisholm, 2024: Canada [in “State of the Climate in 2023”]. Bull. Amer. Meteor. Soc., 105 (8), S380–S382, https://doi.org/10.1175/2024BAMSSta-teoftheClimate_Chapter7.1.
CIFFC, 2025: Canadian Interagency Forest Fire Centre. Accessed 5 February 2025, https://ciffc.net/.
Cohen, J., and Coauthors, 2020: Divergent consensuses on Arctic amplification influence on midlatitude severe winter weather. Nat. Climate Change, 10, 20–29, https://doi.org/10.1038/s41558-019-0662-y.
Colgan, W., and Coauthors, 2015: Hybrid glacier Inventory, Gravimetry and Altimetry (HIGA) mass balance product for Greenland and the Canadian Arctic. Remote Sens. Environ., 168, 24–39, https://doi.org/10.1016/j.rse.2015.06.016.
Cook, A. J., J. Dawson, S. E. L. Howell, J. E. Holloway, and M. Brady, 2024: Sea ice choke points reduce the length of the shipping season in the Northwest Passage. Commun. Earth Environ., 5, 362, https://doi.org/10.1038/s43247-024-01477-6.
Crawford, A. D., and M. C. Serreze, 2016: Does the summer Arctic frontal zone influence Arctic Ocean cyclone activity? J. Climate, 29, 4977–4993, https://doi.org/10.1175/JCLI-D-15-0755.1.
Crawford, C. J., and Coauthors, 2023: The 50-year Landsat collection 2 archive. Sci. Remote Sens., 8, 100103, https://doi.org/10.1016/j.srs.2023.100103.
Dai, A., D. Luo, M. Song, and J. Liu, 2019: Arctic amplification is caused by sea-ice loss under increasing CO2. Nat. Commun., 10, 121, https://doi.org/10.1038/s41467-018-07954-9.
Decharme, B., A. Barbu, and S. R. Buarque, 2024: Crocus-ERA5 daily snow product over the Northern Hemisphere at 0.25° resolution, 2023v2. Zenodo, accessed 3 September 2024, https://doi.org/10.5281/zenodo.14513248.
Delhasse, A., E. Hanna, C. Kittel, and X. Fettweis, 2021: Brief communication: CMIP6 does not suggest any atmospheric blocking increase in summer over Greenland by 2100. Int. J. Climatol., 41, 2589–2596, https://doi.org/10.1002/joc.6977.
Derksen, C., and L. Mudryk, 2023: Assessment of Arctic seasonal snow cover rates of change. Cryosphere, 17, 1431–1443, https://doi.org/10.5194/tc-17-1431-2023.
Didan, K., 2021a: MODIS/Terra vegetation indices 16-day L3 global 500m SIN grid V061. Accessed 19 May 2025, https://doi.org/10.5067/MODIS/MOD13A1.061.
Didan, K., 2021b: MODIS/Aqua vegetation indices 16-day L3 global 500m SIN grid V061. Accessed 19 May 2025, https://doi.org/10.5067/MODIS/MYD13A1.061.
Dou, T., and Coauthors, 2021: Trends and spatial variation in rain- on-snow events over the Arctic Ocean during the early melt season. Cryosphere, 15, 883–895, https://doi.org/10.5194/tc-15-883-2021.
Durocher, M., A. I. Requena, D. H. Burn, and J. Pellerin, 2019: Analysis of trends in annual streamflow to the Arctic Ocean. Hydrol. Processes, 33, 1143–1151, https://doi.org/10.1002/hyp.13392.
ESA, 2023: European Space Agency SMOS-CryoSat L4 sea ice thickness, version 206. Accessed 1 September 2024, https://doi.org/10.57780/sm1-4f787c3.
Fausto, R. S., and Coauthors, 2021: Programme for Monitoring of the Greenland Ice Sheet (PROMICE) automatic weather station data. Earth Syst. Sci. Data, 13, 3819–3845, https://doi.org/10.5194/essd-13-3819-2021.
Fetterer, F., K. Knowles, W. N. Meier, M. Savoie, and A. K. Windnagel, 2017: Sea Ice Index, version 3 (updated daily). National Snow and Ice Data Center, accessed 4 October 2024, https://doi.org/10.7265/N5K072F8.
Fettweis, X., and Coauthors, 2020: GrSMBMIP: Intercomparison of the modelled 1980–2012 surface mass balance over the Greenland Ice Sheet. Cryosphere, 14, 3935–3958, https://doi.org/10.5194/tc-14-3935-2020.
Fol, M., B. Tremblay, S., Pfirman, R. Newton, S. Howell, and J.-F. Lemieux, 2025: Revisiting the Last Ice Area projections from a high-resolution Global Earth System Model. Commun. Earth Environ., 6, 46, https://doi.org/10.1038/s43247-025-02034-5
Gardner, A. S., N.-J. Schlegel, and E. Larour, 2023: Glacier Energy and Mass Balance (GEMB): A model of firn processes for cryosphere research. Geosci. Model Dev., 16, 2277–2302, https:// doi.org/10.5194/gmd-16-2277-2023.
Gelaro, R., and Coauthors, 2017: The Modern-Era Retrospective Analysis for Research and Applications, version 2 (MER- RA-2). J. Climate, 30, 5419–5454, https://doi.org/10.1175/JCLI-D-16-0758.1.
GMAO, 2015: MERRA-2tavg1_2d_lnd_Nx:2d, 1-hourly, time-averaged, single-level, assimilation, land surface diagnostics V5.12.4. Goddard Earth Sciences Data and Information Services Center, accessed 3 August 2024, https://doi.org/10.5067/RK-PHT8KC1Y1T.
Government of Northwest Territories, 2025: NWT Water Monitoring Bulletin—June 9, 2025. Tech. Data, 31 pp., https://www.gov. nt.ca/ecc/en/newsroom/nwt-water-monitoring-bulletin-janu- ary-17-2025.
Hanna, E., T. E. Cropper, R. J. Hall, and J. Cappelen, 2016: Greenland Blocking Index 1851–2015: A regional climate change signal. Int. J. Climatol., 36, 4847–4861, https://doi.org/10.1002/joc.4673.
He, S., H. Drange, T. Furevik, H. Wang, K. Fan, L. S. Graff, and Y. J. Orsolini, 2024: Relative impacts of sea ice loss and atmospheric internal variability on the winter Arctic to East Asian surface air temperature based on large-ensemble simulations with NorESM2. Adv. Atmos. Sci., 41, 1511–1526, https://doi.org/10.1007/s00376-023-3006-9.
Hersbach, H., and Coauthors, 2020: The ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc., 146, 1999–2049, https://doi.org/10.1002/qj.3803.
Hjort, J., D. Streletskiy, G. Doré, Q. Wu, K. Bjella, and M. Luoto, 2022: Impacts of permafrost degradation on infrastructure. Nat. Rev. Earth Environ., 3, 24–38, https://doi.org/10.1038/s43017-021-00247-8.
Holmes, R. M., and Coauthors, 2013: Climate change impacts on the hydrology and biogeochemistry of Arctic rivers. Climactic Change and Global Warming of Inland Waters: Impacts and Mitigation for Ecosystems and Societies, C. R. Goldman, M. Kumagai, and R. D. Robarts, Eds., Wiley, 3–26.
Howell, S. E. L., C. R. Duguay, and T. Markus, 2009: Sea ice conditions and melt season duration variability within the Canadian Arctic Archipelago: 1979–2008. Geophys. Res. Lett., 36, L10502, https://doi.org/10.1029/2009GL037681.
Howell, S. E. L., C. R. Duguay, T. Markus, T. Wohlleben, A. Komarov, L. Pizzolato, and C. Derksen, 2013: Recent extreme light sea ice years in the Canadian Arctic Archipelago: 2011 and 2012 eclipse 1998 and 2007. Cryosphere, 7, 1753–1768, https://doi.org/10.5194/tc-7-1753-2013.
Howell, S. E. L., C. R. Duguay, T. Markus, T. Wohlleben, A. Komarov, L. Pizzolato, C. Derksen, D. G. Babb, J. C. Landy, and M. Brady, 2023: Multi-year sea ice conditions in the Northwest Passage: 1968–2020. Atmos.– Ocean, 61, 202–216, https://doi.org/10.1080/07055900.2022.2136061.
Howell, S. E. L., C. R. Duguay, T. Markus, T. Wohlleben, A. Komarov, L. Pizzolato, C. Derksen, D. G. Babb, J. C. Landy, I. A. Glissenaar, K. McNeil, B. Montpetit, and M. Brady, 2024: Sea ice transport and replenishment across and within the Canadian Arctic Archipelago, 2016–2022. Cryosphere, 18, 2321–2333, https://doi.org/10.5194/tc-18-2321-2024.
Huang, B., C. Liu, V. Banzon, E. Freeman, G. Graham, B. Hankins, T. Smith, and H. Zhang, 2021: Improvements of the Daily Optimum Interpolation Sea Surface Temperature (DOISST) version 2.1. J. Climate, 34, 2923–2939, https://doi.org/10.1175/JC-LI-D-20-0166.1.
Isaksen, K., J. Lutz, A. M. Sorensen, O. Godoy, L. Ferrighi, S. Eastwood, and S. Aaboe, 2022: Advances in operational permafrost monitoring on Svalbard and in Norway. Environ. Res. Lett., 17, 095012, https://doi.org/10.1088/1748-9326/ac8e1c.
Ivanova, N., O. M. Johannessen, L. T. Pedersen, and R. T. Tonboe, 2014: Retrieval of Arctic sea ice parameters by satellite passive microwave sensors: A comparison of eleven sea ice concentration algorithms. IEEE Trans. Geosci. Remote Sens., 52, 7233– 7246, https://doi.org/10.1109/TGRS.2014.2310136.
Jahn, A., M. M. Holland, and J. E. Kay, 2024: Projections of an icefree Arctic Ocean. Nat. Rev. Earth Environ., 5, 164–176, https://doi.org/10.1038/s43017-023-00515-9.
Jain, P., and Coauthors, 2024: Drivers and impacts of the record-breaking 2023 wildfire season in Canada. Nat. Commun., 15, 6764, https://doi.org/10.1038/s41467-024-51154-7.
Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437–471, https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.
Karlsson, N. B., and Coauthors, 2021: A first constraint on basal melt-water production of the Greenland ice sheet. Nat Commun., 12, 3461, https://doi.org/10.1038/s41467-021-23739-z.
Kaverin, D., and Coauthors, 2021: Long-term active layer monitoring at CALM sites in the Russian European North. Polar Geogr., 44, 203–216, https://doi.org/10.1080/1088937X.2021.1981476.
Kopec, B., X. Feng, F. A. Michel, and E. Posmentier, 2016: Influence of sea ice on Arctic precipitation. Proc. Natl. Acad. Sci. USA, 113, 46–51, https://doi.org/10.1073/pnas.1504633113.
Lavergne, T. and Coauthors, 2019: Version 2 of the EUMETSAT OSI SAF and ESA CCI sea-ice concentration climate data records, Cryosphere, 13, 49–78, https://doi.org/10.5194/tc-13-49-2019.
Lee, S. H., A. H. Butler, and G. L. Manney, 2025: Two major sudden stratospheric warmings during winter 2023/2024. Weather, 80, 45–53, https://doi.org/10.1002/wea.7656.
L’Heureux, M., A. H. Butler, B. Jha, A. Kumar, and W. Wang, 2010: Unusual extremes in the negative phase of the Arctic Oscillation during 2009. Geophys. Res. Lett., 37, L10704, https://doi.org/10.1029/2010GL043338.
Loeb, N. A., A. Crawford, J. C. Stroeve, and J. Hanesiak, 2022: Extreme precipitation in the eastern Canadian Arctic and Greenland: An evaluation of atmospheric reanalyses. Front. Environ. Sci., 10, 866929, https://doi.org/10.3389/fenvs.2022.866929.
López-Blanco, E., and Coauthors, 2024: Towards an increasingly biased view on Arctic change. Nat. Clim. Chang., 14, 152–155, https://doi.org/10.1038/s41558-023-01903-1.
Luojus, K., and Coauthors, 2022: ESA Snow Climate Change Initiative (Snow_cci): Snow Water Equivalent (SWE) level 3C daily global climate research data package (CRDP) (1979–2020), version 2.0. NERC EDS Centre for Environmental Data Analysis, accessed 3 September 2024, https://doi.org/10.5285/4647c-c9ad3c044439d6c643208d3c494.
Mankoff, K. D., A. Solgaard, W. Colgan, A. P. Ahlstrøm, S. A. Khan, and R. S. Fausto, 2020: Greenland Ice Sheet solid ice discharge from 1986 through March 2020. Earth Syst. Sci. Data, 12, 1367– 1383, https://doi.org/10.5194/essd-12-1367-2020.
Mankoff, K. D., A. Solgaard, W. Colgan, A. P. Ahlstrøm, S. A. Khan, R. S. Fausto, and Coauthors, 2021: Greenland Ice Sheet mass balance from 1840 through next week. Earth Syst. Sci. Data, 13, 5001– 5025, https://doi.org/10.5194/essd-13-5001-2021.
McClelland, J. W., R. M. Holmes, K. H. Dunton, and R. Macdonald, 2012: The Arctic Ocean estuary. Estuaries Coasts, 35, 353–368, https://doi.org/10.1007/s12237-010-9357-3.
McCrystall, M., J. Stroeve, M. C. Serreze, B. C. Forbes, and J. Screen, 2021: New climate models reveal faster and larger increases in Arctic precipitation than previously projected. Nat. Commun., 12, 6765, https://doi.org/10.1038/s41467-021-27031-y.
Medley, B., T. A. Neumann, H. J. Zwally, B. E. Smith, and C. M. Stevens, 2022: Simulations of firn processes over the Greenland and Antarctic ice sheets: 1980–2021. Cryosphere, 16, 3971–4011, https://doi.org/10.5194/tc-16-3971-2022.
Meier, W. N., F. Fetterer, A. K. Windnagel, and J. S. Stewart, 2021a: NOAA/NSIDC climate data record of passive microwave sea ice concentration, version 4. [1982-2021]. National Snow and Ice Data Center, accessed 2 February 2025, https://doi.org/10.7265/efmz-2t65.
Meier, W. N., F. Fetterer, A. K. Windnagel, and J. S. Stewart, 2021b: Near-real-time NOAA/ NSIDC climate data record of passive microwave sea ice concentration, version 2 [1982–2021]. Accessed 2 February 2025, https://doi.org/10.7265/tgam-yv28.
Mekonnen, Z. A., and Coauthors, 2021: Arctic tundra shrubifi- cation: A review of mechanisms and impacts on ecosystem carbon balance. Environ. Res. Lett., 16, 053001, https://doi.org/10.1088/1748-9326/abf28b.
Melling, H., 2002: Sea ice of the northern Canadian Arctic Archipelago. J. Geophys. Res., 107, 3181, https://doi.org/10.1029/2001JC001102.
Meredith, M., and Coauthors, 2019: Polar regions. The Ocean and Cryosphere in a Changing Climate, H.-O. Pörtner et al., Eds., Cambridge University Press, 203–320, https://doi.org/10.1017/9781009157964.005.
Miner, K. R., and Coauthors, 2022: Permafrost carbon emissions in a changing Arctic. Nat. Rev. Earth Environ., 3, 55–67, https://doi.org/10.1038/s43017-021-00230-3.
Mortimer, C., L. Mudryk, C. Derksen, K. Luojus, R. Brown, R. Kelly, and M. Tedesco, 2020: Evaluation of long-term Northern Hemisphere snow water equivalent products. Cryosphere, 14, 1579– 1594, https://doi.org/10.5194/tc-14-1579-2020.
Mote, T., 2007: Greenland surface melt trends 1973–2007: Evidence of a large increase in 2007. Geophys. Res. Lett., 34, L22507, https://doi.org/10.1029/2007GL031976.
Mouginot, J., and Coauthors, 2019: Forty-six years of Greenland Ice Sheet mass balance from 1972 to 2018. Proc. Natl. Acad. Sci. USA, 116, 9239–9244, https://doi.org/10.1073/pnas.1904242116.
Mudryk, L. R., J. Dawson, S. E. L. Howell, C. Derksen, T. A. Zagon, and M. Brady, 2021: Impact of 1, 2 and 4°C of global warming on ship navigation in the Canadian Arctic. Nat. Climate Change, 11, 673–679, https://doi.org/10.1038/s41558-021-01087-6.
Muñoz Sabater, J., 2019: ERA5-Land hourly data from 1950 to present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS), accessed 3 September 2024, https://doi.org/10.24381/cds.e2161bac.
NASA, 2024: Svalbard melts. Accessed 13 February 2024, https:// earthobservatory.nasa.gov/images/153189/svalbard-melts.
Natali, S. M., and Coauthors, 2024: Arctic terrestrial carbon cycling. Arctic Report Card 2024, T. A. Moon, M. L. Druckenmiller, and R. L. Thoman, Eds., NOAA Tech. Rep. OAR ARC 24-11, 8 pp., https://doi.org/10.25923/0GPP-MN10.
Newman, P. A., L. R. Lait, N. A. Kramarova, L. Coy, S. M. Frith, L. D. Oman, and S. S. Dhomse, 2024: Record high March 2024 Arctic total column ozone. Geophys. Res. Lett., 51, e2024GL110924, https://doi.org/10.1029/2024GL110924.
Notz, D., and SIMIP Community, 2020: Arctic sea ice in CMIP6. Geophys. Res. Lett., 47, e2019GL086749, https://doi.org/10.1029/2019GL086749.
Nyland, K. E., N. I. Shiklomanov, D. A. Streletskiy, F. E. Nelson, A. E. Klene, and A. L. Kholodov, 2021: Long-term Circumpolar Active Layer Monitoring (CALM) program observations in Northern Alaskan tundra. Polar Geogr., 44, 167–185, https://doi.org/10.1080/1088937X.2021.1988000.
O’Neill, H. B., S. L. Smith, C. R. Burn, C. Duchesne, and Y. Zhang, 2023: Widespread permafrost degradation and thaw subsidence in northwest Canada. J. Geophys. Res. Earth Surf., 128, e2023JF007262, https://doi.org/10.1029/2023JF007262.
Overland, J. E., 2024: Emergence of Arctic extremes. Climate, 12, 109, https://doi.org/10.3390/cli12080109.
Park, H. J., and J. B. Ahn, 2016: Combined effect of the Arctic Oscillation and the western Pacific pattern on East Asia winter temperature. Climate Dyn., 46, 3205–3221, https://doi.org/10.1007/s00382-015-2763-2.
Parmentier, F.-J. W., and Coauthors, 2024: Rapid ice-wedge collapse and permafrost carbon loss triggered by increased snow depth and surface runoff. Geophys. Res. Let., 51, e2023GL108020, https://doi.org/10.1029/2023GL108020.
Peng, G., W. N. Meier, D. J. Scott, and M. H. Savoie, 2013: A longterm and reproducible passive microwave sea ice concentration data record for climate studies and monitoring. Earth Syst. Sci. Data, 5, 311–318, https://doi.org/10.5194/essd-5-311-2013.
Peterson, B. J., R. M. Holmes, J. W. McClelland, C. J. Vörösmarty, R. B. Lammers, A. I. Shiklomanov, I. A. Shiklomanov, and S. Rahmstorf, 2002: Increasing river discharge to the Arctic Ocean. Science, 298, 2171–2173, https://doi.org/10.1126/science.1077445.
Petty, A. A., N. T. Kurtz, R. Kwok, T. Markus, and T. A. Neumann, 2020: Winter Arctic sea ice thickness from ICESat-2 freeboards. J. Geophys. Res. Oceans, 125, e2019JC015764, https://doi.org/10.1029/2019JC015764.
Petty, A. A., N. T. Kurtz, R. Kwok, T. Markus, T. A. Neumann, N. Keeney, A. Cabaj, P. Kushner, and M. Bagnardi, 2023a: Winter Arctic sea ice thickness from ICESat-2: Upgrades to freeboard and snow loading estimates and an assessment of the first three winters of data collection. Cryosphere, 17, 127–156, https://doi.org/10.5194/tc-17-127-2023.
Petty, A. A., N. T. Kurtz, R. Kwok, T. Markus, T. A. Neumann, N. Keeney, A. Cabaj, P. Kushner,M. Bagnardi, N. Kurtz, R. Kwok, T. Markus, T. A. Neumann, and N. Keeney, 2023b: ICESat-2 L4 monthly gridded sea ice thickness, version 3. NASA National Snow and Ice Data Center Distributed Active Archive Center, accessed 1 September 2024, https://doi.org/10.5067/ZCSU8Y5U1BQW.
Phoenix, G. K., and Coauthors, 2025: Browning events in Arctic ecosystems: Diverse causes with common consequences. PLOS Climate, 4, e0000570, https://doi.org/10.1371/journal.pclm.0000570.
Pinzon, J. E., C. J. Tucker, U. S. Bhatt, G. V. Frost, and M. J. Macander, 2023: Global Vegetation Greenness (NDVI) from AVHRR GIMMS-3G+, 1981-2022. Accessed 19 May 2025, https://doi.org/10.3334/ORNLDAAC/2187.
Polyakov, I. V., T. J. Ballinger, R. Lader, and X. Zhang, 2024: Modulated trends in Arctic surface air temperature extremes as a fingerprint of climate change. J. Climate, 37, 2381–2404, https://doi.org/10.1175/JCLI-D-23-0266.1.
Qian, L., J. Rao, R. Ren, C. Shi, and S. Liu, 2024: Enhanced stratosphere-troposphere and tropics-Arctic couplings in the 2023/24 winter. Commun. Earth Environ., 5, 631, https://doi.org/10.1038/s43247-024-01812-x.
Rawlins, M. A., and Coauthors, 2010: Analysis of the arctic system freshwater cycle intensification: Observations and expectations. J. Climate, 23, 5715–5737, https://doi.org/10.1175/2010JCLI3421.1.
Raynolds, M. K., and Coauthors, 2019: A raster version of the Circumpolar Arctic Vegetation Map (CAVM). Remote Sens. Environ., 232, 111297, https://doi.org/10.1016/j.rse.2019.111297.
Reynolds, R. W., N. A. Rayner, T. M. Smith, D. C. Stokes, and W. Wang, 2002: An improved in situ and satellite SST analysis for climate. J. Climate, 15, 1609–1625, https://doi.org/10.1175/1520-0442(2002)015<1609:AIISAS>2.0.CO;2.
Reynolds, R. W., N. A. Rayner, T. M. Smith, D. C. Stokes, W. Wang, T. M. Smith, C. Liu, D. B. Chelton, K. S. Casey, and M. G. Schlax, 2007: Daily high-resolution-blended analyses for sea surface temperature. J. Climate, 20, 5473–5496, https://doi.org/10.1175/2007JCLI1824.1.
Ricker, R., S. Hendricks, L. Kaleschke, X. Tian-Kunze, J. King, and C. Haas, 2017: A weekly Arctic sea-ice thickness data record from merged CryoSat-2 and SMOS satellite data. Cryosphere, 11, 1607–1623, https://doi.org/10.5194/tc-11-1607-2017.
Robinson, D. A., T. W. Estilow, and NOAA CDR Program, 2012: NOAA Climate Data Record (CDR) of Northern Hemisphere (NH) Snow Cover Extent (SCE), version 1. NOAA National Centers for Environmental Information, accessed 3 September 2024, https://doi.org/10.7289/V5N014G9.
Román, M. O., and Coauthors, 2024: Continuity between NASA MODIS Collection 6.1 and VIIRS Collection 2 land products. Remote Sens. Environ., 302, 113963, https://doi.org/10.1016/j. rse.2023.113963.
Romanovsky, V., and Coauthors, 2017: Changing permafrost and its impacts. Snow, Water, Ice and Permafrost in the Arctic (SWIPA) 2017, Arctic Monitoring and Assessment Program (AMAP), 65–102, https://www.amap.no/documents/doc/snow-water- ice-and-permafrost-in-the-arctic-swipa-2017/1610.
Schneider, U., P. Finger, E. Rustemeier, M. Ziese, and S. Hänsel, 2022: Global precipitation analysis products of the GPCC. 17 pp., https://opendata.dwd.de/climate_environment/GPCC/ PDF/GPCC_intro_products_v2022.pdf.
Schuur, E. A. G., and Coauthors, 2022: Permafrost and climate change: Carbon cycle feedbacks from the warming Arctic. Annu. Rev. Environ. Resour., 47, 343–371, https://doi.org/10.1146/annurev-environ-012220-011847.
Schyberg H., and Coauthors, 2020: Arctic regional reanalysis on single levels from 1991 to present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS), accessed 26 March 2025, https://doi.org/10.24381/cds.713858f6
See, C. R., and Coauthors, 2024: Decadal increases in carbon uptake offset by respiratory losses across northern permafrost ecosystems. Nat. Clim. Chang., 14, 853–862, https://doi. org/10.1038/s41558-024-02057-4.
Serreze, M. C., M. P. Clark, and D. H. Bromwich, 2003: Monitoring precipitation over the Arctic terrestrial drainage system: Data requirements, shortcomings, and applications of atmospheric reanalysis. J. Hydrometeor., 4, 387–407, https://doi. org/10.1175/1525-7541(2003)4<387:MPOTAT>2.0.CO;2.
Serreze, M. C., M. P. Clark, D. H. Bromwich, S. Bigalke, R. Lader, T. J. Ballinger, and J. E. Walsh, 2024: Precipitation [in “State of the Climate in 2023”]. Bull. Amer. Meteor. Soc., 105 (8), S295–S297, https://doi.org/10.1175/ BAMS-D-24-0101.1.
Shrestha, R. R., K. E. Bennett, D. L. Peters, and D. Yang, 2021: Hydrologic extremes in Arctic rivers and regions: Historical variability and future perspectives. Arctic Hydrology, Permafrost and Ecosystems, D. Yang and D. L. Kane, Eds., Springer Nature Switzerland, 187–218, https://doi.org/10.1007/978-3-030- 50930-9_7.
Sigmond, M., J. C. Fyfe, and N. C. Swart, 2018: Ice-free Arctic projections under the Paris Agreement. Nat. Climate Change, 8, 404–408, https://doi.org/10.1038/s41558-018-0124-y.
Smith, B., and Coauthors, 2023: ATLAS/ICESat-2 L3B gridded Antarctic and Arctic land ice height change, version 3. NASA National Snow and Ice Data Center Distributed Active Archive Center, accessed 7 February 2025, https://doi.org/10.5067/ ATLAS/ATL15.003.
Smith, S. L., H. B. O’Neill, K. Isaksen, J. Noetzli, and V. E. Romanovsky, 2022: The changing thermal state of permafrost. Nat. Rev. Earth Environ., 3, 10–23, https://doi.org/10.1038/ s43017-021-00240-1.
Smith, S. L., H. B. O’Neill, K. Isaksen, J. Noetzli, V. E. Romanovsky, V. E. Romanovsky, K. Isaksen, K. Nyland, N. I. Shiklomanov, D. A. Streletskiy, and H. H. Christiansen, 2024a: Permafrost [in “State of the Climate in 2023”]. Bull. Amer. Meteor. Soc., 105 (8), S314–S317, https://doi.org/10.1175/BAMS-D-24-0101.1.
Smith, S. L., H. B. O’Neill, K. Isaksen, J. Noetzli, V. E. Romanovsky, V. E. Romanovsky, K. Isaksen, K. Nyland, N. I. Shiklomanov, D. A. Streletskiy, H. H. Christiansen, C. Duchesne, and H. B. O’Neill, 2024b: Long-term permafrost monitoring in Northern Canada—What have we learned? 12th Int. Conf. on Permafrost, Whitehorse, YT, Canada, International Permafrost Association, 398–404, https://doi.org/10.52381/ ICOP2024.84.1.
Streletskiy, D. A., and Coauthors, 2025: Thawing permafrost is subsiding in the Northern Hemisphere—Review and perspectives. Environ. Res. Lett., 20, 013006, https://doi.org/10.1088/1748- 9326/ada2ff.
Sweeney, A. J., Q. Fu, S. Po-Chedley, H. Wang, and M. Wang, 2023: Internal variability increased Arctic amplification during 1980–2022. Geophys. Res. Lett., 50, e2023GL106060, https:// doi.org/10.1029/2023GL106060.
Tank, S. E., and Coauthors, 2023: Recent trends in the chemistry of major northern rivers signal widespread Arctic change. Nat. Geosci., 16, 789–796, https://doi.org/10.1038/s41561-023- 01247-7.
Tapley, B. D., and Coauthors, 2019: Contributions of GRACE to understanding climate change. Nat. Climate Change, 5, 358–369, https://doi.org/10.1038/s41558-019-0456-2.
Taylor, P. C., and Coauthors, 2022: Process drivers, inter-model spread, and the path forward: A review of amplified Arctic warming. Front. Earth Sci., 9, 758361, https://doi.org/10.3389/ feart.2021.758361.
Thoman, R. L., M. Brubaker, M. Heata, and J. Jeuring, 2024: Summer 2023 weather and climate impacts [in “State of the Climate in 2023”]. Bull. Amer. Meteor. Soc., 105 (8), S293–S294, https://doi.org/10.1175/BAMS-D-24-0101.1.
Thompson, D. W. J., and J. M. Wallace, 2000: Annular modes in the extratropical circulation. Part I: Month-to-month variability. J. Climate, 13, 1000–1016, https://doi.org/10.1175/1520-0442 (2000)013<1000:AMITEC>2.0.CO;2.
Timmermans, M.-L., and Z. M. Labe, 2024: Sea surface temperature. Arctic Report Card 2024, T. A. Moon, M. L. Druckenmiller, and R. L. Thoman, Eds., NOAA Tech. Rep. OAR ARC 24-07, 7 pp., https://doi.org/10.25923/9z96-aq19.
Tretiyakov, M. V., O. V. Muzhdaba, A. A. Piskun, and R. A. Terekhova, 2022: The state of the Roshydromet Hydrological Observation Network in the mouth areas of RFAZ. Water Resour., 49, 796– 807, https://doi.org/10.1134/S0097807822050153.
Tschudi, M., W. N. Meier, J. S. Stewart, C. Fowler, and J. Maslanik, 2019a: EASE-grid sea ice age, version 4. NASA National Snow and Ice Data Center Distributed Active Archive Center, accessed 4 October 2024, https://doi.org/10.5067/UTAV7490FEPB.
Tschudi, M., W. N. Meier, J. S. Stewart, C. Fowler, and J. Maslanik, 2019b: Quicklook Arctic weekly EASE-grid sea ice age, version 1. NASA National Snow and Ice Data Center Distributed Active Archive Center, accessed 4 October 2024, https://doi.org/10.5067/2XXGZY3DUGNQ.
U.S. National Ice Center, 2008: IMS daily Northern Hemisphere snow and ice analysis at 1 km, 4 km, and 24 km resolutions, version 1. National Snow and Ice Data Center, accessed 3 August 2024, https://doi.org/10.7265/N52R3PMC.
Vandecrux, B., and Coauthors, 2023: The historical Greenland Climate Network (GC-Net) curated and augmented level-1 dataset. Earth Syst. Sci. Data, 15, 5467–5489, https://doi. org/10.5194/essd-15-5467-2023.
Wegmann, M., and Coauthors, 2015: Arctic moisture source for Eurasian snow cover variations in autumn. Environ. Res. Lett., 10, 054015, https://doi.org/10.1088/1748-9326/10/5/054015.
Wehrlé, A., J. E. Box, A. M. Anesio, and R. S. Fausto, 2021: Greenland bare-ice albedo from PROMICE automatic weather station measurements and Sentinel-3 satellite observations. GEUS Bull., 47, 5284, https://doi.org/10.34194/geusb.v47.5284.
Williams, R. S., M. I. Hegglin, P. Jöckel, H. Garny, and K. P. Shine, 2024: Air quality and radiative impacts of downward-propagating sudden stratospheric warmings (SSWs). Atmos. Chem. Phys., 24, 1389–1413, https://doi.org/10.5194/acp-24-1389- 2024.
Wolken, G. J., and Coauthors, 2021: Glacier and permafrost hazards. Arctic Report Card 2021, T. A. Moon, M. L. Druckenmiller, and R. L. Thoman, Eds., NOAA Tech. Rep. OAR ARC 21-13, 93– 101, https://doi.org/10.25923/v40r-0956.
Yang, X., and Coauthors, 2020: C3S Arctic regional reanalysis—Full system documentation. Copernicus Climate Change Service (C3S), accessed 26 Mar 2025, https://datastore.copernicus-climate .eu/documents/reanalysis-carra/CARRAFullSystemDocumen- tationFinal.pdf.
Yu, L., and S. Zhong, 2021: Trends in Arctic seasonal and extreme precipitation in recent decades. Theor. Appl. Climatol., 145, 1541–1559, https://doi.org/10.1007/s00704-021-03717-7.
Zhou, S., A. J. Miller, J. Wang, and J. K. Angell, 2001: Trends of NAO and AO and their associations with stratospheric processes. Geophys. Res. Lett., 28, 4107–4110, https://doi. org/10.1029/2001GL013660.
Zhou, W., L. R. Leung, and J. Lu, 2024: Steady threefold Arctic amplification of externally forced warming masked by natural variability. Nat. Geosci., 17, 508–515, https://doi.org/10.1038/ s41561-024-01441-1.
Zhu, X., G. Jia, and X. Xu, 2024: Wildfire emissions offset more permafrost ecosystem carbon sink in the 21st century. Earth’s Future, 12, e2024EF005098, https://doi.org/10.1029/2024EF005098.