[en] We need to adapt crop species and agricultural practices to produce high quantities of quality food for a growing world population, while also reducing the negative impact of agriculture on the environment to meet the targets of the Paris Agreement. It is increasingly recognised that healthy soils are at the heart of this endeavour, sustaining global geochemical cycles and the productivity of most terrestrial ecosystems. This ability of soils to support essential ecosystem services like nutrient cycling arises from diverse communities of soil organisms. Many ecosystem services are a function of how these soil organisms interact with each other, with the aboveground plant species and with the physio‐chemical soil matrix. Here, we argue that multiple ecosystem processes and climate change resilience rely on diverse plant and soil communities with complex interactions among various actors carrying out complementary functions, rather than on individual indicator species on their own. We highlight areas of research which could be expanded to advance our understanding from single‐species studies to the functional complexity of soil food webs and its integration into land management strategies with the aim to improve the resilience and sustainability of essential terrestrial ecosystems and the services they provide to the human population.
Michel, Jennifer ; Université de Liège - ULiège > Département GxABT > Plant Sciences
Balanzategui‐Guijarro, Iñaki; Functional and Evolutionary Ecology, EEZA, CSIC Almería Spain
Cao, Da; Laboratory of Functional Plant Biology, Department of Biology Ghent University Ghent Belgium
Hinsinger, Philippe; UMR eco&Sols Univ Montpellier, CIRAD, INRAE, IRD, L'institut Agro Montpellier Montpellier France
Le Gouis, Jacques; UMR GDEC INRAE, Université Clermont Auvergne Clermont‐Ferrand France
Moya‐Laraño, Jordi; Functional and Evolutionary Ecology, EEZA, CSIC Almería Spain
Sánchez‐Moreno, Sara; Department of the Environment and Agronomy National Centre Institute for Agricultural and Food Research and Technology, INIA‐CSIC Madrid Spain
Symanczik, Sarah; Department of Soil Sciences Research Institute for Organic Agriculture Frick Switzerland
Vanderschuren, Hervé ; Université de Liège - ULiège > Département GxABT > Plant Sciences ; Tropical Crop Improvement Lab, Department of Biosystems KU Leuven Heverlee Belgium
Van Der Straeten, Dominique; Laboratory of Functional Plant Biology, Department of Biology Ghent University Ghent Belgium
Waibel, Matthias; Department of Soil Sciences Research Institute for Organic Agriculture Frick Switzerland
Weinmann, Markus; Faculty of Agricultural Sciences University of Hohenheim Hohenheim Germany
Thonar, Cécile ; Université de Liège - ULiège > Département GxABT > Plant Sciences ; Agroecology Lab, Faculty of Sciences Université Libre de Bruxelles (ULB) Brussels Belgium
Delaplace, Pierre ; Université de Liège - ULiège > Département GxABT > Plant Sciences
SNF - Schweizerischer Nationalfonds zur Förderung der wissenschaftlichen Forschung FWO - Fonds Wetenschappelijk Onderzoek Vlaanderen F.R.S.-FNRS - Fonds de la Recherche Scientifique DLR - Deutsches Zentrum für Luft- und Raumfahrt AEI - Agencia Estatal de Investigación ANR - Agence Nationale de la Recherche
Aguiar-Pulido, V., W. Huang, V. Suarez-Ulloa, T. Cickovski, K. Mathee, and G. Narasimhan. 2016. “Metagenomics, Metatranscriptomics, and Metabolomics Approaches for Microbiome Analysis.” Evolutionary Bioinformatics Online 12: 5–16. https://doi.org/10.4137/EBO.S36436.
Alcolombri, U., R. Pioli, R. Stocker, and D. Berry. 2022. “Single-Cell Stable Isotope Probing in Microbial Ecology.” ISME Communications 2: 55. https://doi.org/10.1038/s43705-022-00142-3.
Awais, M., S. M. Z. A. Naqvi, H. Zhang, et al. 2023. “AI and Machine Learning for Soil Analysis: An Assessment of Sustainable Agricultural Practices.” Bioresources and Bioprocessing 10: 90. https://doi.org/10.1186/s40643-023-00710-y.
Bakki, M., B. Banane, O. Marhane, et al. 2024. “Phosphate Solubilizing Pseudomonas and Bacillus Combined With Rock Phosphates Promoting Tomato Growth and Reducing Bacterial Canker Disease.” Frontiers in Microbiology 15: 1289466. https://doi.org/10.3389/fmicb.2024.1289466.
Bascompte, J. 2009. “Disentangling the Web of Life.” Science 325, no. 5939: 416–419. https://doi.org/10.1126/science.1170749.
Beatty, D. S., L. R. Aoki, O. J. Graham, and B. Yang. 2021. “The Future Is Big-And Small: Remote Sensing Enables Cross-Scale Comparisons of Microbiome Dynamics and Ecological Consequences.” MSystems 6, no. 6: e0110621. https://doi.org/10.1128/mSystems.01106-21.
Bicharanloo, B., M. J. Salomon, T. R. Cavagnaro, et al. 2023. “Arbuscular Mycorrhizae Are Important for Phosphorus Uptake and Root Biomass, and Exudation for Nitrogen Uptake in Tomato Plants Grown Under Variable Water Conditions.” Plant and Soil 490: 325–342. https://doi.org/10.1007/s11104-023-06078-4.
Blanchet, F. G., K. Cazelles, and D. Gravel. 2020. “Co-Occurrence Is Not Evidence of Ecological Interactions.” Ecology Letters 23, no. 7: 1050–1063. https://doi.org/10.1111/ele.13525.
Briones, M. J. I. 2018. “The Serendipitous Value of Soil Fauna in Ecosystem Functioning: The Unexplained Explained.” Frontiers in Environmental Science 6: 149. https://doi.org/10.3389/fenvs.2018.00149.
Buckley, H. L., N. J. Day, B. S. Case, and G. Lear. 2021. “Measuring Change in Biological Communities: Multivariate Analysis Approaches for Temporal Datasets With Low Sample Size.” PeerJ 9: e11096. https://doi.org/10.7717/peerj.11096.
Casey, J. M., C. P. Meyer, F. Morat, S. J. Brandl, S. Planes, and V. Parravicini. 2019. “Reconstructing Hyperdiverse Food Webs: Gut Content Metabarcoding as a Tool to Disentangle Trophic Interactions on Coral Reefs.” Methods in Ecology and Evolution 10: 1157–1170. https://doi.org/10.1111/2041-210X.13206.
Cheng, L., F. L. Booker, C. Tu, et al. 2012. “Arbuscular Mycorrhizal Fungi Increase Organic Carbon Decomposition Under Elevated CO2.” Science 337, no. 6098: 1084–1087. https://doi.org/10.1126/science.1224304.
De Vries, F., E. Thebault, M. Liiri, et al. 2013. “Soil Food Web Properties Explain Ecosystem Services Across European Land Use Systems.” Proceedings of the National Academy of Sciences of the United States of America 110, no. 35: 14296–14301. https://doi.org/10.1073/pnas.1305198110.
Deng, Y., Y. H. Jiang, Y. Yang, Z. He, F. Luo, and J. Zhou. 2012. “Molecular Ecological Network Analyses.” BMC Bioinformatics 13, no. 1: 113. http://www.biomedcentral.com/1471-2105/13/113.
Desirò, A., A. Salvioli, E. Ngonkeu, et al. 2014. “Detection of a Novel Intracellular Microbiome Hosted in Arbuscular Mycorrhizal Fungi.” ISME Journal 8: 257–270. https://doi.org/10.1038/ismej.2013.151.
Deutschmann, I. M., G. Lima-Mendez, A. K. Krabberød, et al. 2021. “Disentangling Environmental Effects in Microbial Association Networks.” Microbiome 9: 232. https://doi.org/10.1186/s40168-021-01141-7.
Dhillon, R., and Q. Moncur. 2023. “Small-Scale Farming: A Review of Challenges and Potential Opportunities Offered by Technological Advancements.” Sustainability 15, no. 21: 15478. https://doi.org/10.3390/su152115478.
Djemiel, C., S. Dequiedt, B. Karimi, et al. 2022. “Potential of Meta-Omics to Provide Modern Microbial Indicators for Monitoring Soil Quality and Securing Food Production.” Frontiers in Microbiology 13: 889788. https://doi.org/10.3389/fmicb.2022.889788.
Dong, F., L. Wang, T. Xu, et al. 2024. “Multi-Omics Analysis of Soil Microbiota and Metabolites in Dryland Wheat Fields Under Different Tillage Methods.” Scientific Reports 14: 24066. https://doi.org/10.1038/s41598-024-74620-0.
Donhauser, J., W. Qi, B. Bergk-Pinto, and B. Frey. 2021. “High Temperatures Enhance the Microbial Genetic Potential to Recycle C and N From Necromass in High-Mountain Soils.” Global Change Biology 27, no. 7: 1365–1386. https://doi.org/10.1111/gcb.15492.
Durairaj, K., P. Velmurugan, J. H. Park, et al. 2017. “Potential for Plant Biocontrol Activity of Isolated Pseudomonas Aeruginosa and Bacillus stratosphericus Strains Against Bacterial Pathogens Acting Through Both Induced Plant Resistance and Direct Antagonism.” FEMS Microbiology Letters 364, no. 23: fnx225. https://doi.org/10.1093/femsle/fnx225.
Duru, M., O. Therond, G. Martin, et al. 2015. “How to Implement Biodiversity-Based Agriculture to Enhance Ecosystem Services: A Review.” Agronomy for Sustainable Development 35: 1259–1281. https://doi.org/10.1007/s13593-015-0306-1.
Edwin, N. R., A. H. Fitzpatrick, F. Brennan, F. Abram, and O. O'Sullivan. 2024. “An In-Depth Evaluation of Metagenomic Classifiers for Soil Microbiomes.” Environmental Microbiomes 19, no. 1: 19. https://doi.org/10.1186/s40793-024-00561-w.
El Behairy, R. A., H. M. El Arwash, A. A. Baroudy, et al. 2024. “An Accurate Approach for Predicting Soil Quality Based on Machine Learning in Drylands.” Agriculture 14, no. 4: 627. https://doi.org/10.3390/agriculture14040627.
Encyclopaedia Britannica. 2023. “The Editors of Encyclopaediasymbiosis. Encyclopedia Britannica.” https://www.britannica.com/science/symbiosis.
European Commission. 2021. “Directorate-General for Research and Innovation, EU Missions–Soil Deal for Europe–Concrete Solutions for Our Greatest Challenges.” https://data.europa.eu/doi/10.2777/247887. Publications Office of the European Union.
Evans, B. R., and F. A. Leighton. 2014. “A History of One Health.” Revue Scientifique et Technique 33, no. 2: 413–420. https://mdc.mo.gov/sites/default/files/mo_nature/assets/files/HistoryOneHealth.pdf.
FAO. 2020. “Intergovernmental Technical Panel on Soils (ITPS), Soil Letters #1. Towards a Definition of Soil Health (2020).” https://www.fao.org/3/cb1110en/cb1110en.pdf.
Faust, K. 2021. “Open Challenges for Microbial Network Construction and Analysis.” ISME Journal 15: 3111–3118. https://doi.org/10.1038/s41396-021-01027-4.
Fortunato, C., and J. Huber. 2016. “Coupled RNA-SIP and Metatranscriptomics of Active Chemolithoautotrophic Communities at a Deep-Sea Hydrothermal Vent.” ISME Journal 10: 1925–1938. https://doi.org/10.1038/ismej.2015.258.
Gavín-Centol, M. P., D. Serrano-Carnero, M. Montserrat, et al. 2023. “Severe Drought and Conventional Farming Affect Detritivore Feeding Activity and Its Vertical Distribution.” Basic and Applied Ecology 69: 49–59. https://doi.org/10.1016/j.baae.2023.03.006.
Gebremikael, M., H. Steel, D. Buchan, M. T. Gebremikael, W. Bert, and S. De Neve. 2016. “Nematodes Enhance Plant Growth and Nutrient Uptake Under C and N-Rich Conditions.” Scientific Reports 6: 32862. https://doi.org/10.1038/srep32862.
Giller, P. S. 1996. “The Diversity of Soil Communities, the ‘Poor Man's Tropical Rainforest’.” Biodiversity and Conservation 5: 135–168. https://doi.org/10.1007/BF00055827.
Goberna, M., and M. Verdú. 2022. “Cautionary Notes on the Use of Co-Occurrence Networks in Soil Ecology.” Soil Biology and Biochemistry 166: 108534. https://doi.org/10.1016/j.soilbio.2021.108534.
Gómez, J. M., J. M. Iriondo, and P. Torres. 2023. “Modeling the Continua in the Outcomes of Biotic Interactions.” Ecology 104, no. 4: e3995. https://doi.org/10.1002/ecy.3995.
Guebsi, R., S. Mami, and K. Chokmani. 2024. “Drones in Precision Agriculture: A Comprehensive Review of Applications, Technologies, and Challenges.” Drones 8, no. 11: 686. https://doi.org/10.3390/drones8110686.
Guerra, C. A., A. Heintz-Buschart, J. Sikorski, et al. 2020. “Blind Spots in Global Soil Biodiversity and Ecosystem Function Research.” Nature Communications 11: 3870. https://doi.org/10.1038/s41467-020-17688-2.
Guseva, K., S. Darcy, E. Simon, L. V. Alteio, A. Montesinos-Navarro, and C. Kaiser. 2022. “From Diversity to Complexity: Microbial Networks in Soils.” Soil Biology and Biochemistry 169: 108604. https://doi.org/10.1016/j.soilbio.2022.108604.
Hammer, E. C., J. Pallon, H. Wallander, and P. A. Olsson. 2011. “Tit for Tat? A Mycorrhizal Fungus Accumulates Phosphorus Under Low Plant Carbon Availability.” FEMS Microbiology Ecology 76, no. 2: 236–244. https://doi.org/10.1111/j.1574-6941.2011.01043.x.
Hartmann, M., and J. Six. 2023. “Soil Structure and Microbiome Functions in Agroecosystems.” Nature Reviews Earth and Environment 4: 4–18. https://doi.org/10.1038/s43017-022-00366-w.
Hnini, M., K. Rabeh, and M. Oubohssaine. 2024. “Interactions Between Beneficial Soil Microorganisms (PGPR and AMF) and Host Plants for Environmental Restoration: A Systematic Review.” Plant Stress 11: 100391. https://doi.org/10.1016/j.stress.2024.100391.
Hoorens, V. 2014. “Positivity Bias.” In Encyclopedia of Quality of Life and Well-Being Research, edited by A. C. Michalos. Springer. https://doi.org/10.1007/978-94-007-0753-5_2219.
Irwin, A. 2024. “The ‘Mother Tree’ Idea Is Everywhere–But How Much of It Is Real.” https://www.nature.com/articles/d41586-024-00893-0. Natucre 627 News Feature.
Jacquet, C., C. Moritz, L. Morissette, et al. 2016. “No Complexity–Stability Relationship in Empirical Ecosystems.” Nature Communications 7: 12573. https://doi.org/10.1038/ncomms12573.
Jeng, M. 2006. “A Selected History of Expectation Bias in Physics.” American Journal of Physics 74, no. 7: 578–583. https://doi.org/10.1119/1.2186333.
Jiang, L. M., K. Sattar, G. H. Lü, D. Hu, J. Zhang, and X. D. Yang. 2022. “Different Contributions of Plant Diversity and Soil Properties to the Community Stability in the Arid Desert Ecosystem.” Frontiers in Plant Science 13: 969852. https://doi.org/10.3389/fpls.2022.969852.
Johnson, N. C., J.-H. Graham, and F. A. Smith. 1997. “Functioning of Mycorrhizal Associations Along the Mutualism–Parasitism Continuum.” New Phytologist 135: 575–585. https://doi.org/10.1046/j.1469-8137.1997.00729.x.
Karst, J., M. D. Jones, and J. D. Hoeksema. 2023. “Positive Citation Bias and Overinterpreted Results Lead to Misinformation on Common Mycorrhizal Networks in Forests.” Nature Ecology & Evolution 7: 501–511. https://doi.org/10.1038/s41559-023-01986-1.
Lal, R., J. Bouma, E. Brevik, et al. 2021. “Soils and Sustainable Development Goals of the United Nations: An International Union of Soil Sciences Perspective.” Geoderma Regional 25: e00398. https://doi.org/10.1016/j.geodrs.2021.e00398.
Leff, J. W., R. D. Bardgett, A. Wilkinson, et al. 2018. “Predicting the Structure of Soil Communities From Plant Community Taxonomy, Phylogeny, and Traits.” ISME Journal 12, no. 7: 1794–1805. https://doi.org/10.1038/s41396-018-0089-x.
Lehmann, J., D. A. Bossio, I. Kögel-Knabner, et al. 2020. “The Concept and Future Prospects of Soil Health.” Nature Reviews Earth and Environment 1: 544–553. https://doi.org/10.1038/s43017-020-0080-8.
Lensing, J. R., and D. H. Wise. 2006. “Predicted Climate Change Alters the Indirect Effect of Predators on an Ecosystem Process.” Proceedings. National Academy of Sciences. United States of America 103, no. 42: 15502–15505. https://doi.org/10.1073/pnas.0607064103.
Li, C., T. J. Stomph, D. Makowski, and W. van der Werf. 2022. “The Productive Performance of Intercropping.” Proceedings of the National Academy of Sciences of the United States of America 120, no. 2: e2201886120. https://doi.org/10.1073/pnas.2201886120.
Li, G., T. Liu, J. K. Whalen, and Z. Wei. 2024. “Nematodes: An Overlooked Tiny Engineer of Plant Health.” Trends in Plant Science 29, no. 1: 52–63. https://doi.org/10.1016/j.tplants.2023.06.022.
Lindström, K., and S. A. Mousavi. 2020. “Effectiveness of Nitrogen Fixation in Rhizobia.” Microbial Biotechnology 13, no. 5: 1314–1335. https://doi.org/10.1111/1751-7915.13517.
Luo, M., D. L. Moorhead, R. Ochoa-Hueso, C. W. Mueller, S. C. Ying, and J. Chen. 2022. “Nitrogen Loading Enhances Phosphorus Limitation in Terrestrial Ecosystems With Implications for Soil Carbon Cycling.” Functional Ecology 36: 2845–2858. https://doi.org/10.1111/1365-2435.14178.
Lutz, S., N. Bodenhausen, J. Hess, et al. 2023. “Soil Microbiome Indicators Can Predict Crop Growth Response to Large-Scale Inoculation With Arbuscular Mycorrhizal Fungi.” Nature Microbiology 8: 2277–2289. https://doi.org/10.1038/s41564-023-01520-w.
Ma, B., E. Stirling, Y. Liu, et al. 2021. “Soil Biogeochemical Cycle Couplings Inferred From a Function-Taxon Network.” Research 2021: 7102769. https://doi.org/10.34133/2021/7102769.
Magkourilou, E., C. A. Bell, T. J. Daniell, and K. J. Field. 2024. “The Functionality of Arbuscular Mycorrhizal Networks Across Scales of Experimental Complexity and Ecological Relevance.” Functional Ecology 39, no. 6: 1–1399. https://doi.org/10.1111/1365-2435.14618.
Mathieu, C., S. M. Hermans, G. Lear, T. R. Buckley, K. C. Lee, and H. L. Buckley. 2020. “A Systematic Review of Sources of Variability and Uncertainty in eDNA Data for Environmental Monitoring.” Frontiers in Ecology and Evolution 8: 135.
McCann, K. 2000. “The Diversity–Stability Debate.” Nature 405: 228–233. https://doi.org/10.1038/35012234.
McFadden, J., F. Casalini, T. Griffin, et al. 2022. The Digitalisation of Agriculture: A Literature Review and Emerging Policy Issues, OECD Food, Agriculture and Fisheries Papers, No. 176. OECD Publishing. https://doi.org/10.1787/285cc27d-en.
Melguizo-Ruiz, N., G. Jiménez-Navarro, E. De Mas, et al. 2020. “Field Exclusion of Large Soil Predators Impacts Lower Trophic Levels and Decreases Leaf-Litter Decomposition in Dry Forests.” Journal of Animal Ecology 89: 334–346. https://doi.org/10.1111/1365-2656.13101.
Michel, J., M. Lehnert, M. Nebel, and D. Quandt. 2025. “Low and Facultative Mycorrhization of Ferns in a Low-Montane Tropical Rainforest in Ecuador.” PLoS One 20, no. 7: e0326712. https://doi.org/10.1371/journal.pone.0326712.
Miyasaka, S. C., and M. Habte. 2001. “Plant Mechanisms and Mycorrhizal Symbioses to Increase Phosphorous Uptake Efficiency.” Communications in Soil Science and Plant Analysis 32, no. 7–8: 1101–1147. https://doi.org/10.1081/CSS-100104105.
Mizik, T. 2023. “How Can Precision Farming Work on a Small Scale? A Systematic Literature Review.” Precision Agriculture 24, no. 1: 384–406. https://doi.org/10.1007/s11119-022-09934-y.
Moore, J. C., P. C. de Ruiter, and H. William. 1993. “Influence of Productivity on the Stability of Real and Model Ecosystems.” Science 261, no. 5123: 906–908. https://doi.org/10.1126/science.261.5123.906.
Moreno Jiménez, E., N. Ferrol, N. Corradi, J. M. Peñalosa, and M. C. Rillig. 2024. “The Potential of Arbuscular Mycorrhizal Fungi to Enhance Metallic Micronutrient Uptake and Mitigate Food Contamination in Agriculture: Prospects and Challenges.” New Phytologist 242: 1441–1447. https://doi.org/10.1111/nph.19269.
Neubauer, A., D. Aros-Mualin, V. Mariscal, and P. Szövényi. 2024. “Challenging the Term Symbiosis in Plant–Microbe Associations to Create an Understanding Across Sciences.” Journal of Integrative Plant Biology 66: 7–11. https://doi.org/10.1111/jipb.13588.
Neuhauser, C., and J. E. Fargione. 2004. “A Mutualism–Parasitism Continuum Model and Its Application to Plant–Mycorrhizae Interactions.” Ecological Modelling 177: 337–352. https://doi.org/10.1016/j.ecolmodel.2004.02.010.
Oswald, M. E., and S. Grosjean. 2004. “Confirmation Bias.” In Cognitive Illusions: A Handbook on Fallacies and Biases in Thinking, Judgement and Memory, edited by R. F. Pohl, 79–96. Psychology Press.
Paine, R. T. 1966. “Food Web Complexity and Species Diversity.” American Naturalist 100: 65–75.
Peguero, G., J. Sardans, D. Asensio, et al. 2019. “Nutrient Scarcity Strengthens Soil Fauna Control Over Leaf Litter Decomposition in Tropical Rainforests.” Proceedings of the Royal Society B 286: 20191300. https://doi.org/10.1098/rspb.2019.1300.
Peng, Z., N. C. Johnson, J. Jansa, et al. 2024. “Mycorrhizal Effects on Crop Yield and Soil Ecosystem Functions in a Long-Term Tillage and Fertilization Experiment.” New Phytologist 242: 1798–1813. https://doi.org/10.1111/nph.19493.
Perez-Mon, C., W. Qi, S. Vikram, et al. 2021. “Shotgun Metagenomics Reveals Distinct Functional Diversity and Metabolic Capabilities Between 12,000-Year-Old Permafrost and Active Layers on Muot da Barba Peider (Swiss Alps).” Microbial Genomics 7: 000558. https://doi.org/10.1099/mgen.0.000558.
Primieri, S., S. M. Magnoli, T. Koffel, S. L. Stürmer, and J. D. Bever. 2022. “Perennial, but Not Annual Legumes Synergistically Benefit From Infection With Arbuscular Mycorrhizal Fungi and Rhizobia: A Meta-Analysis.” New Phytologist 233: 505–514. https://doi.org/10.1111/nph.17787.
Radu, E., M. Woegerbauer, G. Rab, et al. 2021. “Resilience of Agricultural Soils to Antibiotic Resistance Genes Introduced by Agricultural Management Practices.” Science of the Total Environment 756: 143699. https://doi.org/10.1016/j.scitotenv.2020.143699.
Redecker, D., and P. Raab. 2006. “Phylogeny of the Glomeromycota (Arbuscular Mycorrhizal Fungi): Recent Developments and New Gene Markers.” Mycologia 98, no. 6: 885–895. https://doi.org/10.1080/15572536.2006.11832618.
Rønn, R., M. Vestergård, and F. Ekelund. 2012. “Interactions Between Bacteria, Protozoa and Nematodes in Soil.” Acta Protozoologica 51, no. 3: 223–235. https://doi.org/10.4467/16890027AP.12.018.0764.
Roy-Bolduc, A., and M. Hijri. 2011. “J the Use of Mycorrhizae to Enhance Phosphorus Uptake: A Way out the Phosphorus Crisis.” Biofertil Biopestici 2: 104. https://doi.org/10.4172/2155-6202.1000104.
Ryan, M. H., and J. H. Graham. 2018. “Little Evidence That Farmers Should Consider Abundance or Diversity of Arbuscular Mycorrhizal Fungi When Managing Crops.” New Phytologist 220: 1092–1107. https://doi.org/10.1111/nph.15308.
Schulte, R. P. O., R. E. Creamer, T. Donnellan, et al. 2014. “Functional Land Management: A Framework for Managing Soil-Based Ecosystem Services for the Sustainable Intensification of Agriculture.” Environmental Science and Policy 38: 45–58. https://doi.org/10.1016/j.envsci.2013.10.002.
Shen, Y., and T. Duan. 2024. “The Interaction Between Arbuscular Mycorrhizal Fungi (AMF) and Grass Endophyte (Epichloë) on Host Plants: A Review.” Journal of Fungi 10: 174. https://doi.org/10.3390/jof10030174.
Singh, B. K., P. Trivedi, E. Egidi, C. A. Macdonald, and M. Delgado-Baquerizo. 2020. “Crop Microbiome and Sustainable Agriculture.” Nature Reviews Microbiology 18: 601–602. https://doi.org/10.1038/s41579-020-00446-y.
Singh, N. K., and A. K. Rai. 2024. “Unraveling the Complex Dynamics of Soil Microbiome Diversity and Its Implications for Ecosystem Functioning: A Comprehensive Review.” Microbiology Research Journal International 34, no. 3: 17–47. https://doi.org/10.9734/mrji/2024/v34i31434.
Spake, R., D. E. Bowler, C. T. Callaghan, et al. 2023. “Understanding ‘It Depends’ in Ecology: A Guide to Hypothesising, Visualising and Interpreting Statistical Interactions.” Biological Reviews 98: 983–1002. https://doi.org/10.1111/brv.12939.
Vavlas, N.-C., T. Seubring, A. Elhakeem, L. Kooistra, and G. B. De Deyn. 2024. “Remote Sensing of Cover Crop Legacies on Main Crop N-Uptake Dynamics.” European Journal of Soil Science 75, no. 5: e13582. https://doi.org/10.1111/ejss.13582.
Walkup, J., C. Dang, R. L. Mau, et al. 2023. “The Predictive Power of Phylogeny on Growth Rates in Soil Bacterial Communities.” ISME Communications 3: 73. https://doi.org/10.1038/s43705-023-00281-1.
Wang, T., H. Jin, and H. L. Sieverding. 2023. “Factors Affecting Farmer Perceived Challenges Towards Precision Agriculture.” Precision Agriculture 24, no. 6: 2456–2478. https://doi.org/10.1007/s11119-023-10048-2.
Wang, X., L. Gong, Y. Luo, et al. 2024. “Phylogenetic Diversity Drives Soil Multifunctionality in Arid Montane Forest-Grassland Transition Zone.” Frontiers in Plant Science 15: 1344948. https://doi.org/10.3389/fpls.2024.1344948.
Zhang, C., M. G. A. van der Heijden, B. K. Dodds, et al. 2024. “A Tripartite Bacterial-Fungal-Plant Symbiosis in the Mycorrhiza-Shaped Microbiome Drives Plant Growth and Mycorrhization.” Microbiome 12: 13. https://doi.org/10.1186/s40168-023-01726-4.
Zhang, Y., H. Feng, I. S. Druzhinin, et al. 2024. “Phosphorus/Nitrogen Sensing and Signaling in Diverse Root–Fungus Symbioses.” Trends in Microbiology 32, no. 2: 200–215. https://doi.org/10.1016/j.tim.2023.08.005.