Computed tomography; Digital twinning; GPU programming; Machine learning; Registration; Simulation; X-ray imaging; Graphic processor unit programming; Graphic processor units; Machine-learning; Real- time; X-ray computed tomography; Nuclear and High Energy Physics; Instrumentation
Abstract :
[en] gVirtualXray (gVXR) is an open-source framework that relies on the Beer–Lambert law to simulate X-ray images in real time on a graphics processor unit (GPU) using triangular meshes. A wide range of programming languages is supported (C/C++, Python, R, Ruby, Tcl, C#, Java, and GNU Octave). Simulations generated with gVXR have been benchmarked with clinically realistic phantoms (i.e. complex structures and materials) using Monte Carlo (MC) simulations, real radiographs and real digitally reconstructed radiographs (DRRs), and X-ray computed tomography (XCT). It has been used in a wide range of applications, including real-time medical simulators, proposing a new densitometric radiographic modality in clinical imaging, studying noise removal techniques in fluoroscopy, teaching particle physics and X-ray imaging to undergraduate students in engineering, and XCT to masters students, predicting image quality and artifacts in material science, etc. gVXR has also been used to produce a high number of realistic simulated images in optimisation problems and to train machine learning algorithms. This paper presents a comprehensive review of such applications of gVXR.
Research Center/Unit :
A&M - Aérospatiale et Mécanique - ULiège
Disciplines :
Materials science & engineering
Author, co-author :
Vidal, Franck P.; UKRI-STFC Scientific Computing, Daresbury Laboratory, United Kingdom ; School of Computer Science & Engineering, Bangor University, United Kingdom
Afshari, Shaghayegh; Department of Biomechatronics Engineering, National Taiwan University, Taiwan
Ahmed, Sharif; Diamond Light Source, United Kingdom
Albiol, Alberto; PRHLT Research centre, Universitat Politècnica València, Spain
Albiol, Francisco; Instituto de Física Corpuscular, CSIC-Universitat Politecnica València, Spain
Béchet, Eric ; Université de Liège - ULiège > Département d'aérospatiale et mécanique > Conception géométrique assistée par ordinateur
Bellot, Alberto Corbí; Escuela Superior de Ingeniería y Tecnología - Universidad Internacional de La Rioja, Spain
Bosse, Stefan; Department of Computer Science, University of Koblenz, Germany ; Department of Mechanical Engineering, University of Siegen, Germany
Burkhard, Simon; Federal Institute of Metrology METAS, Bern-Wabern, Switzerland
Chahid, Younes; UK Astronomy Technology Centre, Royal Observatory, United Kingdom
Chou, Cheng-Ying; Department of Biomechatronics Engineering, National Taiwan University, Taiwan
Culver, Robert; The Manufacturing Technology Centre, United Kingdom
Desbarats, Pascal; Univ. Bordeaux, CNRS, Bordeaux INP, LaBRI, UMR 5800, France
Dixon, Lewis; School of Computer Science & Engineering, Bangor University, United Kingdom
Friemann, Johan; Department of Industrial and Materials Science, Chalmers University of Technology, Sweden
Garbout, Amin; Henry Royce Institute, Henry Moseley X-ray Imaging Facility, Department of Materials, The University of Manchester, United Kingdom
García-Lorenzo, Marcos; Grupo de Modelado y Realidad Virtual, Universidad Rey Juan Carlos, Spain
Giovannelli, Jean-François; Univ. Bordeaux, CNRS, Bordeaux INP, IMS, UMR 5218, France
Hanna, Ross; The Manufacturing Technology Centre, United Kingdom
Hatton, Clémentine; Scalian DS, France
Henry, Audrey; Scalian DS, France
Kelly, Graham; Shrewsbury and Telford Hospital NHS Trust, United Kingdom
Leblanc, Christophe ; Université de Liège - ULiège > Département d'aérospatiale et mécanique > Conception géométrique assistée par ordinateur
Leonardi, Alberto; Diamond Light Source, United Kingdom
Létang, Jean Michel; INSA-Lyon, Université Claude Bernard Lyon 1, CNRS, Inserm, CREATIS UMR 5220 U1294, France
Lipscomb, Harry; Henry Royce Institute, Henry Moseley X-ray Imaging Facility, Department of Materials, The University of Manchester, United Kingdom
Manchester, Tristan; Diamond Light Source, United Kingdom
Meere, Bas; Department of Mechanical Engineering, Eindhoven University of Technology, Netherlands
Michelet, Claire; Univ. Bordeaux, CNRS, LP2I Bordeaux, UMR 5797, France
Middleburgh, Simon; School of Computer Science & Engineering, Bangor University, United Kingdom
Mihail, Radu P.; Department of Computer Science and Engineering Technology, Valdosta State University, United States
Mitchell, Iwan; School of Computer Science & Engineering, Bangor University, United Kingdom
Perera, Liam; Diamond Light Source, United Kingdom
Puig, Martí; Henry Royce Institute, Henry Moseley X-ray Imaging Facility, Department of Materials, The University of Manchester, United Kingdom ; Department of Engineering Science, University of Oxford, United Kingdom
Racy, Malek; Salford Royal Hospital, Manchester, United Kingdom
Rouwane, Ali; Univ. Bordeaux, CNRS, LP2I Bordeaux, UMR 5797, France
Seznec, Hervé; Univ. Bordeaux, CNRS, LP2I Bordeaux, UMR 5797, France
Sújar, Aaron; Grupo de Modelado y Realidad Virtual, Universidad Rey Juan Carlos, Spain
Tugwell-Allsup, Jenna; Radiology Department, Betsi Cadwaladr University Health Board (BCUHB), Ysbyty Gwynedd, United Kingdom
Villard, Pierre-Frédéric; Université de Lorraine, CNRS, Inria, LORIA, France
gVirtualXray is currently supported by the Ada Lovelace Centre and the UKRI Digital Research Infrastructure Programme through the Science and Technology Facilities Council, Computational Science Centre for Research Communities (CoSeC) . It was initially co-funded by the European Union through the FP7-PEOPLE-2012-CIG - Marie-Curie Action 'Fly Algorithm in PET Reconstruction for Radiotherapy Treatment Planning' under grant # 321968 and by the Welsh government through the Research Institute of Visual Computing (RIVIC) . F. Vidal thanks NVIDIA Corporation for the donation of the NVIDIA TITAN Xp GPU used in the development and validation of gVirtualXray. I. Mitchell is supported through the UKRI CDT in Artificial Intelligence, Machine Learning and Advanced Computin g (AIMLAC - EP/S023992/1 ). F. Vidal, I. Mitchell and S. Middleburgh acknowledge the Diamond Light Source for beamtime # MG29820 on 'Real experiments, hi-fidelity simulations, machine learning and GPUs: Toward the virtual design of nuclear fuel rods'. I. Mitchell and F. Vidal would like to thank Taith for a travel grant awarded to Vidal and Mitchell that made it possible to develop the digital twin of the new dual-beam XRCT laboratory equipment of the MateIS laboratory (Lyon, France). Y. Chahid and C. Atkins acknowledge the UKRI Future Leaders Fellowship 'Printing the future of space telescopes' under grant # MR/T042230/1 . J. Friemann acknowledges funding from Horizon Europe through the MSCA Doctoral Network RELIANCE, grant # 101073040 . A. Garbout, M. Puig, and H. Lipscomb acknowledges support from the National Research Facility for Lab X-ray CT (NXCT), funded through EPSRC grants # EP/T02593X/1 and # EP/V035932/1 R. Culver acknowledges the 'DRAMA (Digital Reconfigurable Additive Manufacturing facilities for Aerospace)' project funded by UKRI under grant # 113157 . A. Rouwane, C. Michelet, J.-F. Giovannelli, P. Desbarats, and H. Seznec acknowledges support from the Agence Nationale de la Recherche (ANR CES2010, no. CESA 009 01, TITANIUMS), and the Région Aquitaine (TOX-NANO no. 20111201003/POPRA no. 14006636-034). A. Rouwane's postdoctoral fellowship is funded by the 'Exploratory Interdisciplinary Research' program of the Université de Bordeaux (SHAPE Project, LP2IB, LaBRI, IMS). E. Béchet and C. Leblanc thank the Walloon Region for its support under grant no. 8424 'AEROCT'.gVirtualXray is currently supported by the Ada Lovelace Centre and the UKRI Digital Research Infrastructure Programme through the Science and Technology Facilities Council's Computational Science Centre for Research Communities (CoSeC). It was initially co-funded by the European Union through the FP7-PEOPLE-2012-CIG - Marie-Curie Action 'Fly Algorithm in PET Reconstruction for Radiotherapy Treatment Planning' under grant # 321968 and by the Welsh government through the Research Institute of Visual Computing (RIVIC). F. Vidal thanks NVIDIA Corporation for the donation of the NVIDIA TITAN Xp GPU used in the development and validation of gVirtualXray. I. Mitchell is supported through the UKRI CDT in Artificial Intelligence, Machine Learning and Advanced Computing (AIMLAC - EP/S023992/1). F. Vidal, I. Mitchell and S. Middleburgh acknowledge the Diamond Light Source for beamtime # MG29820 on 'Real experiments, hi-fidelity simulations, machine learning and GPUs: Toward the virtual design of nuclear fuel rods'. I. Mitchell and F. Vidal would like to thank Taith for a travel grant awarded to Vidal and Mitchell that made it possible to develop the digital twin of the new dual-beam XRCT laboratory equipment of the MateIS laboratory (Lyon, France). Y. Chahid and C. Atkins acknowledge the UKRI Future Leaders Fellowship 'Printing the future of space telescopes' under grant # MR/T042230/1. J. Friemann acknowledges funding from Horizon Europe through the MSCA Doctoral Network RELIANCE, grant # 101073040. A. Garbout, M. Puig, and H. Lipscomb acknowledges support from the National Research Facility for Lab X-ray CT (NXCT), funded through EPSRC grants # EP/T02593X/1 and # EP/V035932/1 R. Culver acknowledges the 'DRAMA (Digital Reconfigurable Additive Manufacturing facilities for Aerospace)' project funded by UKRI under grant # 113157. A. Rouwane, C. Michelet, J.-F. Giovannelli, P. Desbarats, and H. Seznec acknowledges support from the Agence Nationale de la Recherche (ANR CES2010, no. CESA 009 01, TITANIUMS), and the Région Aquitaine (TOX-NANO no. 20111201003/POPRA no. 14006636-034). A. Rouwane's postdoctoral fellowship is funded by the 'Exploratory Interdisciplinary Research' program of the Université de Bordeaux (SHAPE Project, LP2IB, LaBRI, IMS). E. Béchet and C. Leblanc thank the Walloon Region for its support under grant no. 8424 'AEROCT'.
Vidal, F.P., Garnier, M., Freud, N., Létang, J.M., John, N.W., Simulation of X-ray attenuation on the GPU. Proceedings of Theory and Practice of Computer Graphics 2009, 2009, Eurographics Association, Cardiff, UK, 25–32, 10.2312/LocalChapterEvents/TPCG/TPCG09/025-032.
Vidal, F.P., Villard, P.-F., Development and validation of real-time simulation of X-ray imaging with respiratory motion. Comput. Med. Imaging Graph. 49 (2016), 1–15, 10.1016/j.compmedimag.2015.12.002.
Freud, N., Duvauchelle, P., Létang, J.M., Babot, D., Fast and robust ray casting algorithms for virtual X-ray imaging. Nucl. Instrum. Methods Phys. Res. Sect. B: Beam Interact. Mater. Atoms 248:1 (2006), 175–180, 10.1016/j.nimb.2006.03.009.
Villard, P.-F., Vidal, F.P., Hunt, C., Bello, F., John, N.W., Johnson, S., Gould, D.A., A prototype percutaneous transhepatic cholangiography training simulator with real-time breathing motion. Int. J. Comput. Assist. Radiol. Surg. 4:6 (2009), 571–578, 10.1007/s11548-009-0367-1.
Vidal, F.P., Garnier, M., Freud, N., Létang, J.M., John, N.W., Accelerated Deterministic Simulation of X-ray Attenuation Using Graphics Hardware. Hast, A., Viola, I., (eds.) Eurographics 2010 - Posters, 2010, The Eurographics Association, Norrköping, Sweden, 10.2312/egp.20101026 Poster 5011.
Vidal, F.P., Mitchell, I.T., Létang, J.M., Use of fast realistic simulations on GPU to extract CAD models from microtomographic data in the presence of strong CT artefacts. Precis. Eng. 74 (2022), 110–125, 10.1016/j.precisioneng.2021.10.014.
Pointon, J.L., Wen, T., Tugwell-Allsup, J., Sújar, A., Létang, J.M., Vidal, F.P., Simulation of X-ray projections on GPU: Benchmarking gVirtualXray with clinically realistic phantoms. Comput. Methods Programs Biomed., 234, 2023, 107500, 10.1016/j.cmpb.2023.107500.
Corbi, A., Burgos, D., Vidal, F., Albiol, F., Albiol, A., X-ray imaging virtual online laboratory for engineering undergraduates. Eur. J. Phys., 41(1), 2019, 014001, 10.1088/1361-6404/ab5011.
Schoonjans, T., Brunetti, A., Golosio, B., Sanchez del Rio, M., Solé, V.A., Ferrero, C., Vincze, L., The xraylib library for X-ray–matter interactions. recent developments. Spectrochim. Acta Part B: At. Spectrosc. 66:11 (2011), 776–784, 10.1016/j.sab.2011.09.011.
Poludniowski, G., Omar, A., Bujila, R., Andreo, P., Technical note: Spekpy v2.0—a software toolkit for modeling X-ray tube spectra. Med. Phys. 48:7 (2021), 3630–3637, 10.1002/mp.14945.
Hernández, G., Fernández, F., A model of tungsten anode X-ray spectra. Med. Phys. 43:8Part1 (2016), 4655–4664, 10.1118/1.4955120.
Gao, Z., Lan, H., Zhang, C., Huang, Y., Fu, J., Modeling technique for optimizing simulation objective function based on key parameters of the X-ray imaging system. Proceedings of the 2024 7th International Conference on Machine Vision and Applications, ICMVA ’24, 2024, Association for Computing Machinery, New York, NY, USA, 139–144, 10.1145/3653946.3653967.
Ou, D., Xiao, Y., Lan, D., Wang, Y., Type a standard uncertainty evaluation in one measurement through uncertainty propagation from voxel values’ distribution for computed tomography metrology. Meas. Sci. Technol., 35(6), 2024, 065015, 10.1088/1361-6501/ad30ba.
Scarponi, V., Verde, J., Haouchine, N., Duprez, M., Nageotte, F., Cotin, S., FBG-driven simulation for virtual augmentation of fluoroscopic images during endovascular interventions. Heal. Technol. Lett., 2025, 10.1049/htl2.12108.
Jørgensen, J.S., Ametova, E., Burca, G., Fardell, G., Papoutsellis, E., Pasca, E., Thielemans, K., Turner, M., Warr, R., Lionheart, W.R.B., Withers, P.J., Core Imaging Library - Part I: a versatile Python framework for tomographic imaging. Philos. Trans. R. Soc. A: Math. Phys. Eng. Sci., 379(2204), 2021, 20200192, 10.1098/rsta.2020.0192.
Papadimitroulas, P., Erwin, W.D., Iliadou, V., Kostou, T., Loudos, G., Kagadis, G.C., A personalized, Monte Carlo-based method for internal dosimetric evaluation of radiopharmaceuticals in children. Med. Phys. 45:8 (2018), 3939–3949, 10.1002/mp.13055.
Rodriguez Perez, S., Marshall, N., Struelens, L., Bosmans, H., Characterization and validation of the thorax phantom lungman for dose assessment in chest radiography optimization studies. J. Med. Imaging, 5, 2018, 1, 10.1117/1.JMI.5.1.013504.
McCormick, M., Liu, X., Ibanez, L., Jomier, J., Marion, C., ITK: enabling reproducible research and open science. Front. Neuroinform., 8, 2014, 13, 10.3389/fninf.2014.00013.
Schroeder, W., Martin, K., Lorensen, B., The Visualization Toolkit – An Object-Oriented Approach To 3D Graphics. Fourth, 2006, Kitware, Inc.
Vidal, F.P., Tugwell-Allsup, J., CT scans, 3D segmentations, digital radiograph and 3D surfaces of the Lungman phantom. 2024, Zenodo, 10.5281/zenodo.10782644.
Schneider, W., Bortfeld, T., Schlegel, W., Correlation between CT numbers and tissue parameters needed for Monte Carlo simulations of clinical dose distributions. Phys. Med. Biol. 45:2 (2000), 459–478, 10.1088/0031-9155/45/2/314.
Vestbøstad, M., Karlgren, K., Olsen, N.R., Research on simulation in radiography education: a scoping review protocol. Syst. Rev., 9(263), 2020, 10.1186/s13643-020-01531-2.
Partner, A., Shiner, N., Hyde, E., Errett, S., First year student radiographers’ perceptions of a one-week simulation-based education package designed to increase clinical placement capacity. Radiography 28:3 (2022), 577–585, 10.1016/j.radi.2022.04.007.
Zuo, Z., Qian, W.Y., Liao, X., Heng, P.-A., Position based catheterization and angiography simulation. 2018 IEEE 6th International Conference on Serious Games and Applications for Health, SeGAH, 2018, 1–7, 10.1109/SeGAH.2018.8401369.
Xu, X., Puggioni, A., Kilroy, D., Campbell, A.G., Mixed reality and real-time X-Ray simulation in vet radiography training: A user-centered comparative study. 2025 IEEE Conference Virtual Reality and 3D User Interfaces, VR, 2025, 12–22, 10.1109/VR59515.2025.00026.
Racy, M., Barrow, A., Tomlinson, J., Bello, F., Development and validation of a virtual reality haptic femoral nailing simulator. J. Surg. Educ. 78:3 (2021), 1013–1023, 10.1016/j.jsurg.2020.10.004.
Dixon, L., XRayViewer - A C++ Unreal Engine 5 Wrapper for gVirtualXRay. 2022, Bangor University.
Sujar, A., Kelly, G., García, M., Vidal, F.P., Interactive teaching environment for diagnostic radiography with real-time X-ray simulation and patient positioning. Int. J. Comput. Assist. Radiol. Surg. 17:1 (2022), 85–95, 10.1007/s11548-021-02499-7.
Agostinelli, S., Allison, J., Amako, K., Apostolakis, J., Araujo, H., Arce, P., Asai, M., Axen, D., Banerjee, S., Barrand, G., Behner, F., Bellagamba, L., Boudreau, J., Broglia, L., Brunengo, A., Burkhardt, H., Chauvie, S., Chuma, J., Chytracek, R., Cooperman, G., Cosmo, G., Degtyarenko, P., Dell'Acqua, A., Depaola, G., Dietrich, D., Enami, R., Feliciello, A., Ferguson, C., Fesefeldt, H., Folger, G., Foppiano, F., Forti, A., Garelli, S., Giani, S., Giannitrapani, R., Gibin, D., Gómez Cadenas, J., González, I., Gracia Abril, G., Greeniaus, G., Greiner, W., Grichine, V., Grossheim, A., Guatelli, S., Gumplinger, P., Hamatsu, R., Hashimoto, K., Hasui, H., Heikkinen, A., Howard, A., Ivanchenko, V., Johnson, A., Jones, F., Kallenbach, J., Kanaya, N., Kawabata, M., Kawabata, Y., Kawaguti, M., Kelner, S., Kent, P., Kimura, A., Kodama, T., Kokoulin, R., Kossov, M., Kurashige, H., Lamanna, E., Lampén, T., Lara, V., Lefebure, V., Lei, F., Liendl, M., Lockman, W., Longo, F., Magni, S., Maire, M., Medernach, E., Minamimoto, K., Mora de Freitas, P., Morita, Y., Murakami, K., Nagamatu, M., Nartallo, R., Nieminen, P., Nishimura, T., Ohtsubo, K., Okamura, M., O'Neale, S., Oohata, Y., Paech, K., Perl, J., Pfeiffer, A., Pia, M., Ranjard, F., Rybin, A., Sadilov, S., Di Salvo, E., Santin, G., Sasaki, T., Savvas, N., Sawada, Y., Scherer, S., Sei, S., Sirotenko, V., Smith, D., Starkov, N., Stoecker, H., Sulkimo, J., Takahata, M., Tanaka, S., Tcherniaev, E., Safai Tehrani, E., Tropeano, M., Truscott, P., Uno, H., Urban, L., Urban, P., Verderi, M., Walkden, A., Wander, W., Weber, H., Wellisch, J., Wenaus, T., Williams, D., Wright, D., Yamada, T., Yoshida, H., Zschiesche, D., Geant4—a simulation toolkit. Nucl. Instrum. Methods Phys. Res. Sect. A: Accel. Spectrometers Detect. Assoc. Equip. 506:3 (2003), 250–303, 10.1016/S0168-9002(03)01368-8.
Rit, S., Oliva, M.V., Brousmiche, S., Labarbe, R., Sarrut, D., Sharp, G.C., The reconstruction toolkit (RTK), an open-source cone-beam ct reconstruction toolkit based on the insight toolkit (ITK). J. Phys.: Conf. Ser., 489(1), 2014, 012079, 10.1088/1742-6596/489/1/012079.
Maire, E., Bonnard, G., Adrien, J., Boulnat, X., Létang, J.M., Lachambre, J., Dual beam microfocus high-energy tomography: Towards multimodal and faster laboratory experiments. Tomogr. Mater. Struct., 5, 2024, 100030, 10.1016/j.tmater.2024.100030.
Reinhard, C., Drakopoulos, M., Ahmed, S.I., Deyhle, H., James, A., Charlesworth, C.M., Burt, M., Sutter, J., Alexander, S., Garland, P., Yates, T., Marshall, R., Kemp, B., Warrick, E., Pueyos, A., Bradnick, B., Nagni, M., Winter, A.D., Filik, J., Basham, M., Wadeson, N., King, O.N.F., Aslani, N., Dent, A.J., Beamline K11 DIAD: a new instrument for dual imaging and diffraction at Diamond Light Source. J. Synchrotron Radiat. 28:6 (2021), 1985–1995, 10.1107/S1600577521009875.
Albiol, F., Corbi, A., Albiol, A., Densitometric radiographic imaging with contour sensors. IEEE Access 7 (2019), 18902–18914, 10.1109/ACCESS.2019.2895925.
Corbi, A., Environment recognition applied to particle detectors. (Ph.D. thesis), 2017, University of Valencia, Valencia, Spain URL https://digital.csic.es/bitstream/10261/225165/1/Corbi_Bellot.pdf.
WormAtlas: A database featuring behavioral and structural anatomy of Caenorhabditis elegans. 2024 https://www.wormatlas.org/. (Accessed 18 December 2024).
Spatial transcriptomics of C. elegans males and hermaphrodites. 2024 http://celegans.tomoseq.genomes.nl/. (Accessed 18 December 2024).
WormBook: The online review of C. elegans biology. 2024 http://www.wormbook.org/. (Accessed 18 December 2024).
Michelet, C., Barberet, P., Desbarats, P., Giovannelli, J.-F., Schou, C., Chebil, I., Delville, M.-H., Gordillo, N., Beasley, D.G., Devès, G., et al. An implementation of the NiftyRec medical imaging library for PIXE-tomography reconstruction. Nucl. Instrum. Methods Phys. Res. Sect. B: Beam Interact. Mater. Atoms 404 (2017), 131–139, 10.1016/j.nimb.2017.01.067.
McColl, G., James, S.A., Mayo, S., Howard, D.L., Ryan, C.G., Kirkham, R., Moorhead, G.F., Paterson, D., De Jonge, M.D., Bush, A.I., Caenorhabditis elegans maintains highly compartmentalized cellular distribution of metals and steep concentration gradients of manganese. PLoS One, 7(2), 2012, e32685, 10.1371/journal.pone.0032685.
Le Trequesser, Q., Saez, G., Devès, G., Michelet, C., Barberet, P., Delville, M.-H., Seznec, H., In situ titanium dioxide nanoparticles quantitative microscopy in cells and inC. elegans using nuclear microprobe analysis. Nucl. Instrum. Methods Phys. Res. Sect. B: Beam Interact. Mater. Atoms 341 (2014), 58–64, 10.1016/j.nimb.2014.06.031.
Michelet, C., Barberet, P., Moretto, P., Seznec, H., Development and applications of STIM- and PIXE-tomography: A review. Nucl. Instrum. Methods Phys. Res. Sect. B: Beam Interact. Mater. Atoms 363 (2015), 55–60, 10.1016/j.nimb.2015.08.070.
Jin, K.H., McCann, M.T., Froustey, E., Unser, M., Deep convolutional neural network for inverse problems in imaging. IEEE Trans. Image Process. 26:9 (2017), 4509–4522, 10.1109/tip.2017.2713099.
Matsubara, K., Ibaraki, M., Nemoto, M., Watabe, H., Kimura, Y., A review on AI in PET imaging. Ann. Nucl. Med. 36:2 (2022), 133–143, 10.1007/s12149-021-01710-8.
Szigeti, B., Gleeson, P., Vella, M., Khayrulin, S., Palyanov, A., Hokanson, J., Currie, M., Cantarelli, M., Idili, G., Larson, S., OpenWorm: an open-science approach to modeling Caenorhabditis elegans. Front. Comput. Neurosci., 8, 2014, 137, 10.3389/fncom.2014.00137.
Sternberg, P.W., Van Auken, K., Wang, Q., Wright, A., Yook, K., Zarowiecki, M., Arnaboldi, V., Becerra, A., Brown, S., Cain, S., et al. WormBase 2024: status and transitioning to Alliance infrastructure. Genetics, 227(1), 2024, iyae050, 10.1093/genetics/iyae050.
The Virtual Worm Project. 2024 http://caltech.wormbase.org/virtualworm/. (Accessed 18 December 2024).
Van Aarle, W., Palenstijn, W.J., Cant, J., Janssens, E., Bleichrodt, F., Dabravolski, A., De Beenhouwer, J., Joost Batenburg, K., Sijbers, J., Fast and flexible X-ray tomography using the ASTRA toolbox. Opt. Express 24:22 (2016), 25129–25147, 10.1364/oe.24.025129.
Mishnaevsky Jr., L., Sustainable end-of-life management of wind turbine blades: Overview of current and coming solutions. Materials, 14(5), 2021, 1124, 10.3390/ma14051124.
Lee, H., Hwang, Y.M., Lee, J., Kim, N.-W., Ko, S.-K., A drone-driven X-Ray image-based diagnosis of wind turbine blades for reliable operation of wind turbine. IEEE Access 12 (2024), 56141–56158, 10.1109/ACCESS.2024.3388494.
Vidal, F.P., Villard, P.-F., Simulated motion artefact in computed tomography. Bühler, K., Linsen, L., John, N.W., (eds.) Eurographics Workshop on Visual Computing for Biology and Medicine, 2015, The Eurographics Association, 213–214, 10.2312/vcbm.20151228.
Gibson, S.F., 3D chainmail: a fast algorithm for deforming volumetric objects. Proceedings of the 1997 Symposium on Interactive 3D Graphics I3D ’97, 1997, Association for Computing Machinery, New York, NY, USA, 149–ff., 10.1145/253284.253324 URL.
Lovitt, J., Estimating length statistics of aggregate fried potato product via electromagnetic radiation attenuation. 2016 URL https://scholarworks.boisestate.edu/td/1211.
Haiderbhai, M., Ledesma, S., Lee, S.C., Seibold, M., Fürnstahl, P., Navab, N., Fallavollita, P., Pix2xray: converting RGB images into X-rays using generative adversarial networks. Int. J. Comput. Assist. Radiol. Surg. 15:6 (2020), 973–980, 10.1007/s11548-020-02159-2.
Andreozzi, E., Fratini, A., Esposito, D., Cesarelli, M., Bifulco, P., Toward a priori noise characterization for real-time edge-aware denoising in fluoroscopic devices. BioMedical Eng. OnLine, 20(1), 2021, 36, 10.1186/s12938-021-00874-8.
Litjens, G., Kooi, T., Bejnordi, B.E., Setio, A.A.A., Ciompi, F., Ghafoorian, M., Van Der Laak, J.A., Van Ginneken, B., Sánchez, C.I., A survey on deep learning in medical image analysis. Med. Image Anal. 42 (2017), 60–88, 10.1016/j.media.2017.07.005.
Garcea, F., Serra, A., Lamberti, F., Morra, L., Data augmentation for medical imaging: A systematic literature review. Comput. Biol. Med., 152, 2023, 106391, 10.1016/j.compbiomed.2022.106391.
Osuala, R., Kushibar, K., Garrucho, L., Linardos, A., Szafranowska, Z., Klein, S., Glocker, B., Diaz, O., Lekadir, K., Data synthesis and adversarial networks: A review and meta-analysis in cancer imaging. Med. Image Anal., 84, 2023, 102704, 10.1016/j.media.2022.102704.
Phoulady, A., Suleiman, Y., Choi, H., Moore, T., May, N., Shahbazmohamadi, S., Tavousi, P., Synthetic data augmentation to enhance manual and automated defect detection in microelectronics. Microelectron. Reliab., 150, 2023, 115220, 10.1016/j.microrel.2023.115220 Special issue of 34th European Symposium on Reliability of Electron Devices, Failure Physics and Analysis, ESREF 2023.
Kervyn, G., The First Open Source 3d Atlas of Human Anatomy. Acta Sci. Anat. 1:4 (2022), 13–15.
Home of the Blender project - Free and Open 3D Creation Software. 2024 https://www.blender.org/. (Accessed 18 December 2024).
Basic Anatomical and Physiological Data for Use in Radiological Protection: Reference Values. Annals of the ICRP, 2003, Pergamon Press, Oxford.
Sogancioglu, E., Ginneken, B.V., Behrendt, F., Bengs, M., Schlaefer, A., Radu, M., Xu, D., Sheng, K., Scalzo, F., Marcus, E., Papa, S., Teuwen, J., Scholten, E.T., Schalekamp, S., Hendrix, N., Jacobs, C., Hendrix, W., Sánchez, C.I., Murphy, K., Nodule Detection and Generation on Chest X-Rays: NODE21 Challenge. IEEE Trans. Med. Imaging 43:8 (2024), 2839–2853, 10.1109/TMI.2024.3382042 URL https://ieeexplore.ieee.org/document/10479589/.
Friemann, J., Mikkelsen, L.P., Oddy, C., Fagerström, M., Automated generation of labeled synthetic training data for machine learning based segmentation of 3D-woven composites. Proceedings of the 21st European Conference on Composite Materials: Special Sessions, vol. 8, 2024, 333–338, 10.60691/yj56-np80.
Brown, L., Long, A., 8 - modeling the geometry of textile reinforcements for composites: TexGen. Boisse, P., (eds.) Composite Reinforcements for Optimum Performance (Second Edition), second ed. Woodhead Publishing Series in Composites Science and Engineering, 2021, Woodhead Publishing, 237–265, 10.1016/B978-0-12-819005-0.00008-3.
Bosse, S., GitHub - bslab/XraySim: Radiography and CT xray simulator and parallel filtered back projection — github.com. 2024 https://github.com/bslab/xraysim. (Accessed 18 December 2024).
Bosse, S., Lehmhus, D., Kumar, S., Automated porosity characterization for aluminum die casting materials using X-ray radiography, synthetic X-ray data augmentation by simulation, and machine learning. Sensors, 24(9), 2024, 2933, 10.3390/s24092933.
Zhang, Y., Shen, Z., Jiao, R., Segment anything model for medical image segmentation: Current applications and future directions. Comput. Biol. Med., 2024, 108238, 10.1016/j.compbiomed.2024.108238.
GitHub - facebookresearch/detectron2: Detectron2 is a platform for object detection, segmentation and other visual recognition tasks. — github.com. 2024 https://github.com/facebookresearch/detectron2. (Accessed 18 December 2024).
OpenSCAD the programmers solid 3D CAD modeller. 2024 https://openscad.org/. (Accessed 18 December 2024).
Shah, C., Bosse, S., von Hehl, A., Taxonomy of damage patterns in composite materials, measuring signals, and methods for automated damage diagnostics. Materials, 15(13), 2022, 4645, 10.3390/ma15134645.
Yang, D.-H., Huang, J.-Y., Chiou, J.-Y., Wei, J.C.-C., Analysis of socioeconomic status in the patients with rheumatoid arthritis. Int. J. Environ. Res. Public Heal., 15(6), 2018, 1194, 10.3390/ijerph15061194.
Mihail, R.P., Jacobs, N., Goldsmith, J., Lohr, K., Serious games analytics: Methodologies for performance measurement, assessment, and improvement., 2015, Springer International Publishing, Cham, 211–231, 10.1007/978-3-319-05834-4_9.
Wen, T., Mihail, R., Al-maliki, s., Letang, J., Vidal, F., Registration of 3D triangular models to 2D X-ray projections using black-box optimisation and X-ray simulation. Vidal, F.P., Tam, G.K.L., Roberts, J.C., (eds.) Computer Graphics and Visual Computing, CGVC, 2019, The Eurographics Association, 105–113, 10.2312/cgvc.20191265.
Wen, T., Mihail, R.P., Vidal, F.P., 3D-2d registration using X-ray simulation and CMA-ES. Castillo, P.A., Jiménez Laredo, J.L., (eds.) Applications of Evolutionary Computation, 2021, Springer International Publishing, Cham, 453–468, 10.1007/978-3-030-72699-7_29.
Uhlman, N., Salamon, M., Burtzlaff, S., Components and Methods for Highest Resolution Computed Tomography., vol. 1, 2008, 3–9.
Kerckhofs, G., Pyka, G., Moesen, M., Van Bael, S., Schrooten, J., Wevers, M., High-Resolution Microfocus X-Ray Computed Tomography for 3D Surface Roughness Measurements of Additive Manufactured Porous Materials. Adv. Eng. Mater. 15:3 (2013), 153–158, 10.1002/adem.201200156 URL https://onlinelibrary.wiley.com/doi/10.1002/adem.201200156.
Nikishkov, Y., Seon, G., Makeev, A., Structural analysis of composites with porosity defects based on X-ray computed tomography. J. Compos. Mater. 48:17 (2014), 2131–2144, 10.1177/0021998313494917.
Makarkin, M., Bratashov, D., State-of-the-art approaches for image deconvolution problems, including modern deep learning architectures. Micromachines, 12(12), 2021, 10.3390/mi12121558.
Zhu, J., Li, K., Hao, B., Hybrid variational model based on alternating direction method for image restoration. Adv. Difference Equ., 2019(1), 2019, 10.1186/s13662-018-1908-0.
Wu, P., Boone, J.M., Hernandez, A.M., Mahesh, M., Siewerdsen, J.H., Theory, method, and test tools for determination of 3D MTF characteristics in cone-beam CT. Med. Phys. 48:6 (2021), 2772–2789, 10.1002/mp.14820.
Cunningham, I.A., Reid, B.K., Signal and noise in modulation transfer function determinations using the slit, wire, and edge techniques. Med. Phys. 19:4 (1992), 1037–1044, 10.1118/1.596821.
Létang, J.M., Peix, G., On-line X-ray focal spot assessment based on deconvolution using standard imaging devices. NDT E Int. 36:5 (2003), 303–317, 10.1016/S0963-8695(03)00010-0.
Shi, L., Bennett, N.R., Wang, A.S., Characterization of x-ray focal spots using a rotating edge. J. Med. Imaging, 8(2), 2021, 023502, 10.1117/1.JMI.8.2.023502.
Chen, Z., Ning, R., Three-dimensional point spread function measurement of cone-beam computed tomography system by interactive edge-blurring algorithm. Phys. Med. Biol. 49:10 (2004), 1865–1880, 10.1088/0031-9155/49/10/003.
Thornton, M.M., Flynn, M.J., Measurement of the spatial resolution of a clinical volumetric computed tomography scanner using a sphere phantom. Flynn, M.J., Hsieh, J., (eds.) Medical Imaging 2006: Physics of Medical Imaging, vol. 6142, 2006, International Society for Optics and Photonics. SPIE, 61421Z, 10.1117/12.654969.
Lee, C., Baek, J., A new method to measure directional modulation transfer function using sphere phantoms in a cone beam computed tomography system. IEEE Trans. Med. Imaging 34:4 (2015), 902–910, 10.1109/TMI.2014.2369524.
Robert, N., Mainprize, J.G., Whyne, C., Determination of 3D PSFs from computed tomography reconstructed x-ray images of spherical objects and the effects of sphere radii. Med. Phys. 46:11 (2019), 4792–4802, 10.1002/mp.13734.
Lee, C., dong Song, H., Baek, J., 3D MTF estimation using sphere phantoms for cone-beam computed tomography systems. Med. Phys. 47:7 (2020), 2838–2851, 10.1002/mp.14147.
Russo, P., Mettivier, G., Method for measuring the focal spot size of an x-ray tube using a coded aperture mask and a digital detector. Med. Phys. 38:4 (2011), 2099–2115, 10.1118/1.3567503.
Friedman, S.N., Fung, G.S., Siewerdsen, J.H., Tsui, B.M., A simple approach to measure computed tomography (CT) modulation transfer function (MTF) and noise-power spectrum (NPS) using the American College of Radiology (ACR) accreditation phantom. Med. Phys. 40:5 (2013), 1–9, 10.1118/1.4800795.
Probst, G.M., Hou, Q., Boeckmans, B., Xiao, Y.S., Dewulf, W., Characterization and stability monitoring of X-ray focal spots. CIRP Ann 69:1 (2020), 453–456, 10.1016/j.cirp.2020.04.072.
Arnold, B.A., Bjarngard, B.E., Klopping, J.C., A modified pinhole camera method for investigation of X-ray tube focal spots. Phys. Med. Biol. 18:4 (1973), 540–549, 10.1088/0031-9155/18/4/006.
Boone, J.M., Determination of the presampled MTF in computed tomography. Med. Phys. 28:3 (2001), 356–360, 10.1118/1.1350438.
Di Domenico, G., Cardarelli, P., Contillo, A., Taibi, A., Gambaccini, M., X-ray focal spot reconstruction by circular penumbra analysis - Application to digital radiography systems. Med. Phys. 43:1 (2016), 294–302, 10.1118/1.4938414.
Bircher, B.A., Meli, F., Küng, A., Sofiienko, A., Traceable x-ray focal spot reconstruction by circular edge analysis: from sub-microfocus to mesofocus. Meas. Sci. Technol., 33(7), 2022, 074005, 10.1088/1361-6501/ac6225.
Richardson, W.H., Bayesian-based iterative method of image restoration∗. J. Opt. Soc. Am. 62:1 (1972), 55–59, 10.1364/JOSA.62.000055.
Lucy, L.B., An iterative technique for the rectification of observed distributions. Astron. J., 79(6), 1974, 745, 10.1086/111605.
Shaked, E., Dolui, S., Michailovich, O.V., Regularized richardson-lucy algorithm for reconstruction of Poissonian medical images. 2011 IEEE International Symposium on Biomedical Imaging: From Nano To Macro, 2011, IEEE, 1754–1757, 10.1109/ISBI.2011.5872745.
Engelhardt, M., Baumann, J., Determination of Size and Intensity Distribution of the Focal Spot of a Microfocus X-ray Tube Using Image Processing. Ecndt Th.2.5.4 (2006), 1–13.
Nelder, J.A., Mead, R., A Simplex Method for Function Minimization. Comput. J. 7:4 (1965), 308–313, 10.1093/comjnl/7.4.308.
Wang, Y., Yang, J., Yin, W., Zhang, Y., A new alternating minimization algorithm for total variation image reconstruction. SIAM J. Imaging Sci. 1:3 (2008), 248–272, 10.1137/080724265.
Leclaire, A., Moisan, L., No-Reference Image Quality Assessment and Blind Deblurring with Sharpness Metrics Exploiting Fourier Phase Information. J. Math. Imaging Vision 52:1 (2015), 145–172, 10.1007/s10851-015-0560-5.
Westsik, M., Wells, J.T., Chahid, Y., Morris, K., Milanova, M., Beardsley, M., Harris, M., Ward, L., Alcock, S.G., Nistea, I.-T., Cottarelli, S., Tammas-Williams, S., Atkins, C., From design to evaluation of an additively manufactured, lightweight, deployable mirror for Earth observation. Hull, T.B., Kim, D., Hallibert, P., (eds.) Astronomical Optics: Design, Manufacture, and Test of Space and Ground Systems IV, vol. 12677, 2023, International Society for Optics and Photonics. SPIE, 1267704, 10.1117/12.2677303.
Brierley, N., Nye, B., McGuinness, J., Mapping the spatial performance variability of an X-ray computed tomography inspection. NDT E Int., 107, 2019, 102127, 10.1016/j.ndteint.2019.102127.
M. Reiter, D. Weiß, C. Gusenbauer, M. Erler, C. Kuhn, S. Kasper, J. Kastner, Evaluation of a Histogram-based Image Quality Measure for X-ray computed Tomography, in: 5th Conference on Industrial Computed Tomography, ICT, Wels, Austria, 2014, pp. 273–282.
A. Obaton, Y. Gaillard, P. Bouvet, O. Guiraud, S. Genot, L. Gay, Evaluation of XCT image quality, in: 12th Conference on Industrial Computed Tomography, ICT, Furth, Germany, 2023, http://dx.doi.org/10.58286/27712.