Chemistry (all); Biochemistry, Genetics and Molecular Biology (all); Multidisciplinary; Physics and Astronomy (all)
Abstract :
[en] Jupiter exhibits peculiar multiwavelength auroral emissions resulting from the electromagnetic interactions of Io, Europa, and Ganymede with the magnetospheric plasma flow. Characterizing the faint auroral footprint of the fourth Galilean moon, Callisto, has always been challenging because of its expected weakness and its proximity to Jupiter's bright main aurora. Here, we report on unusual magnetospheric conditions that led to an equatorward shift of Jupiter's main auroral oval unveiling the auroral footprints of the four Galilean moons in a single observation. Remote observations by the Juno spacecraft reveal a double-spot structure, characteristic of the footprints of the other three moons, with a maximum ultraviolet brightness of 137 ± 15 kR. Concurrent observations within Callisto's flux tube reveal field-aligned electrons with a characteristic energy of 10 keV, depositing an energy flux of 55 mW.m-2 in Jupiter's atmosphere. The electron properties are consistent with the triggering of radio emissions with intensities lower than 5 × 10-18 W.m-2.Hz-1.
Research Center/Unit :
STAR - Space sciences, Technologies and Astrophysics Research - ULiège
Disciplines :
Space science, astronomy & astrophysics
Author, co-author :
Rabia, J ; Institut de Recherche en Astrophysique et Planétologie (IRAP), CNRS, CNES, Toulouse, France. jonas.rabia@irap.omp.eu
Hue, V ; Aix-Marseille Université, Institut Origines, LAM, Marseille, France
Louis, C K ; LIRA, Observatoire de Paris, Université PSL, Sorbonne Université, Université Paris Cité, CY Cergy Paris Université, CNRS, 92190, Meudon, France
André, N; Institut de Recherche en Astrophysique et Planétologie (IRAP), CNRS, CNES, Toulouse, France ; ISAE-Supaero, Université de Toulouse, Toulouse, France
Szalay, J R ; Department of Astrophysical Sciences, Princeton University, Princeton, NJ, USA
Prangé, R ; LIRA, Observatoire de Paris, Université PSL, Sorbonne Université, Université Paris Cité, CY Cergy Paris Université, CNRS, 92190, Meudon, France
Lamy, L ; LIRA, Observatoire de Paris, Université PSL, Sorbonne Université, Université Paris Cité, CY Cergy Paris Université, CNRS, 92190, Meudon, France ; Aix-Marseille Université, CNRS, CNES, LAM, Marseille, France
Zarka, P ; LIRA, Observatoire de Paris, Université PSL, Sorbonne Université, Université Paris Cité, CY Cergy Paris Université, CNRS, 92190, Meudon, France
Collet, B ; Aix-Marseille Université, CNRS, CNES, LAM, Marseille, France
Allegrini, F; Southwest Research Institute, San Antonio, TX, USA ; Department of Physics and Astronomy, University of Texas at San Antonio, San Antonio, TX, USA
Ebert, R W ; Southwest Research Institute, San Antonio, TX, USA ; Department of Physics and Astronomy, University of Texas at San Antonio, San Antonio, TX, USA
Greathouse, T K ; Southwest Research Institute, San Antonio, TX, USA
Bonfond, Bertrand ; Université de Liège - ULiège > Département d'astrophysique, géophysique et océanographie (AGO) > Labo de physique atmosphérique et planétaire (LPAP)
Gladstone, G R ; Southwest Research Institute, San Antonio, TX, USA
Sulaiman, A H ; School of Physics and Astronomy, Minnesota Institute for Astrophysics, University of Minnesota, Minneapolis, MN, USA
Kurth, W S ; Department of Physics and Astronomy, University of Iowa, Iowa City, IA, USA
Connerney, J E P; Space Research Corporation, Annapolis, MD, USA ; NASA/Goddard Space Flight Center, Greenbelt, MD, USA
Louarn, P; Institut de Recherche en Astrophysique et Planétologie (IRAP), CNRS, CNES, Toulouse, France
Penou, E; Institut de Recherche en Astrophysique et Planétologie (IRAP), CNRS, CNES, Toulouse, France
Kamran, A ; Institut de Recherche en Astrophysique et Planétologie (IRAP), CNRS, CNES, Toulouse, France
Santos-Costa, D; Southwest Research Institute, San Antonio, TX, USA
Giles, R S; Southwest Research Institute, San Antonio, TX, USA
Kammer, J A; Southwest Research Institute, San Antonio, TX, USA
Versteeg, M H; Southwest Research Institute, San Antonio, TX, USA
Bolton, S J ; Southwest Research Institute, San Antonio, TX, USA
ANR - Agence Nationale de la Recherche AMU - Aix-Marseille Université
Funding text :
French co\u2010authors acknowledge the support of CNES for the Juno and JUICE missions. This study has been partially supported through the grant EUR TESS N\u00B0ANR\u201018\u2010EURE\u20100018 in the framework of the Programme des Investissements d\u2019Avenir. V. H. acknowledges support from the French government under the France 2030 investment plan, as part of the Initiative d\u2019Excellence d\u2019Aix\u2010Marseille Universit\u00E9 \u2013 A*MIDEX AMX\u201022\u2010CPJ\u201004. French authors acknowledge the support of CNRS/INSU national programs of planetology (PNP) and heliophysics (PNST). The work at SwRI was funded by the NASA New Frontiers Program for Juno through contract NNM06AA75C. B. B. is a Research Associate of the Fonds de la Recherche Scientifique, FNRS. We thank Jacques Gustin for providing us with a synthetic H spectrum of the Jovian auroras. 2French co\u2010authors acknowledge the support of CNES for the Juno and JUICE missions. This study has been partially supported through the grant EUR TESS N\u00B0ANR\u201018\u2010EURE\u20100018 in the framework of the Programme des Investissements d\u2019Avenir. V. H. acknowledges support from the French government under the France 2030 investment plan, as part of the Initiative d\u2019Excellence d\u2019Aix\u2010Marseille Universit\u00E9 \u2013 A*MIDEX AMX\u201022\u2010CPJ\u201004. French authors acknowledge the support of CNRS/INSU national programs of planetology (PNP) and heliophysics (PNST). The work at SwRI was funded by the NASA New Frontiers Program for Juno through contract NNM06AA75C. B. B. is a Research Associate of the Fonds de la Recherche Scientifique, FNRS. We thank Jacques Gustin for providing us with a synthetic H2 spectrum of the Jovian auroras.
S.W.H. Cowley E.J. Bunce Origin of the main auroral oval in Jupiter’s coupled magnetosphere–ionosphere system Planet. Space Sci. 49 1067 1088 2001P&SS..49.1067C
R. Prangé et al. Rapid energy dissipation and variability of the lo–Jupiter electrodynamic circuit Nature 379 323 325 1996Natur.379.323P
J.T. Clarke et al. Hubble space telescope imaging of Jupiter’s UV aurora during the Galileo orbiter mission J. Geophys. Res. Planets 103 20217 20236 1998JGR..10320217C
J.T. Clarke et al. Ultraviolet emissions from the magnetic footprints of Io, Ganymede and Europa on Jupiter Nature 415 997 1000 2002Natur.415.997C 1:CAS:528:DC%2BD38Xhsl2kt7g%3D 11875560
J.E.P. Connerney R. Baron T. Satoh T. Owen Images of excited H3+ at the foot of the Io flux tube in Jupiter’s atmosphere Science 262 1035 1038 1993Sci..262.1035C 1:CAS:528:DyaK2cXmsFWksQ%3D%3D 17782051
A. Mura et al. Infrared observations of Jovian aurora from Juno’s first orbits: main oval and satellite footprints Geophys. Res. Lett. 44 5308 5316 2017GeoRL.44.5308M
Mura, A., Adriani, A., Connerney, J. E. P. & Bolton, S. J. Juno observations of spot structures and a split tail in Io-induced aurorae on Jupiter. Science361, 774−777 (2018).
E.K. Bigg Influence of the satellite Io on Jupiter’s decametric emission Nature 203 1008 1010 1964Natur.203.1008B
C.K. Louis L. Lamy P. Zarka B. Cecconi S.L.G. Hess Detection of Jupiter decametric emissions controlled by Europa and Ganymede with Voyager/PRA and Cassini/RPWS J. Geophys. Res. Space Phys. 122 9228 9247 2017JGRA.122.9228L
P. Zarka et al. Jupiter radio emission induced by Ganymede and consequences for the radio detection of exoplanets Astron. Astrophys. 618 A84
C.K. Louis et al. Source of radio emissions induced by the galilean moons io, europa and ganymede: in situ measurements by Juno J. Geophys. Res. Space Phys. 128 e2023JA031985 2023JGRA.12831985L
H.R.P. Jácome et al. Search for Jovian decametric emission induced by Europa on the extensive Nançay Decameter array catalog Astron. Astrophys. 665 A67
Saur, J. Overview of moon–magnetosphere interactions. In Magnetospheres in the Solar System 575–593 (American Geophysical Union (AGU), 2021).
S.J. Bolton et al. The Juno mission Space Sci. Rev. 213 5 37 2017SSRv.213..5B
J.R. Szalay et al. A new framework to explain changes in io’s footprint tail electron fluxes Geophys. Res. Lett. 47 e2020GL089267 2020GeoRL.4789267S
J.R. Szalay et al. Alfvénic acceleration sustains Ganymede’s footprint tail aurora Geophys. Res. Lett. 47 e2019GL086527 2020GeoRL.4786527S
F. Allegrini et al. First report of electron measurements during a europa footprint tail crossing by Juno Geophys. Res. Lett. 47 e2020GL089732 2020GeoRL.4789732A
V. Hue et al. A comprehensive set of Juno in situ and remote sensing observations of the Ganymede auroral footprint Geophys. Res. Lett. 49 e2021GL096994 2022GeoRL.4996994H
G. Clark et al. Energetic proton acceleration associated with io’s footprint tail Geophys. Res. Lett. 47 e2020GL090839 2020GeoRL.4790839C
J. Rabia et al. Evidence for non-monotonic and broadband electron distributions in the Europa footprint tail revealed by Juno in situ measurements Geophys. Res. Lett. 50 e2023GL103131 2023GeoRL.5003131R 1:CAS:528:DC%2BB3sXhtlKktb3O
J. Rabia et al. Properties of electrons accelerated by the ganymede-magnetosphere interaction: survey of Juno high-latitude observations J. Geophys. Res. Space Phys. 129 e2024JA032604 2024JGRA.12932604R
Y. Sarkango et al. Resonant plasma acceleration at Jupiter driven by satellite-magnetosphere interactions Geophys. Res. Lett. 51 e2023GL107431 2024GeoRL.5107431S
A.H. Sulaiman et al. Wave-particle interactions associated with io’s auroral footprint: evidence of Alfvén, ion cyclotron, and whistler modes Geophys. Res. Lett. 47 e2020GL088432 2020GeoRL.4788432S
A.H. Sulaiman et al. Poynting fluxes, field-aligned current densities, and the efficiency of the Io-Jupiter electrodynamic interaction Geophys. Res. Lett. 50 e2023GL103456 2023GeoRL.5003456S
D. Bhattacharyya et al. Evidence for Auroral emissions from Callisto’s footprint in HST UV images J. Geophys. Res. Space Phys. 123 364 373 2018JGRA.123.364B
Hess, S. L. G. & Delamere, P. A. Satellite-induced electron acceleration and related auroras. In Auroral Phenomenology and Magnetospheric Processes: Earth And Other Planets (eds. Andreas Keiling, A., Donovan, E., Bagenal, F., & Karlsson, T.) 295–304 (American Geophysical Union (AGU), 2012).
L. Liuzzo et al. Energetic magnetospheric particle fluxes onto Callisto’s atmosphere J. Geophys. Res. Space Phys. 127 e2022JA030915 2022JGRA.12730915L
A.J. Ridley Alfvén wings at Earth’s magnetosphere under strong interplanetary magnetic fields Ann. Geophys. 25 533 542 2007AnGeo.25.533R
Bonfond, B. & Sulaiman, A. Alfvén waves related to moon–magnetosphere interactions. In Alfvén Waves Across Heliophysics 139–161 (American Geophysical Union (AGU), 2024).
Kivelson, M. G. et al. Magnetospheric interactions with satellites. In Jupiter: The Planet, Satellites and Magnetosphere, 513–536 (Cambridge University Press, 2004).
Head, L. A. et al. Effect of magnetospheric conditions on the morphology of Jupiter’s ultraviolet main auroral emission as observed by Juno-UVS. Astron. Astrophys. 688, A205 (2024).
T. Promfu et al. Ganymede’s auroral footprint latitude: comparison with magnetodisc model J. Geophys. Res. Space Phys. 127 e2022JA030712 2022JGRA.12730712P
Bonfond, B. et al. Auroral evidence of Io’s control over the magnetosphere of Jupiter. Geophys. Res. Lett. 39, 1 (2012).
J.E.P. Connerney et al. The Juno magnetic field investigation Space Sci. Rev. 213 39 138 2017SSRv.213..39C
J.E.P. Connerney S. Timmins M. Herceg J.L. Joergensen A Jovian magnetodisc model for the Juno Era J. Geophys. Res. Space Phys. 125 e2020JA028138 2020JGRA.12528138C 1:STN:280:DC%2BB3s7ptFyhsw%3D%3D 33133996 7583372
G.R. Gladstone et al. The ultraviolet spectrograph on NASA’s Juno mission Space Sci. Rev. 213 447 473 2017SSRv.213.447G
Tao, C., Kataoka, R., Fukunishi, H., Takahashi, Y. & Yokoyama, T. Magnetic field variations in the Jovian magnetotail induced by solar wind dynamic pressure enhancements. J. Geophys. Res. Space Phys. 110, A11 (2005).
S.P. Joy et al. Probabilistic models of the Jovian magnetopause and bow shock locations J. Geophys. Res. Space Phys. 107 SMP 17-1 SMP 17-17
Ebert, R. W., Bagenal, F., McComas, D. J. & Fowler, C. M. A survey of solar wind conditions at 5 AU: a tool for interpreting solar wind-magnetosphere interactions at Jupiter. Front. Astron. Space Sci. https://doi.org/10.3389/fspas.2014.00004 (2014).
Nichols, J. D. Magnetosphere-ionosphere coupling in Jupiter’s middle magnetosphere: Computations including a self-consistent current sheet magnetic field model. J. Geophys. Res. Space Phys. 116, A10 (2011).
S.W.H. Cowley J.D. Nichols D.J. Andrews Modulation of Jupiter’s plasma flow, polar currents, and auroral precipitation by solar wind-induced compressions and expansions of the magnetosphere: a simple theoretical model Ann. Geophys. 25 1433 1463 2007AnGeo.25.1433C
M.F. Vogt et al. Variability of Jupiter’s main auroral emission and satellite footprints observed with HST during the Galileo era J. Geophys. Res. Space Phys. 127 e2021JA030011 2022JGRA.12730011V
Clarke, J. T. et al. Response of Jupiter’s and Saturn’s auroral activity to the solar wind. J. Geophys. Res. Space Phys. 114, A5 (2009).
V. Hue et al. The Io, Europa, and Ganymede auroral footprints at Jupiter in the ultraviolet: positions and equatorial Lead Angles J. Geophys. Res. Space Phys. 128 e2023JA031363 2023JGRA.12831363H
B. Bonfond et al. Similarity of the Jovian satellite footprints: Spots multiplicity and dynamics Icarus 292 208 217 2017Icar.292.208B
Gérard, J.-C., Saglam, A., Grodent, D. & Clarke, J. T. Morphology of the ultraviolet Io footprint emission and its control by Io’s location. J. Geophys. Res. Space Phys. 111, A4 (2006).
B. Bonfond et al. The tails of the satellite auroral footprints at Jupiter J. Geophys. Res. Space Phys. 122 7985 7996 2017JGRA.122.7985B
L.W. Esposito et al. The Cassini ultraviolet imaging spectrograph investigation Space Sci. Rev. 115 299 361 2004SSRv.115.299E 1:CAS:528:DC%2BD2MXitVKktr4%3D
W.R. Pryor et al. The auroral footprint of Enceladus on Saturn Nature 472 331 333 2011Natur.472.331P 1:CAS:528:DC%2BC3MXltVOit7o%3D 21512570
W.R. Pryor et al. Cassini UVIS observations of the enceladus auroral footprint on Saturn in 2017 Planet. Sci. J. 5 20
Bonfond, B. et al. UV Io footprint leading spot: a key feature for understanding the UV Io footprint multiplicity? Geophys. Res. Lett. 35, 5 (2008).
A. Eviatar C. Paranicas The plasma plumes of Europa and Callisto Icarus 178 360 366 2005Icar.178.360E 1:CAS:528:DC%2BD2MXhtFGrtrrK
D.A. Gurnett A.M. Persoon W.S. Kurth A. Roux S.J. Bolton Plasma densities in the vicinity of Callisto from Galileo plasma wave observations Geophys. Res. Lett. 27 1867 1870 2000GeoRL.27.1867G 1:CAS:528:DC%2BD3cXlsVGjsLg%3D
E. Huscher et al. Survey of Juno observations in Jupiter’s plasma disk: density J. Geophys. Res. Space Phys. 126 e2021JA029446 2021JGRA.12629446H
Bagenal, F. & Delamere, P. A. Flow of mass and energy in the magnetospheres of Jupiter and Saturn. J. Geophys. Res. Space Phys. 116, A5 (2011).
B. Bonfond et al. Evolution of the Io footprint brightness I: far-UV observations Planet. Space Sci. 88 64 75 2013P&SS..88..64B
J.A. Sinclair et al. Spatial variations in the altitude of the CH4 homopause at Jupiter’s mid-to-high latitudes, as constrained from IRTF-TEXES spectra Planet. Sci. J. 1 85 1:CAS:528:DC%2BB2MXms1Whtrw%3D
P. Rodríguez-Ovalle et al. Temperature and composition disturbances in the southern auroral region of jupiter revealed by JWST/MIRI J. Geophys. Res. Planets 129 e2024JE008299
D.J. McComas et al. The Jovian auroral distributions experiment (JADE) on the Juno Mission to Jupiter Space Sci. Rev. 213 547 643 2017SSRv.213.547M
W.S. Kurth et al. The Juno waves investigation Space Sci. Rev. 213 347 392 2017SSRv.213.347K
A.H. Sulaiman et al. Enceladus auroral hiss emissions during cassini’s grand finale Geophys. Res. Lett. 45 7347 7353 2018GeoRL.45.7347S
Gurnett, D. A. et al. Auroral hiss, electron beams and standing Alfvén wave currents near Saturn’s moon Enceladus. Geophys. Res. Lett. 38, 6 (2011).
A.H. Sulaiman et al. Jupiter’s low-altitude auroral zones: fields, particles, plasma waves, and density depletions J. Geophys. Res. Space Phys. 127 e2022JA030334 2022JGRA.12730334S 1:STN:280:DC%2BB283pvVCmsw%3D%3D 36247326 9539694
E. Mauduit P. Zarka L. Lamy S.L.G. Hess Drifting discrete Jovian radio bursts reveal acceleration processes related to Ganymede and the main aurora Nat. Commun. 14 2023NatCo.14.5981M 1:CAS:528:DC%2BB3sXitVygurvK 37788989 10547699 5981
P. Louarn et al. Observation of electron conics by juno: implications for radio generation and acceleration processes Geophys. Res. Lett. 45 9408 9416 2018GeoRL.45.9408L
J.D. Menietti D.A. Gurnett I. Christopher Control of jovian radio emission by Callisto Geophys. Res. Lett. 28 3047 3050 2001GeoRL.28.3047M
Higgins, C. A. Satellite control of Jovian 2–6 MHz radio emission using Voyager data. J. Geophys. Res. Space Phys. https://doi.org/10.1029/2006JA012100 (2007).
A. Moirano et al. Variability of the auroral footprint of io detected by juno-jiram and modeling of the io plasma torus J. Geophys. Res. Space Phys. 128 e2023JA031288 2023JGRA.12831288M
S.L.G. Hess et al. Evolution of the Io footprint brightness II: modeling Planet. Space Sci. 88 76 85 2013P&SS..88..76H
O. Grasset et al. JUpiter ICy moons explorer (JUICE): an ESA mission to orbit Ganymede and to characterise the Jupiter system Planet. Space Sci. 78 1 21 2013P&SS..78..1G
Bonfond, B. The 3-D extent of the Io UV footprint on Jupiter. J. Geophys. Res. Space Phys. https://doi.org/10.1029/2010JA015475 (2010).
V. Hue et al. Juno-UVS observation of the io footprint during solar eclipse J. Geophys. Res. Space Phys. 124 5184 5199 2019JGRA.124.5184H
J. Gustin et al. Jovian auroral spectroscopy with FUSE: analysis of self-absorption and implications for electron precipitation Icarus 171 336 355 2004Icar.171.336G 1:CAS:528:DC%2BD2cXnslKqsLw%3D
J. Rabia et al. Influence of the jovian current sheet models on the mapping of the UV auroral footprints of Io, Europa, and Ganymede J. Geophys. Res. Space Phys. 129 e2023JA032041 2024JGRA.12932041R
F. Bagenal Empirical model of the Io plasma torus: voyager measurements J. Geophys. Res. Space Phys. 99 11043 11062 1994JGR..9911043B
L.P. Dougherty K.M. Bodisch F. Bagenal Survey of Voyager plasma science ions at Jupiter: 2. Heavy ions J. Geophys. Res. Space Phys. 122 8257 8276 2017JGRA.122.8257D
Bonfond, B. et al. The Io U. V. footprint: location, inter-spot distances and tail vertical extent. J. Geophys. Res. Space Phys. 114, A7 (2009).
J.E.P. Connerney M.H. Acuña N.F. Ness T. Satoh New models of Jupiter’s magnetic field constrained by the Io flux tube footprint J. Geophys. Res. Space Phys. 103 11929 11939 1998JGR..10311929C
B. Collet et al. A new type of jovian hectometric radiation powered by monoenergetic electron beams J. Geophys. Res. Space Phys. 129 e2024JA032422 2024JGRA.12932422C
G.A. Dulk W.C. Erickson R. Manning J.-L. Bougeret Calibration of low-frequency radio telescopes using the galactic background radiation Astron. Astrophys. 365 294 300 2001A&A..365.294D
Mutel, R. L. et al. CMI growth rates for Saturnian kilometric radiation. Geophys. Res. Lett. 37, 19105 (2010).
L. Lamy R. Prangé F. Henry P. Le Sidaner The auroral planetary imaging and spectroscopy (APIS) service Astron. Comput. 11 138 145 2015A&C..11.138L
V. Génot et al. Automated multi-dataset analysis (AMDA): an on-line database and analysis tool for heliospheric and planetary plasma data Planet. Space Sci. 201 105214
Louis, C. K., Rabia, J. & Prangé, R. Determining the Jovian equatorial density from UV measurements of the Galilean moons’ footprints. Zenodohttps://doi.org/10.5281/zenodo.15348222 (2025).
B.H. Mauk et al. Energetic particles and acceleration regions over Jupiter’s polar cap and main aurora: a broad overview J. Geophys. Res. Space Phys. 125 e2019JA027699 2020JGRA.12527699M
J.E.P. Connerney et al. A new model of Jupiter’s magnetic field at the completion of Juno’s prime mission J. Geophys. Res. Planets 127 e2021JE007055 2022JGRE.12707055C
F. Allegrini et al. Electron beams and loss cones in the auroral regions of Jupiter Geophys. Res. Lett. 44 7131 7139 2017GeoRL.44.7131A