Altuntas, O., Dasgan, H. Y., Akhoundnejad, Y. (2018). Silicon-induced salinity tolerance improves photosynthesis, leaf water status, membrane stability, and growth in pepper (Capsicum annuum l.). HortScience 53 (12), 1820-1826. https://doi.org/10.21273/HORTSCI13411-18
Baker, N. R. (2008). Chlorophyll fluorescence: a probe of photosynthesis in vivo. Annual Review of Plant Biology, 59, 89-113. https://doi.org/10.1146/annurev.arplant.59.032607.092759
Belouchrani, A. S., Latati, M., Ounane, S. M., Drouiche, N., Lounici, H. (2020). Study of the interaction salinity: Phosphorus fertilization on sorghum. J. Plant Growth Regul. 39 (3), 1205-1210. https://doi.org/10.1007/s00344-019-10057-4
Bouras, H., Bouaziz, A., Bouazzama, B., Hirich, A., Choukr-Allah, R. (2021). How phosphorus fertilization alleviates the effect of salinity on sugar beet (Beta vulgaris l.) productivity and quality. Agronomy 11 (8), 1491. https://doi.org/10.3390/agronomy11081491
Bouras, H., Choukr-Allah, R., Amouaouch, Y., Bouaziz, A., Devkota, K. P., El Mouttaqi, A., et al. (2022). How does quinoa (Chenopodium quinoa willd.) respond to phosphorus fertilization and irrigation water salinity? Plants 11 (2), 216. https://doi.org/10.3390/plants11020216
Bouras, H., Devkota, K. P., Mamassi, A., Loudari, A., Choukr-Allah, R., & El-Jarroudi, M. (2024). Unveiling the Synergistic Effects of Phosphorus Fertilization and Organic Amendments on Red Pepper Growth, Productivity and Physio-Biochemical Response under Saline Water Irrigation and Climate-Arid Stresses. Plants, 13(9), 1209. https://doi.org/10.3390/plants13091209
Campos P, Borie F, Cornejo P, Lopez-Raez JA, Lopez-Garcia A, Seguel A (2018). Phosphorus acquisition efficiency related to root traits: is mycorrhizal symbiosis a key factor to wheat and barley cropping? Front Plant Sci, 9:752. https://doi.org/10.3389/fpls.2018.00752.
Carstensen, A., Herdean, A., Schmidt, S. B., Sharma, A., Spetea, C., Pribil, M., et al. (2018). The impacts of phosphorus deficiency on the photosynthetic electron transport chain. Plant Physiol. 177 (1), 271-284. https://doi.org/10.1104/pp.17.01624
Chakraborty, D., Prasad, R., Bhatta, A., Torbert, H. A. (2021). Understanding the environmental impact of phosphorus in acidic soils receiving repeated poultry litter applications. Sci. Total Environ. 779, 146267. https://doi.org/10.1016/j.scitotenv.2021.146267
Chtouki, M., Naciri, R., Garre, S., Nguyen, F., Zeroual, Y., Oukarroum, A. (2022). Phosphorus fertilizer form and application frequency affect soil p availability, chickpea yield, and p use efficiency under drip fertigation. J. Plant Nutr. Soil Sci. 185, 603-611. https://doi.org/10.1002/jpln.202100439
COMIFER (2009). Fertilization PK. Grille de calcul des doses.
Craigie, G. (2022). Detecting Sugarcane Aphid (Melanaphis sacchari) infestation in Grain Sorghum (Sorghum bicolor) using leaf spectral response (Doctoral dissertation). Kansas State University
Demiral, M. A. (2017). Effect of salt stress on the concentration of nitrogen and phosphorus in root and leaf of strawberry plant. Eurasian J. Soil Sci. 6 (4), 357-364. https://doi.org/10.18393/ejss.319198
Demmig-Adams, B., & Adams, W. W. (1996). The role of xanthophyll cycle carotenoids in the protection of photosynthesis. Trends in Plant Science, 1(1), 21-26. https://doi.org/10.1016/S1360-1385(96)80019-7
El-Mejjaouy, Y., Lahrir, M., Naciri, R., Zeroual, Y., Mercatoris, B., Dumont, B., et al. (2022). How far can chlorophyll a fluorescence detect phosphorus status in wheat leaves (Triticum durum l.). Environ. Exp. Bot. 194, 104762. https://doi.org/10.1016/j.envexpbot.2021.104762
FAO. (2024). Global status of salt-affected soils - Main report. Food and Agriculture Organization of the United Nations. https://doi.org/10.4060/cd3044en
Farias, G. D., Bremm, C., Bredemeier, C., De Lima Menezes, J., Alves, L. A., Tiecher, T., ... & De Faccio Carvalho, P. C. (2023). Normalized Difference Vegetation Index (NDVI) for soybean biomass and nutrient uptake estimation in response to production systems and fertilization strategies. Frontiers in Sustainable Food Systems, 6. https://doi.org/10.3389/fsufs.2022.959681
Gao, Y., Wang, X., Shah, J. A., Chu, G. (2020). Polyphosphate fertilizers increased maize (Zea mays l.) p, fe, zn, and Mn uptake by decreasing p fixation and mobilizing microelements in calcareous soil. J. Soils Sediments 20, 1-11. https://doi.org/10.1007/s11368-019-02375-7
Hermans, C., Hammond, J. P., White, P. J., Verbruggen, N. (2006). How do plants respond to nutrient shortage by biomass allocation? Trends Plant Sci. 11 (12), 610-617. https://doi.org/10.1016/j.tplants.2006.10.007.
Hessini, K., Issaoui, K., Ferchichi, S., Saif, T., Abdelly, C., Siddique, K. H., et al. (2019). Interactive effects of salinity and nitrogen forms on plant growth, photosynthesis and osmotic adjustment in maize. Plant Physiol. Biochem. 139, 171-178. https://doi.org/10.1016/j.plaphy.2019.03.005
Hoagland DR, Arnon DI. 1950. The water-culture method for growing plants without soil. Calif Agric Exp Stn Bull. 347:36-39. [Google Scholar]
Jensen, John. (2000). Remote Sensing of the Environment: An Earth Resource Perspective. Low Price Edition, Pearson Education.
Kalaji, H. M., Rackova, L., Paganova, V., Swoczyna, T., Rusinowski, S., Sitko, K. (2018). Can chlorophyll-a fluorescence parameters be used as bio-indicators to distinguish between drought and salinity stress in tilia cordata mill? Environ. Exp. Bot. 152, 149-157. https://doi.org/10.1016/j.envexpbot.2017.11.001
Kalaji, H. M., Schansker, G., Brestic, M., Bussotti, F., Calatayud, A., Ferroni, L., et al. (2017). Frequently asked questions about chlorophyll fluorescence, the sequel. Photosynthesis Res. 132 (1), 13-66. https://doi.org/10.1007/s11120-016-0318-y.
Khan, M. Z., Islam, M. A., Azom, M. G., Amin, M. S. (2018). Short-term influence of salinity on uptake of phosphorus by ipomoea aquatica. Int. J. Plant Soil Sci. 25 (2), 1-9. https://doi.org/10.9734/IJPSS/2018/44822
Khourchi, S., Delaplace, P., & Bargaz, A. (2023). Polyphosphate fertilizer use efficiency strongly relies on soil physicochemical properties and root-microbial activities. Geoderma, 429, 116281. https://doi.org/10.1016/j.geoderma.2022.116281
Khourchi, S., Oukarroum, A., Tika, A., Delaplace, P., Bargaz, A. (2022a). Polyphosphate application influences morpho-physiological root traits involved in p acquisition and durum wheat growth performance. BMC Plant Biol. 22 (1), 1-15. https://doi.org/10.1186/s12870-022-03683-w
Khourchi, S., Elhaissoufi, W., Loum, M., Ibnyasser, A., Haddine, M., Ghani, R., et al. (2022b). Phosphate solubilizing bacteria can significantly contribute to enhance p availability from polyphosphates and their use efficiency in wheat. Microbiological Res. 262, 127094. https://doi.org/10.1016/j.micres.2022.127094
Krause, G.H., Weis, E., 1991. Chlorophyll fluorescence and photosynthesis: the basics. Annu. Rev. Plant Physiol. Plant Mol. Biol. 42, 313-349.
Kulakovskaya, T. V., Vagabov, V. M., Kulaev, I. S. (2012). Inorganic polyphosphate in industry, agriculture and medicine: Modern state and outlook. Process Biochem. 47, 1-10. https://doi.org/10.1016/j.procbio.2011.10.028.
Kumari, R., Bhatnagar, S., Mehla, N., Vashistha, A. (2022). Potential of organic amendments (AM fungi, PGPR, vermicompost and seaweeds) in combating salt stress-a review. Plant Stress 6, 100111. https://doi.org/10.1016/j.stress.2022.100111
Liew, O. W., Chong, P. C. J., Li, B., & Asundi, A. K. (2008). Signature Optical Cues: Emerging Technologies for Monitoring Plant Health. In Sensors (Vol. 8). https://doi.org/10.3390/s8053205
Liu, Z., Qin, T., Atienza, M., Zhao, Y., Nguyen, H., Sheng, H., Olukayode, T., Song, H., Panjvani, K., Magalhaes, J., Lucas, W. J., & Kochian, L. V. (2023). Constitutive basis of root system architecture: Uncovering a promising trait for breeding nutrient- and drought-resilient crops. aBIOTECH, 4(4), 315-331. https://doi.org/10.1007/s42994-023-00112-w
Loudari, A., Benadis, C., Naciri, R., Soulaimani, A., Zeroual, Y., Gharous, M. E., et al. (2020). Salt stress affects mineral nutrition in shoots and roots and chlorophyll a fluorescence of tomato plants grown in hydroponic culture. J. Plant Interact. 15 (1), 398-405. https://doi.org/10.1080/17429145.2020.1841842
Loudari, A., Mayane, A., Naciri, R., Zeroual, Y., Colinet, G., & Oukarroum, A. (2022a). Root morphological and anatomical responses to increasing phosphorus concentration of wheat plants grown under salinity. Plant Stress, 6, 100121. https://doi.org/10.1016/j.stress.2022.100121
Loudari, A., Mayane, A., Zeroual, Y., Colinet, G., & Oukarroum, A. (2022b). Photosynthetic performance and nutrient uptake under salt stress: Differential responses of wheat plants to contrasting phosphorus forms and rates. Frontiers in Plant Science, 13. https://doi.org/10.3389/fpls.2022.1038672
Loudari, A., Latique, S., Mayane, A., Colinet, G., & Oukarroum, A. (2023). Polyphosphate fertilizer impacts the enzymatic and non-enzymatic antioxidant capacity of wheat plants grown under salinity. Scientific Reports, 13(1). https://doi.org/10.1038/s41598-023-38403-3
Manaa, A., Goussi, R., Derbali, W., Cantamessa, S., Abdelly, C., Barbato, R. (2019). Salinity tolerance of quinoa (Chenopodium quinoa willd) as assessed by chloroplast ultrastructure and photosynthetic performance. Environ. Exp. Bot. 162, 103-114. https://doi.org/10.1016/j.envexpbot.2019.02.012
McBeath TM. (2006). Chemical reactions of polyphosphate fertilisers in soils and solutions. PhD thesis, University of Adelaide School.
Meng, X., Chen, W. W., Wang, Y. Y., Huang, Z. R., Ye, X., Chen, L. S., et al. (2021). Effects of phosphorus deficiency on the absorption of mineral nutrients, photosynthetic system performance and antioxidant metabolism in citrus grandis. PLoS One 16 (2), e0246944. https://doi.org/10.1371/journal.pone.0246944
Merwad, A. R. M. (2020). Mitigation of salinity stress effects on growth, yield and nutrient uptake of wheat by application of organic extracts. Communications in Soil Science and Plant Analysis, 51(9), 1150-1160. https://doi.org/10.1080/00103624.2020.1751188
Mirrani, H. M., Noreen, Z., Usman, S., Shah, A. A., Mahmoud, E. A., Elansary, H. O., Aslam, M., Waqas, A., & Javed, T. (2024). Magnesium nanoparticles extirpate salt stress in carrots (Daucus carota L.) through metabolomics regulations. Plant Physiology and Biochemistry, 207, 108383. https://doi.org/10.1016/j.plaphy.2024.108383
Mohamed, H. I., El-Sayed, A. A., Rady, M. M., Caruso, G., Sekara, A., Abdelhamid, M. T. (2021). Coupling effects of phosphorus fertilization source and rate on growth and ion accumulation of common bean under salinity stress. PeerJ 9, e11463. https://doi.org/10.7717/peerj.11463
Muhammad, I., Shalmani, A., Ali, M., Yang, Q. H., Ahmad, H., Li, F. B. (2021). Mechanisms regulating the dynamics of photosynthesis under abiotic stresses. Front. Plant Sci. 11, 615942. https://doi.org/10.3389/fpls.2020.615942
Nemeskeri, E., Nemenyi, A., Bőcs, A., Pek, Z., Helyes, L. (2019). Physiological factors and their relationship with the productivity of processing tomato under different water supplies. Water 11 (3), 586. https://doi.org/10.3390/agronomy9080447
Ozturk, L., Eker, S., Torun, B., & Cakmak, I. (2005). Variation in phosphorus efficiency among 73 bread and durum wheat genotypes grown in a phosphorus deficient calcareous soil. Plant and Soil, 269(1-2), 69-80. https://doi.org/10.1007/s11104-004-0469-z
Rezzouk, F.Z., Gracia-Romero, A., Kefauver, S.C., Nieto-Taladriz, M.T., Serret, M.D., Araus, J.L., 2022. Dataset of above and below ground traits assessed in Durum wheat cultivars grown under Mediterranean environments differing in water and temperature conditions. Data Brief 40, 107754. doi:10.1016/j.dib.2021.107754.
Robin A.H.K., Matthew C., Uddin M.J., Bayazid K.N. (2016) Salinity-induced reduction in root surface area and changes in major root and shoot traits at the phytomer level in wheat. Journal of Experimental Botany, 67, 3719-3729. https://doi.org/10.1093/jxb/erw064
Saha, P., Majumder, S., & Dutta Gupta, S. (2021). Hydroponic cultivation of medicinal plants: recent trends and future prospects. Plant Cell, Tissue and Organ Culture (PCTOC), 146(2), 129-144. https://doi.org/10.1007/s11240-020-01913-2
Schansker G, Srivastava A, Govindjee, Strasser RJ (2003) Characterization of the 820-nm transmission signal paralleling the chlorophyll a fluorescence rise (OJIP) in pea leaves. Funct Plant Biol 30: 785-796
Schansker G, Toth SZ, Strasser RJ (2005) Methylviologen and dibromothymoquinone treatments of pea leaves reveal the role of photosystem I in the Chl a fluorescence rise OJIP. Biochim Biophys Acta 1706: 250-261
Shabala, S., Munns, R. (2017). “Salinity stress: physiological constraints and adaptive mechanisms,” in Plant stress physiology (Wallingford UK: Cabi), 24-63. https://doi.org/10.1079/9781780647296.0024
Shabala, S., & Pottosin, I. (2014). Regulation of potassium transport in plants under hostile conditions: Implications for abiotic and biotic stress tolerance. Physiologia Plantarum, 151(3), 257-279. https://doi.org/10.1111/ppl.12165
Shoukat, E., Abideen, Z., Ahmed, M. Z., Gulzar, S., Nielsen, B. L. (2019). Changes in growth and photosynthesis linked with intensity and duration of salinity in phragmites karka. Environ. Exp. Bot. 162, 504-514. https://doi.org/10.1016/j.envexpbot.2019.03.024
Silva, J. E. M., Bremm, C., Bredemeier, C., Menezes, J. L., Alves, L. A., Tiecher, T., ... & De Faccio Carvalho, P. C. (2022). Normalized Difference Vegetation Index (NDVI) for soybean biomass and nutrient uptake estimation in response to production systems and fertilization strategies. Frontiers in Sustainable Food Systems, 6. https://doi.org/10.3389/fsufs.2022.959681
Sims, Daniel A., and John A. Gamon. (2002). Relationships between Leaf Pigment Content and Spectral Reflectance across a Wide Range of Species, Leaf Structures and Developmental Stages. Remote Sensing of Environment, vol. 81, no. 2, pp. 337-354
Singh, R., Upadhyay, S. K., Aggarwal, D., Sharma, I., & Prasad, N. (2019). A study on hydroponic farming system of wheat, spinach and sword lily for Sustainable Development of Agriculture. Bio Science Research Bulletin, 35(2), 59. https://doi.org/10.5958/2320-3161.2019.00014.2
Stamford, John (2020). Using spectral signatures as a toolbox for determining crop health status. PhD thesis, University of Essex
Stirbet, A. (2012). Chlorophyll a fluorescence induction: a personal perspective of the thermal phase, the J-I-P rise. Photosynthesis Res. 113 (1), 15-61. https://doi.org/10.1007/s11120-012-9754-5.
Strasser, R. J., Tsimilli-Michael, M., Srivastava, A. (2004). “Analysis of the chlorophyll a fluorescence transient,” in Chlorophyll a fluorescence (Dordrecht: Springer), 321-362. https://doi.org/10.1007/978-1-4020-3218-9_12.
Tabassum, M., Noreen, Z., Aslam, M., Shah, A. N., Usman, S., Waqas, A., Alsherif, E. A., Korany, S. M., & Nazim, M. (2023). Chitosan modulated antioxidant activity, inorganic ions homeostasis and endogenous melatonin to improve yield of Pisum sativum L. accessions under salt stress. Scientia Horticulturae, 323, 112509. https://doi.org/10.1016/j.scienta.2023.112509
Tucker, C. J. (1979). Red and photographic infrared linear combinations for monitoring vegetation. Remote Sensing of Environment, 8(2), 127-150. https://doi.org/10.1016/0034-4257(79)90013-0
Usman, S., Yaseen, G., Noreen, Z., Rizwan, M., Noor, H., & Elansary, H. O. (2023). Melatonin and arginine combined supplementation alleviate salt stress through physiochemical adjustments and improved antioxidant enzymes activity in Capsicum annuum L. Scientia Horticulturae, 321, 112270. https://doi.org/10.1016/j.scienta.2023.112270
Waqas, M., Ali, N., Zaib-Un-Nisa, N., Ashraf, M. Y., Usman, S., Shah, A. A., Raja, V., & El-Sheikh, M. A. (2024). Impact of iron sulfate (FeSO4) foliar application on growth, metabolites and antioxidative defense of Luffa cylindrica (Sponge gourd) under salt stress. Scientific Reports, 14(1). https://doi.org/10.1038/s41598-024-77182-3
Wang X., Gao Y., Hu B., Chu G. (2019). Comparison of the hydrolysis characteristics of three polyphosphates and their effects on soil P and micronutrient availability. Soil Use Manag. https://doi.org/10.1111/sum.12526
Wang YS., Jensen LS., Magid J. (2016). Differential responses of root and root hair traits of spring wheat genotypes to phosphorus deficiency in solution culture. Plant Soil Environ. 62:540-546. https://doi.org/10.17221/485/
Wen Z., Li H., Shen Q., Tang X., Xiong C., Li H., et al. (2019). Trade-offs among root morphology, exudation and mycorrhizal symbioses for phosphorus-acquisition strategies of 16 crop species. New Phytol. 223:nph.15833. https://doi.org/10.1111/nph.15833.
Zribi, O., Mbarki, S., Metoui, O., Trabelsi, N., Zribi, F., Ksouri, R., et al. (2021). Salinity and phosphorus availability differentially affect plant growth, leaf morphology, water relations, solutes accumulation and antioxidant capacity in aeluropus littoralis. Plant Biosystems-An Int. J. Dealing all Aspects Plant Biol. 155 (4), 935-943. https://doi.org/10.1080/11263504.2020.1810808