Article (Scientific journals)
Phonon-driven mechanism for the chiral phase transition of K3NiO2
Fava, Mauro; McCabe, Emma; Romero, Aldo et al.
2025In Physical Review. B, 111 (17), p. 174102
Peer Reviewed verified by ORBi
 

Files


Full Text
PRB_111_p174102_2025_Phonon-driven mechanism for the chiral phase transition of K3NiO2.pdf
Author postprint (2.6 MB)
Download

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
Chiral phase transitions; Displacive phase transitions; First principle calculations; Phonon dispersions; Electronic, Optical and Magnetic Materials; Condensed Matter Physics; DFT calculations
Abstract :
[en] We investigate the experimentally observed achiral-to-chiral displacive phase transition of K3NiO2 using first-principles calculations. Phonon dispersion analysis of the achiral phase reveals the presence of an unstable phonon branch, with the low-symmetry chiral phases arising from a doubly degenerate zone-boundary phonon mode. The resulting energy landscape exhibits four energetically equivalent wells, described by left- and right-handed chiral space groups. Additionally, we demonstrate that substituting K with larger cations (e.g., Na, Rb, Cs) and replacing Ni with Ag or Au hardens this soft mode, consistent with experimental observations. Our calculations further show that the resulting instability may be externally tuned with the help of hydrostatic pressure and epitaxial strain, and we quantify the effect of these external stimuli by calculating the energy difference between the chiral and achiral structures and the behavior of the O-K-O bonding angle. In particular, we show that the chirality should disappear above ∼1GPa or 3% tensile epitaxial strain. On the other hand, the chiral phases are additionally softened if compressive epitaxial strain is present. We discuss the effect of pressure and strain on other compounds undergoing an achiral-to-chiral transition, unveiling a possible general strategy to control chiral instabilities in materials.
Research Center/Unit :
Q-MAT - Quantum Materials - ULiège
Disciplines :
Physics
Author, co-author :
Fava, Mauro  ;  Université de Liège - ULiège > Département de physique > Physique théorique des matériaux
McCabe, Emma ;  Department of Physics, Durham University, Durham, United Kingdom
Romero, Aldo ;  Université de Liège - ULiège > Département de physique > Physique des matériaux et nanostructures ; Department of Physics and Astronomy, West Virginia University, Morgantown, United States
Bousquet, Eric  ;  Université de Liège - ULiège > Département de physique
Language :
English
Title :
Phonon-driven mechanism for the chiral phase transition of K3NiO2
Publication date :
May 2025
Journal title :
Physical Review. B
ISSN :
2469-9950
eISSN :
2469-9969
Publisher :
American Physical Society
Volume :
111
Issue :
17
Pages :
174102
Peer reviewed :
Peer Reviewed verified by ORBi
Tags :
CÉCI : Consortium des Équipements de Calcul Intensif
Tier-1 supercomputer
Name of the research project :
FNRS-PDR "CHRYSALID"
Funders :
F.R.S.-FNRS - Fonds de la Recherche Scientifique
SDSC - San Diego Supercomputer Center
NSF - National Science Foundation
WVHEPC - West Virginia Higher Education Policy Commission
NASA - National Aeronautics and Space Administration
Funding number :
40003544
Funding text :
Computational resources have been provided by the Consortium des \u00C9quipements de Calcul Intensif (C\u00C9CI), funded by the Fonds de la Recherche Scientifique (F.R.S.-FNRS) under Grant No. 2.5020.11. M.F. and E.B. acknowledge FNRS for support and the PDR project CHRYSALID No. 40003544. We also thank the Pittsburgh Supercomputer Center (Bridges2) and San Diego Supercomputer Center (Expanse) through allocation DMR140031 from the Advanced Cyberinfrastructure Coordination Ecosystem: Services & Support (ACCESS) program, which is supported by National Science Foundation Grants No. 2138259, No. 2138286, No. 2138307, No. 2137603, and No. 2138296. We acknowledge the computational resources provided by WVU Research Computing's Dolly Sods HPC cluster, partially supported by NSF Grant No. OAC-2117575. Additionally, we are grateful for funding from the West Virginia Higher Education Policy Commission under the Research Challenge Grant Program 2022 (Award RCG No. 23-007) and the NASA EPSCoR Program (Award No. 80NSSC22M0173).
Available on ORBi :
since 15 September 2025

Statistics


Number of views
45 (0 by ULiège)
Number of downloads
101 (0 by ULiège)

Scopus citations®
 
4
Scopus citations®
without self-citations
2
OpenCitations
 
0
OpenAlex citations
 
4

Bibliography


Similar publications



Contact ORBi