Chiral phase transitions; Displacive phase transitions; First principle calculations; Phonon dispersions; Electronic, Optical and Magnetic Materials; Condensed Matter Physics; DFT calculations
Abstract :
[en] We investigate the experimentally observed achiral-to-chiral displacive phase transition of K3NiO2 using first-principles calculations. Phonon dispersion analysis of the achiral phase reveals the presence of an unstable phonon branch, with the low-symmetry chiral phases arising from a doubly degenerate zone-boundary phonon mode. The resulting energy landscape exhibits four energetically equivalent wells, described by left- and right-handed chiral space groups. Additionally, we demonstrate that substituting K with larger cations (e.g., Na, Rb, Cs) and replacing Ni with Ag or Au hardens this soft mode, consistent with experimental observations. Our calculations further show that the resulting instability may be externally tuned with the help of hydrostatic pressure and epitaxial strain, and we quantify the effect of these external stimuli by calculating the energy difference between the chiral and achiral structures and the behavior of the O-K-O bonding angle. In particular, we show that the chirality should disappear above ∼1GPa or 3% tensile epitaxial strain. On the other hand, the chiral phases are additionally softened if compressive epitaxial strain is present. We discuss the effect of pressure and strain on other compounds undergoing an achiral-to-chiral transition, unveiling a possible general strategy to control chiral instabilities in materials.
Research Center/Unit :
Q-MAT - Quantum Materials - ULiège
Disciplines :
Physics
Author, co-author :
Fava, Mauro ; Université de Liège - ULiège > Département de physique > Physique théorique des matériaux
McCabe, Emma ; Department of Physics, Durham University, Durham, United Kingdom
Romero, Aldo ; Université de Liège - ULiège > Département de physique > Physique des matériaux et nanostructures ; Department of Physics and Astronomy, West Virginia University, Morgantown, United States
Bousquet, Eric ; Université de Liège - ULiège > Département de physique
Language :
English
Title :
Phonon-driven mechanism for the chiral phase transition of K3NiO2
Publication date :
May 2025
Journal title :
Physical Review. B
ISSN :
2469-9950
eISSN :
2469-9969
Publisher :
American Physical Society
Volume :
111
Issue :
17
Pages :
174102
Peer reviewed :
Peer Reviewed verified by ORBi
Tags :
CÉCI : Consortium des Équipements de Calcul Intensif Tier-1 supercomputer
F.R.S.-FNRS - Fonds de la Recherche Scientifique SDSC - San Diego Supercomputer Center NSF - National Science Foundation WVHEPC - West Virginia Higher Education Policy Commission NASA - National Aeronautics and Space Administration
Funding number :
40003544
Funding text :
Computational resources have been provided by the Consortium des \u00C9quipements de Calcul Intensif (C\u00C9CI), funded by the Fonds de la Recherche Scientifique (F.R.S.-FNRS) under Grant No. 2.5020.11. M.F. and E.B. acknowledge FNRS for support and the PDR project CHRYSALID No. 40003544. We also thank the Pittsburgh Supercomputer Center (Bridges2) and San Diego Supercomputer Center (Expanse) through allocation DMR140031 from the Advanced Cyberinfrastructure Coordination Ecosystem: Services & Support (ACCESS) program, which is supported by National Science Foundation Grants No. 2138259, No. 2138286, No. 2138307, No. 2137603, and No. 2138296. We acknowledge the computational resources provided by WVU Research Computing's Dolly Sods HPC cluster, partially supported by NSF Grant No. OAC-2117575. Additionally, we are grateful for funding from the West Virginia Higher Education Policy Commission under the Research Challenge Grant Program 2022 (Award RCG No. 23-007) and the NASA EPSCoR Program (Award No. 80NSSC22M0173).
M. Nespolo, M. I. Aroyo, and B. Souvignier, Crystallographic shelves: Space-group hierarchy explained, J. Appl. Crystallogr. 51, 1481 (2018) 1600-5767 10.1107/S1600576718012724.
H. Flack, Chiral and achiral crystal structures, Helv. Chim. Acta 86, 905 (2003) 0018-019X 10.1002/hlca.200390109.
E. Bousquet, M. Fava, Z. Romestan, F. Gómez-Ortiz, E. E. McCabe, and A. H. Romero, Structural chirality and related properties in periodic inorganic solids: Review and perspectives, J. Phys.: Condens. Matter 37, 163004 (2025) 0953-8984 10.1088/1361-648X/adb674.
S.-H. Yang, R. Naaman, Y. Paltiel, and S. S. P. Parkin, Chiral spintronics, Nat. Rev. Phys. 3, 328 (2021) 2522-5820 10.1038/s42254-021-00302-9.
F. Evers, A. Aharony, N. Bar-Gill, O. Entin-Wohlman, P. Hedegård, O. Hod, P. Jelinek, G. Kamieniarz, M. Lemeshko, K. Michaeli, V. Mujica, R. Naaman, Y. Paltiel, S. Refaely-Abramson, O. Tal, J. Thijssen, M. Thoss, J. M. van Ruitenbeek, L. Venkataraman, D. H. Waldeck, Theory of chirality induced spin selectivity: Progress and challenges, Adv. Mater. 34, 2106629 (2022) 0935-9648 10.1002/adma.202106629.
J. Junquera, Y. Nahas, S. Prokhorenko, L. Bellaiche, J. Íñiguez, D. G. Schlom, L.-Q. Chen, S. Salahuddin, D. A. Muller, L. W. Martin, and R. Ramesh, Topological phases in polar oxide nanostructures, Rev. Mod. Phys. 95, 025001 (2023) 0034-6861 10.1103/RevModPhys.95.025001.
A. N. Bogdanov and U. K. Rößler, Chiral symmetry breaking in magnetic thin films and multilayers, Phys. Rev. Lett. 87, 037203 (2001) 0031-9007 10.1103/PhysRevLett.87.037203.
A. Fert, N. Reyren, and V. Cros, Magnetic skyrmions: Advances in physics and potential applications, Nat. Rev. Mater. 2, 17031 (2017) 2058-8437 10.1038/natrevmats.2017.31.
G. Chang, B. J. Wieder, F. Schindler, D. S. Sanchez, I. Belopolski, S.-M. Huang, B. Singh, D. Wu, T.-R. Chang, T. Neupert, S.-Y. Xu, H. Lin, and M. Z. Hasan, Topological quantum properties of chiral crystals, Nat. Mater. 17, 978 (2018) 1476-1122 10.1038/s41563-018-0169-3.
N. B. M. Schröter, S. Stolz, K. Manna, F. de Juan, M. G. Vergniory, J. A. Krieger, D. Pei, T. Schmitt, P. Dudin, T. K. Kim, C. Cacho, B. Bradlyn, H. Borrmann, M. Schmidt, R. Widmer, V. N. Strocov, and C. Felser, Observation and control of maximal Chern numbers in a chiral topological semimetal, Science 369, 179 (2020) 0036-8075 10.1126/science.aaz3480.
L. Zhang and Q. Niu, Chiral phonons at high-symmetry points in monolayer hexagonal lattices, Phys. Rev. Lett. 115, 115502 (2015) 0031-9007 10.1103/PhysRevLett.115.115502.
K. Ishito, H. Mao, Y. Kousaka, Y. Togawa, S. Iwasaki, T. Zhang, S. Murakami, J.-i. Kishine, and T. Satoh, Truly chiral phonons in (Equation presented)-HgS, Nat. Phys. 19, 35 (2023) 1745-2473 10.1038/s41567-022-01790-x.
H. Ueda, M. García-Fernández, S. Agrestini, C. P. Romao, J. van den Brink, N. A. Spaldin, K.-J. Zhou, and U. Staub, Chiral phonons in quartz probed by x-rays, Nature (London) 618, 946 (2023) 0028-0836 10.1038/s41586-023-06016-5.
A. Beekman, L. Rademaker, and J. van Wezel, An introduction to spontaneous symmetry breaking, SciPost Phys. Lect. Notes 11 (2019) 2590-1990 10.21468/SciPostPhysLectNotes.11.
J. Hlinka, Eight types of symmetrically distinct vectorlike physical quantities, Phys. Rev. Lett. 113, 165502 (2014) 0031-9007 10.1103/PhysRevLett.113.165502.
K. C. Erb and J. Hlinka, Symmetry guide to chiroaxial transitions, Phase Transitions 91, 953 (2018) 0141-1594 10.1080/01411594.2018.1498498.
K. Kimura, M. Sera, and T. Kimura, (Equation presented) cation control of chiral domain formation in (Equation presented) (A = Ba, Sr), Inorg. Chem. 55, 1002 (2016) 0020-1669 10.1021/acs.inorgchem.5b02622.
P. Huang, Z. Xia, X. Gao, J. M. Rondinelli, X. Zhang, H. Zhang, K. R. Poeppelmeier, and A. Zunger, Ferri-chiral compounds with potentially switchable Dresselhaus spin splitting, Phys. Rev. B 102, 235127 (2020) 2469-9950 10.1103/PhysRevB.102.235127.
T. Hayashida, K. Kimura, D. Urushihara, T. Asaka, and T. Kimura, Observation of ferrochiral transition induced by an antiferroaxial ordering of antipolar structural units in (Equation presented), J. Am. Chem. Soc. 143, 3638 (2021) 0002-7863 10.1021/jacs.1c00391.
T. Hayashida, K. Kimura, and T. Kimura, Switching crystallographic chirality in (Equation presented) by laser irradiation, J. Phys. Chem. Lett. 13, 3857 (2022) 1948-7185 10.1021/acs.jpclett.2c00606.
M. Fava, W. Lafargue-Dit-Hauret, A. H. Romero, and E. Bousquet, Large and tunable spin-orbit effect of (Equation presented) orbitals through structural cavities in crystals, Phys. Rev. B 108, L201112 (2023) 2469-9950 10.1103/PhysRevB.108.L201112.
M. Fava, W. Lafargue-Dit-Hauret, A. H. Romero, and E. Bousquet, Ferroelectricity and chirality in the (Equation presented) crystal, Phys. Rev. B 109, 024113 (2024) 2469-9950 10.1103/PhysRevB.109.024113.
C. P. Romao and D. M. Juraschek, Phonon-induced geometric chirality, ACS Nano 18, 29550 (2024) 1936-0851 10.1021/acsnano.4c05978.
Z. Zeng, M. Först, M. Fechner, M. Buzzi, E. B. Amuah, C. Putzke, P. J. W. Moll, D. Prabhakaran, P. G. Radaelli, and A. Cavalleri, Photo-induced chirality in a nonchiral crystal, Science 387, 431 (2025) 10.1126/science.adr4713.
H. Iwasaki, K. Sugii, T. Yamada, and N. Niizeki, (Equation presented) crystal; A new ferroelectric, Appl. Phys. Lett. 18, 444 (1971) 0003-6951 10.1063/1.1653487.
H. Iwasaki, S. Miyazawa, H. Koizumi, K. Sugii, and N. Niizeki, Ferroelectric and optical properties of (Equation presented) and its isomorphous compound (Equation presented), J. Appl. Phys. 43, 4907 (1972) 0021-8979 10.1063/1.1661044.
V. Wadhawan, Introduction to Ferroic Materials (CRC Press, London, 2000).
K. Crossed D signuriš, U. Müller, and M. Jansen, (Equation presented) revisited, phase transition and crystal structure refinement, Z. Anorg. Allg. Chem. 638, 737 (2012) 0044-2313 10.1002/zaac.201100511.
K. Crossed D signuriš, O. V. Magdysyuk, and M. Jansen, Syntheses, structures and magnetic properties of the alkali oxonickelates(i) (Equation presented) (A = K, Rb, Cs), Solid State Sci. 14, 1399 (2012) 1293-2558 10.1016/j.solidstatesciences.2012.06.006.
G. Kresse and D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method, Phys. Rev. B 59, 1758 (1999) 0163-1829 10.1103/PhysRevB.59.1758.
J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77, 3865 (1996) 0031-9007 10.1103/PhysRevLett.77.3865.
S. L. Dudarev, G. A. Botton, S. Y. Savrasov, C. J. Humphreys, and A. P. Sutton, Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study, Phys. Rev. B 57, 1505 (1998) 0163-1829 10.1103/PhysRevB.57.1505.
M. Cococcioni and S. de Gironcoli, Linear response approach to the calculation of the effective interaction parameters in the (Equation presented) method, Phys. Rev. B 71, 035105 (2005) 1098-0121 10.1103/PhysRevB.71.035105.
H. T. Stokes, D. M. Hatch, B. J. Campbell, and D. E. Tanner, Isodisplace: A web-based tool for exploring structural distortions, J. Appl. Crystallogr. 39, 607 (2006) 0021-8898 10.1107/S0021889806014075.
A. Togo and I. Tanaka, First principles phonon calculations in materials science, Scr. Mater. 108, 1 (2015) 1359-6462 10.1016/j.scriptamat.2015.07.021.
A. Togo, F. Oba, and I. Tanaka, First-principles calculations of the ferroelastic transition between rutile-type and (Equation presented)-type (Equation presented) at high pressures, Phys. Rev. B 78, 134106 (2008) 1098-0121 10.1103/PhysRevB.78.134106.
X. Gonze, B. Amadon, G. Antonius, F. Arnardi, L. Baguet, J.-M. Beuken, J. Bieder, F. Bottin, J. Bouchet, E. Bousquet, N. Brouwer, F. Bruneval, G. Brunin, T. Cavignac, J.-B. Charraud, W. Chen, M. Côté, S. Cottenier, J. Denier, G. Geneste, The A binit project: Impact, environment and recent developments, Comput. Phys. Commun. 248, 107042 (2020) 0010-4655 10.1016/j.cpc.2019.107042.
X. He, N. Helbig, M. J. Verstraete, and E. Bousquet, TB2J: A python package for computing magnetic interaction parameters, Comput. Phys. Commun. 264, 107938 (2021) 0010-4655 10.1016/j.cpc.2021.107938.
A. H. Romero, D. C. Allan, B. Amadon, G. Antonius, T. Applencourt, L. Baguet, J. Bieder, F. Bottin, J. Bouchet, E. Bousquet et al., ABINIT: Overview and focus on selected capabilities, J. Chem. Phys. 152, 124102 (2020) 0021-9606 10.1063/1.5144261.
D. Hamann, Optimized norm-conserving Vanderbilt pseudopotentials, Phys. Rev. B 88, 085117 (2013) 1098-0121 10.1103/PhysRevB.88.085117.
M. J. Van Setten, M. Giantomassi, E. Bousquet, M. J. Verstraete, D. R. Hamann, X. Gonze, and G.-M. Rignanese, The P seudo D ojo: Training and grading a 85 element optimized norm-conserving pseudopotential table, Comput. Phys. Commun. 226, 39 (2018) 0010-4655 10.1016/j.cpc.2018.01.012.
F. Bernhardt and R. Hoppe, Das erste oxoferrat(I): Zur konstitution von (Equation presented) und (Equation presented), Z. Anorg. Allg. Chem. 619, 969 (1993) 0044-2313 10.1002/zaac.19936190602.
H. Yamane, S. Kikkawa, and M. Koizumi, High-and low-temperature phases of lithium boron nitride, (Equation presented): Preparation, phase relation, crystal structure, and ionic conductivity, J. Solid State Chem. 71, 1 (1987) 0022-4596 10.1016/0022-4596(87)90135-6.
G. Wagner and R. Hoppe, Oxydation intermetallischer phasen: (Equation presented) aus NaAu und (Equation presented), Z. Anorg. Allg. Chem. 549, 26 (1987) 0044-2313 10.1002/zaac.19875490604.
W. Losert and R. Hoppe, Ein neues oxocuprat (I): (Equation presented), Z. Anorg. Allg. Chem. 521, 69 (1985) 0044-2313 10.1002/zaac.19855210210.
M. Sofin and M. Jansen, (Equation presented), a novel oxocobaltate(I) synthesized via the azide/nitrate route, Z. Anorg. Allg. Chem. 627, 2115 (2001) 0044-2313 10.1002/1521-3749(200109)627:9%3C2115::AID-ZAAC2115%3E3.0.CO;2-L.
A. Moeller, M. A. Hitchman, E. Krausz, and R. Hoppe, Synthesis, crystal structure and physical properties of KNa2[NiO2] and K3[NiO2] containing "linear" [NiO2]3-anions, Inorg. Chem. 34, 2684 (1995) 0020-1669 10.1021/ic00114a029.
M. Fava, A. H. Romero, and E. Bousquet, Handedness selection and hysteresis of chiral orders in crystals, arXiv:2503.06782.
G. A. Samara, T. Sakudo, and K. Yoshimitsu, Important generalization concerning the role of competing forces in displacive phase transitions, Phys. Rev. Lett. 35, 1767 (1975) 0031-9007 10.1103/PhysRevLett.35.1767.
Although several of these compositions may crystallize with different asymmetric unit cells [71-74], we use the (Equation presented) structure to identify trends of the instabilities with respect to the cation masses. U = 0 is used in these systems.
See Supplemental Material at http://link.aps.org/supplemental/10.1103/PhysRevB.111.174102 for additional plots related to the phonon band structure and to the structural behaviour under applied hydrostatic pressure and strain.
J. Leciejewicz, The crystal structure of tellurium dioxide. a redetermination by neutron diffraction, Z. Kristallogr.-Cryst. Mater. 116, 345 (1961) 2196-7105 10.1524/zkri.1961.116.16.345.
P. A. Thomas, The crystal structure and absolute optical chirality of paratellurite, (Equation presented), J. Phys. C 21, 4611 (1988) 0022-3719 10.1088/0022-3719/21/25/009.
K. Peng, W. Ren, Y. Wu, H. Ru, S. Lu, A. Chen, P. Wang, X. Fang, H. Li, L. Chi, S. Ding, L. Wang, Y. Wang, and F. Li, Observation of metallic (Equation presented) thin film with rutile structure on FeTe surface, J. Mater. Sci. 57, 10225 (2022) 0022-2461 10.1007/s10853-022-07165-0.
M. Ceriotti, F. Pietrucci, and M. Bernasconi, Ab initio study of the vibrational properties of crystalline (Equation presented): The (Equation presented), and (Equation presented) phases, Phys. Rev. B 73, 104304 (2006) 1098-0121 10.1103/PhysRevB.73.104304.
A. Jayaraman and G. A. Kourouklis, A high pressure Raman study of (Equation presented) to 30 GPa and pressure-induced phase changes, Pramana 36, 133 (1991) 0304-4289 10.1007/BF02845698.
F. Gómez-Ortiz, A. H. Romero, and E. Bousquet, Pathways to crystal chirality an algorithm to identify new displacive chiral phase transitions, arXiv:2503.13076.
N. R. Keskar and J. R. Chelikowsky, Structural properties of nine silica polymorphs, Phys. Rev. B 46, 1 (1992) 0163-1829 10.1103/PhysRevB.46.1.
V. Dmitriev, V. Torgashev, P. Tolédano, and E. K. H. Salje, Theory of (Equation presented) polymorphs, Europhys. Lett. 37, 553 (1997) 0295-5075 10.1209/epl/i1997-00190-3.
A. J. Leadbetter and A. F. Wright, The (Equation presented) transition in the cristobalite phases of (Equation presented) and (Equation presented) I. X-ray studies, Philos. Mag. 33, 105 (1976) 0031-8086 10.1080/14786437608221095.
D. M. Hatch and S. Ghose, The (Equation presented) phase transition in cristobalite, (Equation presented), Phys. Chem. Miner. 17, 554 (1991) 0342-1791 10.1007/BF00202234.
M. T. Dove, Theory of displacive phase transitions in minerals, Am. Mineral. 82, 213 (1997) 0003-004X 10.2138/am-1997-3-401.
R. T. Downs and D. C. Palmer, The pressure behavior of (Equation presented) cristobalite, Am. Mineral. 79, 9 (1994).
V. M. Talanov and V. B. Shirokov, Atomic order in the spinel structure-a group-theoretical analysis, Acta Crystallogr. Sect. A 70, 49 (2014) 2053-2733 10.1107/S2053273313027605.
S. J. Marin, M. O'Keeffe, and D. E. Partin, Structures and crystal chemistry of ordered spinels: (Equation presented), and (Equation presented), J. Solid State Chem. 113, 413 (1994) 0022-4596 10.1006/jssc.1994.1389.
H. Kawai, M. Tabuchi, M. Nagata, H. Tukamoto, and A. R. West, Crystal chemistry and physical properties of complex lithium spinels (Equation presented) (M=Mg, Co, Ni, Zn; M′=Ti, Ge), J. Mater. Chem. 8, 1273 (1998) 0959-9428 10.1039/a800234g.
K. Hirota, M. Ohtani, N. Mochida, and A. Ohtsuka, Formation and structure of spinel solid solution in (Equation presented) (M=Zn, Co, Ni) system, J. Ceram. Soc. Jpn. 96, 92 (1988) 0914-5400 10.2109/jcersj.96.92.
M. Isobe and Y. Ueda, Observation of phase transition from metal to spin-singlet insulator in (Equation presented) with S=1/2 Pyrochlore Lattice, J. Phys. Soc. Jpn. 71, 1848 (2002) 0031-9015 10.1143/JPSJ.71.1848.
M. Schmidt, W. Ratcliff, P. G. Radaelli, K. Refson, N. M. Harrison, and S. W. Cheong, Spin singlet formation in (Equation presented): Evidence of a helical dimerization pattern, Phys. Rev. Lett. 92, 056402 (2004) 0031-9007 10.1103/PhysRevLett.92.056402.
W. B. St. Senz and D. Hesse, The effect of stress on cubic-to-tetragonal phase transitions in (Equation presented) and (Equation presented) spinel films, Philos. Mag. A 81, 109 (2001) 0141-8610 10.1080/01418610108216621.
T. Yang, W.-G. Li, Q.-J. Liu, and Z.-T. Liu, Geometrical, elastic, electronic, phonon, and optical properties of (Equation presented) from first-principles calculation, J. Phys. Chem. Solids 194, 112210 (2024) 0022-3697 10.1016/j.jpcs.2024.112210.
M. Sofin, K. Friese, J. Nuss, E. M. Peters, and M. Jansen, Synthesis and crystal structure of (Equation presented), Z. Anorg. Allg. Chem. 628, 2500 (2002) 0044-2313 10.1002/1521-3749(200211)628:11%3C2500::AID-ZAAC2500%3E3.0.CO;2-L.
A.-V. Mudring and M. Jansen, Synthese und kristallstruktur von (Equation presented), Z. Anorg. Allg. Chem. 627, 77 (2001) 0044-2313 10.1002/1521-3749(200101)627:1%3C77::AID-ZAAC77%3E3.0.CO;2-N.
B. Darriet, M. Devalette, and B. Lecart, Détermination de la structure cristalline de (Equation presented), Rev. Chim. Miner. 14, 423 (1977).