[en] We compare the various chirality measures most widely used in the literature to quantify chiral symmetry in extended solids, i.e., the continuous chirality measure and the Hausdorff distance. By studying these functions in an algebraically tractable case, we can evaluate their strengths and weaknesses when applied to more complex crystals. Going beyond those classical calculations, we propose a different method to quantify the handedness of a crystal based on a pseudoscalar function, i.e., the helicity during a soft phonon mode driven displacive phase transition from an achiral structure. This quantity, borrowed from hydrodynamics, can be computed from the eigenvector carrying the system from the high-symmetry nonchiral phase to the low-symmetry chiral phase. Different model systems like K3NiO2, CsCuCl3, and MgTi2O4 are used as test cases where we show the superior interest of using helicity to quantify chirality in displacive chiral transitions together with the handedness distinction.
Research Center/Unit :
Q-MAT - Quantum Materials - ULiège
Disciplines :
Physics
Author, co-author :
Gomez Ortiz, Fernando ; Université de Liège - ULiège > Département de physique > Physique théorique des matériaux
Fava, Mauro ; Université de Liège - ULiège > Département de physique > Physique théorique des matériaux
McCabe, Emma E. ; Department of Physics, Durham University, Durham, United Kingdom
Romero, Aldo ; Université de Liège - ULiège > Département de physique > Physique des matériaux et nanostructures ; Department of Physics and Astronomy, West Virginia University, Morgantown, United States
Bousquet, Eric ; Université de Liège - ULiège > Département de physique
Language :
English
Title :
Structural chirality measurements and computation of handedness in periodic solids
Publication date :
November 2024
Journal title :
Physical Review. B
ISSN :
2469-9950
eISSN :
2469-9969
Publisher :
American Physical Society
Volume :
110
Issue :
17
Pages :
174112
Peer reviewed :
Peer Reviewed verified by ORBi
Tags :
CÉCI : Consortium des Équipements de Calcul Intensif Tier-1 supercomputer
F.R.S.-FNRS - Fonds de la Recherche Scientifique Waalse Gewest EU - European Union EC - European Commission DOE - United States. Department of Energy NSF - National Science Foundation
Funding number :
40003544; 101148906; 2.5020.11
Funding text :
F.G.-O., M.F., and E.B. acknowledge the Fonds de la Recherche Scientifique (FNRS) for financial support, the PDR CHRYSALID Project No. 40003544 and the Consortium des \u00C9quipements de Calcul Intensif (C\u00C9CI), funded by the F.R.S.-FNRS under Grant No. 2.5020.11 and the Tier-1 Lucia supercomputer of the Walloon Region, infrastructure funded by the Walloon Region under the Grant Agreement No. 1910247. F.G.-O. and E.B. also acknowledge support by the European Union's Horizon 2020 research and innovation program under Grant Agreement No. 964931 (TSAR). F.G.O. also acknowledges financial support from MSCA-PF 101148906 funded by the European Union and the Fonds de la Recherche Scientifique (FNRS) through the Grant No. FNRS-CR 1.B.227.25F. The work at West Virginia University was supported by the U.S. Department of Energy (DOE), Office of Science, Basic Energy Sciences (BES), under Award No. DE-SC0021375. This work used Bridges2 and Expanse at the Pittsburgh Supercomputer and the San Diego Supercomputer Center through allocation DMR140031 from the Advanced Cyberinfrastructure Coordination Ecosystem: Services & Support (ACCESS) program, which National Science Foundation supports Grants No. 2138259, No. 2138286, No. 2138307, No. 2137603, and No. 2138296.
G. H. Fecher, J. Kübler, and C. Felser, Chirality in the solid state: Chiral crystal structures in chiral and achiral space groups, Materials 15, 5812 (2022) 10.3390/ma15175812.
M. Nespolo, M. I. Aroyo, and B. Souvignier, Crystallographic shelves: space-group hierarchy explained, J. Appl. Crystallogr. 51, 1481 (2018) 1600-5767 10.1107/S1600576718012724.
E. Bousquet, M. Fava, Z. Romestan, F. Gómez-Ortiz, E. E. McCabe, and A. H. Romero, Structural chirality and related properties in the periodic inorganic solids: Review and perspectives, arXiv:2406.14684.
M. Parker, Physics of Optoelectronics (CRC Press, Boca Raton, FL, 2018).
H. Zabrodsky, S. Peleg, and D. Avnir, Continuous symmetry measures, J. Am. Chem. Soc. 114, 7843 (1992) 0002-7863 10.1021/ja00046a033.
H. Zabrodsky and D. Avnir, Continuous symmetry measures. 4. Chirality, J. Am. Chem. Soc. 117, 462 (1995) 0002-7863 10.1021/ja00106a053.
N. Weinberg and K. Mislow, On chirality measures and chirality properties, Can. J. Chem. 78, 41 (2000) 0008-4042 10.1139/v99-223.
M. Petijean, Chirality and symmetry measures: A transdisciplinary review, Entropy 5, 271 (2003) 1099-4300 10.3390/e5030271.
P. W. Fowler, Quantification of chirality: Attempting the impossible, Symmetry: Cult. Sci. 16, 321 (2005).
A. B. Buda and K. Mislow, A Hausdorff chirality measure, J. Am. Chem. Soc. 114, 6006 (1992) 0002-7863 10.1021/ja00041a016.
S. Streib, Difference between angular momentum and pseudoangular momentum, Phys. Rev. B 103, L100409 (2021) 2469-9950 10.1103/PhysRevB.103.L100409.
L. Zhang and Q. Niu, Angular momentum of phonons and the Einstein-de Haas effect, Phys. Rev. Lett. 112, 085503 (2014) 0031-9007 10.1103/PhysRevLett.112.085503.
M. Fava, E. McCabe, A. H. Romero, and E. Bousquet, A phonon-driven mechanism for an emergent and reversible chirality in crystals, arXiv:2405.12696.
H. Moffatt and R. Ricca, Helicity and the Cǎlugǎreanu invariant, Proc. R. Soc. London A 439, 411 (1992) 0962-8444 10.1098/rspa.1992.0159.
H. K. Moffatt, Helicity and singular structures in fluid dynamics, Proc. Natl. Acad. Sci. USA 111, 3663 (2014) 0027-8424 10.1073/pnas.1400277111.
M. Nespolo and A. H. Benahsene, Symmetry and chirality in crystals, J. Appl. Crystallogr. 54, 1594 (2021) 1600-5767 10.1107/S1600576721009109.
J. Hlinka, Eight types of symmetrically distinct vectorlike physical quantities, Phys. Rev. Lett. 113, 165502 (2014) 0031-9007 10.1103/PhysRevLett.113.165502.
C. Dryzun, A. Zait, and D. Avnir, Quantitative symmetry and chirality-a fast computational algorithm for large structures: Proteins, macromolecules, nanotubes, and unit cells, J. Comput. Chem. 32, 2526 (2011) 0192-8651 10.1002/jcc.21828.
A. Zayit, M. Pinsky, H. Elgavi, C. Dryzun, and D. Avnir, A web site for calculating the degree of chirality, Chirality 23, 17 (2011) 0899-0042 10.1002/chir.20807.
I. Tuvi-Arad, Y. Shalit, and G. Alon, CSM software: Continuous symmetry and chirality measures for quantitative structural analysis, J. Chem. Inf. Model. 64, 5375 (2024) 1549-9596 10.1021/acs.jcim.4c00609.
M. Pinsky, C. Dryzun, D. Casanova, P. Alemany, and D. Avnir, Analytical methods for calculating continuous symmetry measures and the chirality measure, J. Comput. Chem. 29, 2712 (2008) 0192-8651 10.1002/jcc.20990.
G. Alon, Y. Ben-Haim, and I. Tuvi-Arad, Continuous symmetry and chirality measures: approximate algorithms for large molecular structures, J. Cheminformatics 15, 106 (2023) 1758-2946 10.1186/s13321-023-00777-x.
A. B. Buda, T. A. der Heyde, and K. Mislow, On quantifying chirality, Angew. Chem. Int. Ed. Eng. 31, 989 (1992) 0570-0833 10.1002/anie.199209891.
G. Gillat, On quantifying chirality-obstacles and problems towards unification, J. Math. Chem. 15, 197 (1994) 0259-9791 10.1007/BF01277559.
S. J. Jenkins, Chirality at Solid Surfaces (Wiley, Hoboken, NJ, 2018).
G. P. Moss, Basic terminology of stereochemistry (IUPAC recommendations 1996), Pure Appl. Chem. 68, 2193 (1996) 1365-3075 10.1351/pac199668122193.
P. G. Mezey, Rules on chiral and achiral molecular transformations, J. Math. Chem. 17, 185 (1995) 0259-9791 10.1007/BF01164847.
N. Weinberg and K. Mislow, On chiral pathways (Equation presented): A dimensional analysis, Theor. Chim. Acta 95, 63 (1997) 0040-5744 10.1007/BF02341691.
M. Banik, K. Rodriguez, E. Hulkko, and V. A. Apkarian, Orientation-dependent handedness of chiral plasmons on nanosphere dimers: How to turn a right hand into a left hand, ACS Photonics 3, 2482 (2016) 10.1021/acsphotonics.6b00733.
M. Vavilin and I. Fernandez-Corbaton, Multidimensional measures of electromagnetic chirality and their conformal invariance, New J. Phys. 24, 033022 (2022) 1367-2630 10.1088/1367-2630/ac57e8.
K. Mislow, Molecular chirality, Topics in Stereochemistry (Wiley, New York, 1999), pp. 1-82.
M. Fava, W. Lafargue-Dit-Hauret, A. H. Romero, and E. Bousquet, Ferroelectricity and chirality in the (Equation presented) crystal, Phys. Rev. B 109, 024113 (2024) 2469-9950 10.1103/PhysRevB.109.024113.
P. Shafer, P. García-Fernández, P. Aguado-Puente, A. R. Damodaran, A. K. Yadav, C. T. Nelson, S.-L. Hsu, J. C. Wojdeł, J. Íñiguez, L. W. Martin, E. Arenholz, J. Junquera, and R. Ramesh, Emergent chirality in the electric polarization texture of titanate superlattices, Proc. Natl. Acad. Sci. USA 115, 915 (2018) 0027-8424 10.1073/pnas.1711652115.
J. Junquera, Y. Nahas, S. Prokhorenko, L. Bellaiche, J. Íñiguez, D. G. Schlom, L.-Q. Chen, S. Salahuddin, D. A. Muller, L. W. Martin, and R. Ramesh, Topological phases in polar oxide nanostructures, Rev. Mod. Phys. 95, 025001 (2023) 0034-6861 10.1103/RevModPhys.95.025001.
F. Gómez-Ortiz, Helicity computation, https://github.com/Gomez-OrtizF/Helicity_Computation_Crystals/.
K. Duriš, U. Müller, and M. Jansen, (Equation presented) revisited, phase transition and crystal structure refinement, Z. Anorg. Allg. Chem. 638, 737 (2012) 0044-2313 10.1002/zaac.201100511.
T. Koiso, K. Yamamoto, Y. Hata, Y. Takahashi, E. Kita, K. Ohshima, and F. P. Okamura, Determination of the chiral structure of (Equation presented) using anomalous x-ray scattering near the Cs K absorption edge, J. Phys.: Condens. Matter 8, 7059 (1996) 0953-8984 10.1088/0953-8984/8/38/010.
V. P. Plakhty, J. Wosnitza, N. Martin, Y. Marchi, O. P. Smirnov, B. Grenier, and S. V. Gavrilov, Isostructural transition coupled with spin ordering in (Equation presented): A spatially frustrated spiral crystal lattice, Phys. Rev. B 79, 012410 (2009) 1098-0121 10.1103/PhysRevB.79.012410.
C. Kroese and W. Maaskant, The relation between the high-temperature and room-temperature structure of (Equation presented), Chem. Phys. 5, 224 (1974) 0301-0104 10.1016/0301-0104(74)80020-0.
S. Hirotsu, Jahn-Teller induced phase transition in (Equation presented): structural phase transition with helical atomic displacements, J. Phys. C: Solid State Phys. 10, 967 (1977) 0022-3719 10.1088/0022-3719/10/7/008.
M. Schmidt, W. Ratcliff, P. G. Radaelli, K. Refson, N. M. Harrison, and S. W. Cheong, Spin singlet formation in (Equation presented): Evidence of a helical dimerization pattern, Phys. Rev. Lett. 92, 056402 (2004) 0031-9007 10.1103/PhysRevLett.92.056402.
V. V. Ivanov, V. M. Talanov, V. B. Shirokov, and M. V. Talanov, Crystal chemistry and formation mechanism of tetragonal (Equation presented), Inorg. Mater. 47, 990 (2011) 0020-1685 10.1134/S0020168511090093.
H. T. Stokes, D. M. Hatch, and B. J. Campbell, ISODISTORT, ISOTROPY software suite, iso.byu.edu.
B. J. Campbell, H. T. Stokes, D. E. Tanner, and D. M. Hatch, ISODISPLACE: a web-based tool for exploring structural distortions, J. Appl. Crystallogr. 39, 607 (2006) 0021-8898 10.1107/S0021889806014075.
D. Orobengoa, C. Capillas, M. I. Aroyo, and J.-M. Perez-Mato, AMPLIMODES: symmetry-mode analysis on the Bilbao Crystallographic Server, J. Appl. Crystallogr. 42, 820 (2009) 0021-8898 10.1107/S0021889809028064.
J. M. Perez-Mato, D. Orobengoa, and M. I. Aroyo, Mode crystallography of distorted structures, Acta Crystallogr. A 66, 558 (2010) 0108-7673 10.1107/S0108767310016247.
R. Resta, Quantum-mechanical position operator in extended systems, Phys. Rev. Lett. 80, 1800 (1998) 0031-9007 10.1103/PhysRevLett.80.1800.
A. F. Zahrt and S. E. Denmark, Evaluating continuous chirality measure as a 3D descriptor in chemoinformatics applied to asymmetric catalysis, Tetrahedron Lett. 75, 1841 (2019) 0040-4020 10.1016/j.tet.2019.02.007.
H. Ueda, M. García-Fernández, S. Agrestini, C. P. Romao, J. van den Brink, N. A. Spaldin, K.-J. Zhou, and U. Staub, Chiral phonons in quartz probed by x-rays, Nature (London) 618, 946 (2023) 0028-0836 10.1038/s41586-023-06016-5.
E. Kroumova, M. I. Aroyo, J. M. Pérez-Mato, J. M. Igartua, and S. Ivantchev, Systematic search of displacive ferroelectrics, Ferroelectrics 241, 295 (2000) 0015-0193 10.1080/00150190008225004.
F. Gómez-Ortiz, A. H. Romero, and E. Bousquet, Pathways to crystal chirality: An algorithm to identify new displacive chiral phase transitions (unpublished).
M. Royo and M. Stengel, First-principles theory of spatial dispersion: Dynamical quadrupoles and flexoelectricity, Phys. Rev. X 9, 021050 (2019) 2160-3308 10.1103/PhysRevX.9.021050.
R. D. King-Smith and D. Vanderbilt, Theory of polarization of crystalline solids, Phys. Rev. B 47, 1651 (1993) 0163-1829 10.1103/PhysRevB.47.1651.
A. Zabalo and M. Stengel, Natural optical activity from density-functional perturbation theory, Phys. Rev. Lett. 131, 086902 (2023) 0031-9007 10.1103/PhysRevLett.131.086902.
G. van Dijk, Distribution Theory: Convolution, Fourier Transform, and Laplace Transform (De Gruyter, Berlin, Boston, 2013).