agricultural intensification; farmland birds; habitat selection; population decline; species conservation; vegetation structure; Ecology, Evolution, Behavior and Systematics; Animal Science and Zoology
Abstract :
[en] Farmland habitats witness steep declines in biodiversity. One rapidly declining farmland species is the ortolan bunting Emberiza hortulana. In Finland, a staggering 99% of the population has been lost during the past 30 years. Changes in the breeding habitats have been proposed as a reason for the decline, although hazards during migration and wintering may also play a role. We gathered a 19-year data set of Finnish ortolan buntings and studied which spatial characteristics, habitat features, and climate factors might explain the population growth rate at the singing-group level. As explanatory variables we used region, density of small-scale structures, proportion of agricultural area in the landscape, diversity of crop types, proportion of bare ground, and temperature and precipitation of previous breeding season. Higher population growth rates were associated with higher crop type diversity and higher proportion of bare ground. The mosaic of various crop plants and bare ground may provide a wider array of feeding, hiding and nesting places, and an easier access to food. Higher growth rates were also associated with landscapes dominated by interconnected agricultural land, which may reflect the species' sociability and avoidance of forested areas. The North Ostrobothnia region had higher growth rates compared to other regions. We suggest that northern populations of ortolan bunting should be targeted for further studies on feeding and breeding ecology as well as for urgent conservation actions, such as increasing crop type diversity and bare ground.
Disciplines :
Environmental sciences & ecology
Author, co-author :
Piirainen, Sirke ; Université de Liège - ULiège > Département des sciences sociales > Labo d'anthropologie sociale et culturelle (LASC) ; Zoological Unit, Finnish Museum of Natural History, University of Helsinki, Helsinki, Finland ; Arctic Centre, University of Lapland, Rovaniemi, Finland
Seimola, Tuomas; Natural Resources Institute Finland, Helsinki, Finland
Lindén, Andreas ; Natural Resources Institute Finland, Helsinki, Finland
Tiainen, Juha; Natural Resources Institute Finland, Helsinki, Finland ; Lammi Biological Station, University of Helsinki, Lammi, Finland
Piha, Markus ; Natural Resources Institute Finland, Helsinki, Finland
Language :
English
Title :
Habitat characteristics and the rate of decline in a threatened farmland bird, the ortolan bunting Emberiza hortulana
Publication date :
September 2024
Journal title :
Journal of Avian Biology
ISSN :
0908-8857
eISSN :
1600-048X
Publisher :
John Wiley and Sons Inc
Volume :
2024
Issue :
9-10
Peer reviewed :
Peer Reviewed verified by ORBi
Funding text :
\u2013 SP was funded by the Finnish Cultural Foundation and the Kone Foundation (grant no. 201903886).
Aalto, J., Pirinen, P. and Jylhä, K. 2016. New gridded daily climatology of Finland: permutation-based uncertainty estimates and temporal trends in climate. – JGR Atmospheres 121: 3807–3823.
Benton, T. G., Vickery, J. A. and Wilson, J. D. 2003. Farmland biodiversity: is habitat heterogeneity the key? – Trends Ecol. Evol. 18: 182–188.
Berg, Å. 2008. Habitat selection and reproductive success of ortolan buntings Emberiza hortulana on farmland in central Sweden – the importance of habitat heterogeneity. – Ibis 150: 565–573.
Brambilla, M., Gustin, M., Vitulano, S., Negri, I. and Celada, C. 2016. A territory scale analysis of habitat preferences of the declining ortolan bunting Emberiza hortulana. – Bird Study 63: 52–57.
Brooks, M., Kristensen, K., van Benthem, K., Magnusson, A., Berg, C., Nielsen, A., Skaug, H., Mächler, M. and Bolker, B. 2017. glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. – R J. 9: 378.
Burnham, K. P. and Anderson, D. R. 2002. Model selection and multimodel inference: a practical information-theoretic approach. – Springer.
Burns, F., Eaton, M. A., Barlow, K. E., Beckmann, B. C., Brereton, T., Brooks, D. R., Brown, P. M. J., Al Fulaij, N. A., Gent, T., Henderson, I., Noble, D. G., Parsons, M., Powney, G. D., Roy, H. E., Stroh, P., Walker, K., Wilkinson, J. W., Wotton, S. R. and Gregory, R. D. 2016. Agricultural management and climatic change are the major drivers of biodiversity change in the UK. – PLoS One 11: e0151595.
Campomizzi, A. J., Butcher, J. A., Farrell, S. L., Snelgrove, A. G., Collier, B. A., Gutzwiller, K. J., Morrison, M. L. and Wilkins, R. N. 2008. Conspecific attraction is a missing component in wildlife habitat modeling. – J. Wildl. Manage. 72: 331–336.
Cramp, S. and Perrins, C. M. 1994. Handbook of the birds of Europe, the Middle East and North Africa: the birds of the Western Palearctic. Vol. 9, buntings and new world warblers. – Oxford Univ. Press.
Dale, S. 2000. The importance of farmland for ortolan buntings nesting on raised peat bogs. – Ornis Fenn. 77: 17–25.
Dale, S. 2011. Lifetime patterns of pairing success in male ortolan buntings Emberiza hortulana. – Ibis 153: 573–580.
Dale, S. 2016. Cost of reproduction: a comparison of survival rates of breeding and non-breeding male ortolan buntings. – J. Avian Biol. 47: 583–588.
Dale, S. and Olsen, B. F. G. 2002. Use of farmland by ortolan buntings (Emberiza hortulana) nesting on a burned forest area. – J. Ornithol. 143: 133–144.
Dale, S. and Christiansen, P. 2010. Individual flexibility in habitat selection in the ortolan bunting Emberiza hortulana. – J. Avian Biol. 41: 266–272.
Dale, S., Lunde, A. and Steifetten, Ø. 2005. Longer breeding dispersal than natal dispersal in the ortolan bunting. – Behav. Ecol. 16: 20–24.
Deutsch, M. 2007. Der ortolan Emberiza hortulana im Wendland (Niedersachsen) – Bestandszunahme durch Grünlandumbruch und Melioration? Der ortolan Emberiza hortulana. – Vogelwelt 128: 105–115.
Elts, J., Tätte, K. and Marja, R. 2015. What are the important landscape components for habitat selection of the ortolan bunting Emberiza hortulana in northern limit of range? – Eur. J. Ecol. 1: 13.
Emmerson, M., Morales, M. B., Oñate, J. J., Batáry, P., Berendse, F., Liira, J., Aavik, T., Guerrero, I., Bommarco, R., Eggers, S., Pärt, T., Tscharntke, T., Weisser, W., Clement, L. and Bengtsson, J. 2016. Chapter two – how agricultural intensification affects biodiversity and ecosystem services. – In: Dumbrell, A. J., Kordas, R. L., Woodward, G. (eds), Advances in ecological research, vol. 55. Academic Press, pp. 43–97.
Eng, M. L., Stutchbury, B. J. M. and Morrissey, C. A. 2019. A neonicotinoid insecticide reduces fueling and delays migration in songbirds. – Science 365: 1177–1180.
Evans, K. L. 2004. The potential for interactions between predation and habitat change to cause population declines of farmland birds. – Ibis 146: 1–13.
Finnish Environment Institute. 2023. Corine land cover [dataset]. – https://www.syke.fi/en-US/Open_information/Spatial_datasets/Downloadable_spatial_dataset.
Finnish Food Authority. 2023. Land parcel register [dataset]. – https://www.ruokavirasto.fi/en/about-us/open-information/inspire.
Galpern, P., Vickruck, J., Devries, J. H. and Gavin, M. P. 2020. Landscape complexity is associated with crop yields across a large temperate grassland region. – Agric. Ecosyst. Environ. 290: 106724.
Gremion, J., Marcacci, G., Mazenauer, J., Sori, T., Kebede, F., Ewnetu, M., Christe, P., Arlettaz, R. and Jacot, A. 2022. Habitat preferences of the ortolan bunting (Emberiza hortulana) in its prime wintering grounds, the cereal-dominated Ethiopian Highlands. – Ibis 164: 74–87.
Grützmann, J., Moritz, V., Südbeck, P. and Wendt, D. 2002. Ortolan (Emberiza hortulana) und Grauammer (Miliaria calandra) in Niedersachsen: Brutvorkommen, Lebensräume, Rückgang und Schutz. – Vögelk. Ber. Niedersachs. 34: 69–90.
Hertzog, L. R., Klimek, S., Röder, N., Frank, C., Böhner, H. G. S. and Kamp, J. 2023. Associations between farmland birds and fallow area at large scales: consistently positive over three periods of the EU Common Agricultural Policy but moderated by landscape complexity. – J. Appl. Ecol. 60: 1077–1088.
Hiironen, J. and Ettanen, S. 2013. Peltoalueiden tilusrakenne ja sen parantamismahdollisuudet. Maanmittauslaitoksen julkaisuja, 113. – National Land Survey of Finland.
Hiron, M., Berg, Å., Eggers, S., Berggren, Å., Josefsson, J. and Pärt, T. 2015. The relationship of bird diversity to crop and non-crop heterogeneity in agricultural landscapes. – Landscape Ecol. 30: 2001–2013.
Jackson, M. V., Carrasco, L. R., Choi, C. Y., Li, J., Ma, Z., Melville, D. S., Mu, T., Peng, H. B., Woodworth, B. K., Yang, Z., Zhang, L. and Fuller, R. A. 2019. Multiple habitat use by declining migratory birds necessitates joined-up conservation. – Ecol. Evol. 9: 2505–2515.
Jiguet, F., Arlettaz, R., Bauer, H.-G., Belik, V., Copete, J. L., Couzi, L., Czajkowski, M. A., Dale, S., Dombrovski, V., Elts, J., Ferrand, Y., Hargues, R., Kirwan, G. M., Minkevicius, S., Piha, M., Selstam, G., Skierczynski, M., Siblet, J.-P., and Sokolov, A. 2016. An update of the European breeding population sizes and trends of the ortolan bunting (Emberiza hortulana). – Ornis Fenn. 93: 186–196.
Kosicki, J. Z. 2021. The impact of feral domestic cats on native bird populations. Predictive modelling approach on a country scale. – Ecol. Complexity 48: 100964.
Kosicki, J. Z. and Chylarecki, P. 2012. Habitat selection of the ortolan bunting Emberiza hortulana in Poland: predictions from large-scale habitat elements. – Ecol. Res. 27: 347–355.
Laiolo, P. and Tella, J. L. 2005. Habitat fragmentation affects culture transmission: patterns of song matching in DuPont's lark. – J. Appl. Ecol. 42: 1183–1193.
Lehikoinen, A., Jukarainen, A., Mikkola-Roos, M., Below, A., Lehtiniemi, T., Pessa, J., Rajasärkkä, A., Rintala, J., Rusanen, P., Sirkiä, P., Tiainen, J. and Valkama, J. 2019. Linnut. Birds. Aves. – In: Hyvärinen, E., Juslén, A., Kemppainen, E., Uddström, A. and Liukko, U.-M. (eds), The 2019 red list of Finnish species. Ministry of Environment & Finnish Environment Institute, pp. 560–570.
Leo, R., Romanenghi, G., Franchini, D. and Gobbini, M. 2023. Spontaneous renaturalization of open ecosystems in the hills of Brescia seen through the bird community. – Riv. Ital. Ornitol. 93: article 1.
Löffler, F. and Fartmann, T. 2023. The importance of landscape heterogeneity and vegetation structure for the conservation of the ortolan bunting Emberiza hortulana. – Bird Conserv. Int. 33: e55.
Mandelik, Y., Winfree, R., Neeson, T. and Kremen, C. 2012. Complementary habitat use by wild bees in agro-natural landscapes. – Ecol. Appl. 22: 1535–1546.
Menz, M. H. M. and Arlettaz, R. 2012. The precipitous decline of the ortolan bunting Emberiza hortulana: time to build on scientific evidence to inform conservation management. – Oryx 46: 122–129.
Menz, M. H. M., Brotons, L. and Arlettaz, R. 2009. Habitat selection by ortolan buntings Emberiza hortulana in post-fire succession in Catalonia: implications for the conservation of farmland populations. – Ibis 151: 752–761.
Morelli, F. 2012. Correlations between landscape features and crop type and the occurrence of the ortolan bunting Emberiza hortulana in farmlands of Central Italy. – Ornis Fenn. 89: 264–272.
Morrison, C. A. et al. 2021. Covariation in population trends and demography reveals targets for conservation action. – Proc. R. Soc. B 288: 20202955.
Morrison, C. A., Butler, S. J., Clark, J. A., Arizaga, J., Baltà, O., Cepák, J., Nebot, A. L., Piha, M., Thorup, K., Wenninger, T., Robinson, R. A. and Gill, J. A. 2022. Demographic variation in space and time: implications for conservation targeting. – R. Soc. Open Sci. 9: 211671.
Moussy, C., Arlettaz, R., Copete, J. L., Dale, S., Dombrovski, V., Elts, J., Lorrillière, R., Marja, R., Pasquet, E., Piha, M., Seimola, T., Selstam, G. and Jiguet, F. 2018. The genetic structure of the European breeding populations of a declining farmland bird, the ortolan bunting (Emberiza hortulana), reveals conservation priorities. – Conserv. Genet. 19: 909–922.
National land survey of Finland. 2023. Topographic Database [dataset]. – https://www.maanmittauslaitos.fi/en/maps-and-spatial-data/expert-users/product-descriptions/topographic-database.
Nousiainen, I. 2020. Sinne ja takaisin – aikuisten peltosirkkukoiraiden (Emberiza hortulana Linnaeus, 1758) elossasäilyvyys Suomessa vuosina 2013–2019. – MSc thesis, Univ. of Helsinki, Finland.
Piha, M. and Seimola, T. 2021. Bird of the year 2020: the ortolan bunting – regional population estimates and trends. – Linnut-Vuosik. 2020: 6–7.
Piirainen, S., Seimola, T., Lindén, A., Tiainen, J. and Piha, M. 2024. Data from: Habitat characteristics and the rate of decline in a threatened farmland bird, the ortolan bunting Emberiza hortulana. – Dryad Digital Repository, https://doi.org/10.5061/dryad.pc866t1wc.
Revaz, E., Posse, B., Gerber, A., Sierro, A. and Arlettaz, R. 2005. Quel avenir pour le Bruant ortolan Emberiza hortulana en Suisse? – Nos Oiseaux 52: 67–82.
Rigal, S. et al. 2023. Farmland practices are driving bird population decline across Europe. – Proc. Natl Acad. Sci. USA 120: e2216573120.
Ruokolainen, L., Lindén, A., Kaitala, V. and Fowler, M. S. 2009. Ecological and evolutionary dynamics under coloured environmental variation. – Trends Ecol. Evol. 24: 555–563.
Šálek, M., Zeman, V. and Václav, R. 2019. Habitat selection of an endangered European farmland bird, the ortolan bunting Emberiza hortulana, in two contrasting landscapes: implications for management. – Bird Conserv. Int. 29: 144–158.
Schaub, M., Martinez, N., Tagmann-Ioset, A., Weisshaupt, N., Maurer, M. L., Reichlin, T. S., Abadi, F., Zbinden, N., Jenni, L. and Arlettaz, R. 2010. Patches of bare ground as a staple commodity for declining ground-foraging insectivorous farmland birds. – PLoS One 5: e13115.
Schifferli, L. 2001. Birds breeding in a changing farmland. – Acta Ornithol. 36: 35–51.
Shmueli, G., Minka, T. P., Kadane, J. B., Borle, S. and Boatwright, P. 2005. A useful distribution for fitting discrete data: revival of the Conway–Maxwell–Poisson distribution. – J. R. Stat. Soc. C 54: 127–142.
Staggenborg, J. and Anthes, N. 2022. Long-term fallows rate best among agri-environment scheme effects on farmland birds – a meta-analysis. – Conserv. Lett. 15: e12904.
Storch, D., Konvicka, M., Benes, J., Martinková, J. and Gaston, K. J. 2003. Distribution patterns in butterflies and birds of the Czech Republic: separating effects of habitat and geographical position. – J. Biogeogr. 30: 1195–1205.
Tiainen, J., Pakkala, T., Piiroinen, J., Vickholm, M. and Virolainen, E. 1985. The changes in the farmland bird community of the municipality of Lammi, southern Finland, during the last five decades. – Lintumies 20: 30–42.
Traba, J. and Morales, M. B. 2019. The decline of farmland birds in Spain is strongly associated to the loss of fallowland. – Sci. Rep. 9: article 1.
Väisänen, R. A. and Lehikoinen, A. 2013. Suomen maalinnuston pesimäkannan vaihtelut vuosina 1975–2012. – Linnut-Vuosik. 2012: 62–81.
Vepsäläinen, V., Pakkala, T., Piha, M. and Tiainen, J. 2005. Population crash of the ortolan bunting Emberiza hortulana in agricultural landscapes of southern Finland. – Ann. Zool. Fenn. 42: 91–107.
Vepsäläinen, V., Pakkala, T., Piha, M. and Tiainen, J. 2007. The importance of breeding groups for territory occupancy in a declining population of a farmland passerine bird. – Ann. Zool. Fenn. 44: 8–19.
Wretenberg, J., Lindström, Å., Svensson, S., Thierfelder, T. and Pärt, T. 2006. Population trends of farmland birds in Sweden and England: similar trends but different patterns of agricultural intensification. – J. Appl. Ecol. 43: 1110–1120.
Zwarts, L., Bijlsma, R. G. and van der Kamp, J. 2023a. Granivorous birds in the Sahel: is seed supply limiting bird numbers? – Ardea 111: 283–304.
Zwarts, L., Bijlsma, R. G. and van der Kamp, J. 2023b. The fortunes of migratory birds from Eurasia: being on a tightrope in the Sahel. – Ardea 111: 397–437.