[en] High iron ore production generates substantial solid waste. Storing this waste in dams poses environmental issues and safety risks for the population. The aim of this study was to valorize sterile waste (IOT) from an inactive iron mine in the Nador region of northeastern Morocco, as an additive in the manufacture of fired bricks made from a red clay (AJH) extracted from the Oujda region. For this purpose, brick specimens were obtained using a mix of a 40% of AJH and 60% of IOT. Physico-chemical, geotechnical and mineralogical characterization techniques were applied to qualify raw material. IOT consisted of hematite, magnetite, pyrite, jarosite and quartz and AJH of kaolinite, chlorite, calcite, hematite, dolomite, quartz and vermiculite. After firing the specimens at 500 °C, 850 °C and 1100 °C, mineralogical composition, bulk density, compressive strength and microstructure behavior of the specimens was assessed. The compressive strength of the bricks containing IOT is 1.25 MPa at T = 500 °C and it varies little at 1100 °C. The compressive strength of the reference sample is 2.94 MPa at 1100 °C. The material has low vitrification and greater porosity compared to the reference bricks. Adding IOT brings significant changes to the color of fired bricks.
Disciplines :
Earth sciences & physical geography
Author, co-author :
Khazanti, Faiçal El; Laboratory Physico-Chemistry of Processes and Materials (PCPM), Research Team: Geology of Mining and Energy Resources (GRME), Hassan First University, Faculty of Sciences and Technology, Settat, Morocco
Rachid, Ahmed; Laboratory Physico-Chemistry of Processes and Materials (PCPM), Research Team: Geology of Mining and Energy Resources (GRME), Hassan First University, Faculty of Sciences and Technology, Settat, Morocco
El Ouahabi, Meriam ; Université de Liège - ULiège > Département de géologie > Argiles, géochimie et environnements sédimentaires ; ULiège - Université de Liège > UR. Art, Archéologie et Patrimoine
Nasri, Hicham; Applied Geosciences Laboratory, Faculty of Sciences, University Mohammed First, Oujda, Morocco
Azerkane, Dounia; Laboratory of Applied Chemistry and Environment, Team of Mineral Solid Chemistry, Faculty of Sciences, Mohammed First University, Oujda, Morocco
Et-Tayea, Yassine; Laboratory Physico-Chemistry of Processes and Materials (PCPM), Research Team: Geology of Mining and Energy Resources (GRME), Hassan First University, Faculty of Sciences and Technology, Settat, Morocco
Gharibi, El Khadir; UR. Art, Archaeology and Heritage (AAP), University of Liège, Belgium
Language :
English
Title :
Valorization of Iron Ore Tailings from Nador, Morocco, as a Sustainable Additive in the Manufacture of Red Clay Fired Bricks
Publication date :
2024
Journal title :
Journal of Ecological Engineering
ISSN :
2081-139X
eISSN :
2299-8993
Publisher :
Polskie Towarzystwo Inzynierii Ekologicznej (PTIE)
1. Adamou, J.M.K., Ntouala, R.F.D., Effoudou, E.N., Bineli, M.T.N., Ze, A.N.O., Hamadjida, G., Onana, V.L. 2023. Mineralogical, geochemical, and geotechnical features of lateritic soils from termite mounds in two contrasting savannah areas (central Cameroon) as raw materials for brick making. Heliyon, 9(6). https://doi.org/10.1016/j.heliyon.2023.e17257
2. Agboola, O., Babatunde, D.E., Fayomi, O.S.I., Sadiku, E.R., Popoola, P., Moropeng, L., Yahaya A., Mamudu, O.A. 2020. A review on the impact of mining operation: Monitoring, assessment and management. Results in Engineering, 8, 100181. https://doi.org/10.1016/j.rineng.2020.100181
3. Aracena, A., Jerez, O. 2021. Mechanism and kinetics of pyrite transformation at elevated temperatures. Physicochemical Problems of Mineral Processing, 57. http://dx.doi.org/10.37190/ppmp/143124
4. Bataleva, Y.V., Palyanov, Y.N., Borzdov, Y.M., Bayukov, O.A., Zdrokov, E.V. 2017. Iron carbide as a source of carbon for graphite and diamond formation under lithospheric mantle PT parameters.Lithos, 286, 151–161. https://doi.org/10.1016/j.lithos.2017.06.010
5. Bauluz, B., Mayayo, M.J., Yuste, A., Fernandez-Nieto, C., Lopez, J.G. 2004. TEM study of mineral transformations in fired carbonated clays: relevance to brick making. Clay Minerals, 39(3), 333–344. https://doi.org/10.1180/0009855043930138
6. Bengamra, S., Oujidi, M. 2015. Mineralogy of atmospheric dust deposits in the Naima-El Aioun basin (Eastern Morocco). J. Mater. Environ. Sci. 6(8) 2076–2082
7. Bouabdellah, M., Jabrane, R., Margoum, D., Sadequi, M. 2016. Skarn to porphyry-epithermal transition in the Ouixane Fe District, Northeast Morocco: interplay of meteoric water and magmatic-hydrothermal fluids. Mineral Deposits of North Africa, 201–225. https://doi.org/10.1007/978-3-319-31733-5_7
8. Bouabdellah, M., Lebret, N., Marcoux, E., Sadequi, M. 2012. Les mines des Beni Bou Ifrour-Ouixane (Rif Oriental): un district ferrugineux néogène de type skarns The Beni Bou Ifrour-Ouixane mines (Eastern Rif), Neogene Skarn Type Iron Deposits. Nouveaux Guides Géologiques et miniers du Maroc, 357–362.
9. Cobîrzan, N., Muntean, R., Thalmaier, G., Felseghi, R.A. 2022. Recycling of mining waste in the production of masonry units. Materials, 15(2), 594. https://doi.org/10.3390/ma15020594
10. Crespo-López, L., Coletti, C., Arizzi, A., Cultrone, G. 2024. Effects of using tea waste as an additive in the production of solid bricks in terms of their porosity, thermal conductivity, strength and durability. Sustainable Materials and Technologies, 39, e00859. https://doi.org/10.1016/j.jmrt.2023.03.189
11. Cultrone, G., Rosua, F. J. C. 2020. Growth of metastable phases during brick firing: Mineralogical and microtextural changes induced by the composition of the raw material and the presence of additives. Applied Clay Science, 185, 105419. https://doi.org/10.1016/j.clay.2019.105419
12. Dana, K., Rakib, S.A., Sinhamahapatra, S. 2023. Effect of oxide additives on densification of terracotta. Applied Clay Science, 245, 107147. https://doi.org/10.1016/j.clay.2023.107147
13. De Donato, P., Kongolo, M., Barres, O., Yvon, J., Enderle, F., Bouquet, E., Alnot M., Cases, J.M. 1999. Chemical surface modifications of sulphide minerals after comminution. Powder Technology, 105(1–3), 141–148. https://doi.org/10.1016/S0032-5910(99)00129-1
14. Derycke, V., Kongolo, M., Benzaazoua, M., Mallet, M., Barrès, O., De Donato, P., Bussière B., Mermillod-Blondin, R. 2013. Surface chemical characterization of different pyrite size fractions for flotation purposes. International Journal of Mineral Processing, 118, 1–14. https://doi.org/10.1016/j.minpro.2012.10.004
15. Du, G.X., Zuo, R.F., Guo, W.J., Liao, J.H. 2012. Preparation of construction bricks from iron ore tailings. Advanced Materials Research, 557, 839–844. https://doi.org/10.4028/www.scientific.net/AMR.557-559.839
16. Duggen, S., Hoernle, K., van den Bogaard, P., Garbe-Schönberg, D. 2005. Post-collisional transition from subduction-to intraplate-type magma-tism in the westernmost Mediterranean: evidence for continental-edge delamination of subcontinental lithosphere. Journal of Petrology, 46(6), 1155–1201. https://doi.org/10.1093/petrology/egi013
17. El Bakkali, S., Gourgaud, A., Bourdier, J.L., Bellon, H., Gundogdu, N. 1998. Post-collision neogene volcanism of the Eastern Rif (Morocco): magmatic evolution through time. Lithos, 45(1–4), 523–543. https://doi.org/10.1016/S0024-4937(98)00048-6
18. El Ouahabi, M., Daoudi, L., Hatert, F., Fagel, N. 2015. Modified mineral phases during clay ceramic firing. Clays and Clay Minerals, 63(5), 404–413. https://doi.org/10.1346/CCMN.2015.0630506
19. Elinwa, A. U., Mohammed, A. S., Mohammed, A. B. 2021. Effects of the Addition of Sawdust Ash and Iron Ore Tailings on the Characteristics of Clay Soil. Journal of Building Material Science, 3(2), 27–38. https://doi.org/10.30564/jbms.v3i2.3732
20. EN 1998. EN. B.1097–3. Tests for mechanical and physical properties of aggregates. Determination of loose bulk density and voids, British Standards Institution.
21. He, D., Jiang, F., Fu, X., Liu, R., Han, H., Sun, W., Niu, Z., Yue, T. 2023. Recycling of hazardous jarosite residues based on hydrothermal crystal transformation. Waste Management, 172, 290–298. https://doi.org/10.1016/j.wasman.2023.10.026
22. Islam, K., Murakami, S. 2021. Global-scale impact analysis of mine tailings dam failures: 1915–2020. Global Environmental Change, 70, 102361. https://doi.org/10.1016/j.gloenvcha.2021.102361
23. Jusnes, K.F., Tangstad, M., Ringdalen, E. 2021. Phase transformations in quartz used in silicon and ferrosilicon. Aspects in Mining & Mineral Science 5(5). http://dx.doi.org/10.31031/AMMS.2020.05.000622
24. Kerchaoui, S. 1985. Etude géologique et structurale du massif des Beni Bou Ifrour (Rif oriental, Maroc) (Doctoral dissertation, Paris 11) (in frensh).
25. Khafouri, A., Talbi, E. H., Abdelouas, A. 2021. Assessment of heavy metal contamination of the environment in the mining site of Ouixane (North East Morocco). Water, Air, & Soil Pollution, 232(10), 398. https://doi.org/10.1007/s11270-021-05318-6
26. Laita, E., Bauluz, B., Yuste, A. 2019. High-temperature mineral phases generated in natural clinkers by spontaneous combustion of coal. Minerals, 9(4), 213. https://doi.org/10.3390/min9040213
27. Lebret, N. 2014. Contexte structural et métallogé-nique des skarns à magnétite des Beni Bou Ifrour (Rif oriental, Maroc) Apports à l’évolution géody-namique de la Méditerranée occidentale (Doctoral dissertation, Université d’Orléans).
28. Li, Y., Liu, L., Deng, Y., Chen, Y., Li, Y., Wu, J. 2023. Unlocking the potential of iron ore tailings in controlled low-strength material: Feasibility, performance, and evaluation. Journal of Cleaner Production, 423, 138772. https://doi.org/10.1016/j.jclepro.2023.138772
29. Liu, T., Lin, C., Liu, P., Liu, J., Li, C., Han, L., Zhou, X., Yang, Q., Lu, A. 2019. Preparation and characterization of partially vitrified ceramic material. Journal of Non-Crystalline Solids, 505, 92–101. https://doi.org/10.1016/j.jnoncrysol.2018.10.019
30. Milheiro, F.A.C., Freire, M.N., Silva, A.D., Holanda, J.N.F. 2005. Densification behaviour of a red firing Brazilian kaolinitic clay. Ceramics International, 31(5), 757–763. https://doi.org/10.1016/j.ceramint.2004.08.010
31. Monteiro, S.N., Vieira, C.M.F. 2014. On the production of fired clay bricks from waste materials: A critical update. Construction and Building Materials, 68, 599–610. https://doi.org/10.1016/j.conbuildmat.2014.07.006
32. Moon, S., Kim, E., Noh, S., Triwigati, P.T., Choi, S., Park, Y. 2024. Carbon Mineralization of Steel and Iron-Making Slag: Paving the Way for a Sustainable and Carbon-Neutral Future. Journal of Environmental Chemical Engineering, 112448. https://doi.org/10.1016/j.jece.2024.112448
33. Mortier, F., Quang, N., Sadek, M. 1967. Hydrogéo-logie des formations volcaniques du nord-est du Maroc. Service des Ressources en Eau de l’Office National des Irrigations du Maroc, 327–333.
34. Mota, L., Toledo, R., Machado, F.A.L., Holanda, J. N.F., Vargas, H., Faria Jr, R.T. 2008. Thermal characterisation of red clay from the Northern Region of Rio de Janeiro State, Brazil using an open photoacoustic cell, in relation to structural changes on firing. Applied Clay Science, 42(1–2), 168–174. https://doi.org/10.1016/j.clay.2008.01.010
35. Moujoud, Z., Harrati, A., Manni, A., Naim, A., El Bouari, A., Tanane, O. 2023. Study of fired clay bricks with coconut shell waste as a renewable pore-forming agent: Technological, mechanical, and thermal properties. Journal of Building Engineering, 68, 106107. https://doi.org/10.1016/j.jobe.2023.106107
36. Nakamura, H., Sato, S., Hara, Y. 1994. The oxidation of pyrite. Journal of hazardous materials, 37(2), 253–263. https://doi.org/10.1016/0304-3894(93) E0095-J
37. NF, 1992. NF. P. 94–057-Analyse granulométrique des sols-Méthode par sédimentation. Norme Fran-çaise, AFNOR, Paris.
38. NF, (1997). NF EN 933–1., 1997. Essais pour déter-miner les caractéristiques géométriques des granulats, Partie 1: Détermination de la granularité Ana-lyse granulométrique par tamisage, AFNOR, Paris
39. Nodari, L., Marcuz, E., Maritan, L., Mazzoli, C., Russo, U. 2007. Hematite nucleation and growth in the firing of carbonate-rich clay for pottery production. Journal of the European Ceramic Society, 27(16), 4665–4673. https://doi.org/10.1016/j.jeurceramsoc.2007.03.031
40. Pardo, F., Meseguer, S., Jordán, M.M., Sanfeliu, T., González, I. 2011. Firing transformations of Chilean clays for the manufacture of ceramic tile bodies. Applied Clay Science, 51(1–2), 147–150. https://doi.org/10.1016/j.clay.2010.11.022
41. Petlovanyi, M., Malashkevych, D., Sai, K., Bulat, I., Popovych, V. 2021. Granulometric composition research of mine rocks as a material for backfilling the mined-out area in coal mines. Mining of Mineral Deposits. 15(4), 122–129. http://ir.nmu.org.ua/handle/123456789/160814
42. Phonphuak, N., Chindaprasirt, P. 2015. Types of waste, properties, and durability of pore-forming waste-based fired masonry bricks. Eco-efficient masonry bricks and blocks, 103–127. https://doi.org/10.1016/B978-1-78242-305-8.00006-1
43. Phonphuak, N., Kanyakam, S., Chindaprasirt, P. 2016. Utilization of waste glass to enhance physical–mechanical properties of fired clay brick. Journal of Cleaner production, 112, 3057–3062. https://doi.org/10.1016/j.jclepro.2015.10.084
44. Ponomar, V.P., Bagmut, M.M., Kalinichenko, E. A., Brik, A. B. 2020. Experimental study on oxidation of synthetic and natural magnetites monitored by magnetic measurements. Journal of Alloys and Compounds, 848, 156374. https://doi.org/10.1016/j.jallcom.2020.156374
45. Ranängen, H., Lindman, Å. 2017. A path towards sustainability for the Nordic mining industry. Journal of Cleaner Production, 151, 43–52. https://doi.org/10.1016/j.jclepro.2017.03.047
46. Rhazi, M.E., Hayashi, K.I. 2002. Mineralogy, geochemistry, and age constraints on the Beni Bou Ifrour skarn type magnetite deposit, northeastern Morocco. Resource Geology, 52(1), 25–39. https://doi.org/10.1111/j.1751-3928.2002.tb00114.x
47. Roger, S., Münch, P., Cornée, J. J., Saint Martin, J.P., Féraud, G., Pestrea, S., Conesa G., Moussa, A.B. 2000. 40Ar/39Ar dating of the pre-evaporitic Messinian marine sequences of the Melilla basin (Morocco): a proposal for some biosedimentary events as isochrons around the Alboran Sea. Earth and Planetary Science Letters, 179(1), 101–113. https://doi.org/10.1016/S0012-821X(00)00094-7
48. Sarkar, R., Singh, N., Das Kumar, S. 2010. Utilization of steel melting electric arc furnace slag for development of vitreous ceramic tiles. Bulletin of Materials Science, 33, 293–298. https://doi.org/10.1007/s12034-010-0045-5
49. Shawar, L., Halevy, I., Said-Ahmad, W., Feinstein, S., Boyko, V., Kamyshny, A., Amrani, A. 2018. Dynamics of pyrite formation and organic matter sulfurization in organic-rich carbonate sediments. Geochimica et Cosmochimica Acta, 241, 219–239. https://doi.org/10.1016/j.oregeorev.2016.09.002
50. Singh, D., Kumar, R., Nighot, N.S., Rajput, A., Prajapati, A., Singh, B.K., Kirgiz, M.S., Sriniva-saraonaik, B., Khans, S., Mishra, R.K., Lakhani, R. 2023. A comprehensive review on valorisation of octal by-product as supplementary admixtures in the production of fired and unfired bricks. Construction and Building Materials, 408, 133641. https://doi.org/10.1016/j.conbuildmat.2023.133641
51. Taha, Y., Benzaazoua, M., Mansori, M., Yvon, J., Kanari, N., Hakkou, R. 2016. Manufacturing of ceramic products using calamine hydrometallurgical processing wastes. Journal of Cleaner Production, 127, 500–510. https://doi.org/10.1016/j.jclepro.2016.04.056
52. Thejas, H.K., Hossiney, N. 2022. Alkali-activated bricks made with mining waste iron ore tailings. Case Studies in Construction Materials, 16, e00973. https://doi.org/10.1016/j.cscm.2022.e00973
53. Trindade, M.J., Dias, M.I., Coroado, J., Rocha, F. 2009. Mineralogical transformations of calcareous rich clays with firing: A comparative study between calcite and dolomite rich clays from Algarve, Portugal. Applied Clay Science, 42(3–4), 345–355. https://doi.org/10.1016/j.clay.2008.02.008
54. Valenta, R.K., Lèbre, É., Antonio, C., Franks, D. M., Jokovic, V., Micklethwaite, S., Parbhakar-Fox, A., Runge, K., Savinova, E., Segura-Salazar, J., Stringer, M., Verster, I., Yahyaei, M. 2023. Decarbonisa-tion to drive dramatic increase in mining waste–Options for reduction. Resources, Conservation and Recycling, 190, 106859. https://doi.org/10.1016/j.resconrec.2022.106859
55. Villand, J. C. 1966. Etude pétrographique dans le Beni Bou Ifrour, Maroc Nord oriental. Rapport Note, BRPM, 24.
56. Walshe, J.L., Solomon, M. 1981. An investigation into the environment of formation of the volcanic-hosted Mt. Lyell copper deposits using geology, mineralogy, stable isotopes, and a six-component chlorite solid solution model. Economic Geology, 76(2), 246–284. https://doi.org/10.2113/gsecongeo.76.2.246
57. Weng, C. H., Lin, D. F., Chiang, P. C. 2003. Utilization of sludge as brick materials. Advances in environmental research, 7(3), 679–685. https://doi.org/10.1016/S1093-0191(02)00037-0
58. Xu, F., Wang, S., Li, T., Liu, B., Li, B., Zhou, Y. 2021. Mechanical properties and pore structure of recycled aggregate concrete made with iron ore tailings and polypropylene fibers. Journal of Building Engineering, 33, 101572. https://doi.org/10.1016/j.jobe.2020.101572
59. Young, G., Yang, M. 2019. Preparation and characterization of Portland cement clinker from iron ore tailings. Construction and Building Materials, 197, 152–156. https://doi.org/10.1016/j.conbuildmat.2018.11.236
60. Zhang, L. 2013. Production of bricks from waste materials–A review. Construction and building materials, 47, 643–655. https://doi.org/10.1016/j.conbuildmat.2013.05.043
61. Zhang, Y., Li, Z., Gu, X., Nehdi, M. L., Marani, A., Zhang, L. 2023. Utilization of iron ore tailings with high volume in green concrete. Journal of Building Engineering, 72, 106585. https://doi.org/10.1016/j.jobe.2023.106585
62. Zhao, J., Ni, K., Su, Y., Shi, Y. 2021. An evaluation of iron ore tailings characteristics and iron ore tailings concrete properties. Construction and Building Materials, 286, 122968. https://doi.org/10.1016/j.conbuildmat.2021.122968