[en] Modern-day thermosetting polymers should be designed with circular economy principles in mind, considering both their recyclability and end-of-life options. Covalent adaptable networks (CANs) have the potential to address the environmental challenges we face today as, in spite of being thermosets, they can be reprocessed by conventional thermoprocessing methods and are thus recyclable. While in the last years intensive efforts have been devoted to the preparation of CANs using sustainable sources, less attention has been paid to their end-of-life options in case they escape from plastic sorting. Herein, we report the development of a new type of dynamic bond, the N,O-acetal bond based on the coupling between CO2-based oxazolidone moieties and abundant, potentially biobased polyols. Computational and kinetic studies revealed that this bond underwent rapid dissociative exchange and, crucially, was also susceptible to hydrolytic degradation. We then prepared a range of thermoset materials endowed by double end-of-life features, i.e., CAN behavior and hydrolytic degradation. This was achieved by radical thiol-ene photo-cross-linking of a diallyl monomer bearing the N,O-acetal moiety with another alkene-functionalized monomer that did not bear this dynamic bond. CANs with tunable mechanical properties and hydrolytic degradation features were easily obtained by modulating the monomer compositions. The fast-photocuring of the N,O-functionalized monomer was then exploited for producing three-dimensional (3D) printed objects, offering the potential for on-demand hydrolytic behavior.
Research Center/Unit :
CESAM - Complex and Entangled Systems from Atoms to Materials - ULiège [BE] CERM - Center for Education and Research on Macromolecules - ULiège [BE]
Disciplines :
Materials science & engineering Chemistry
Author, co-author :
Caliari, Marco ; University of Liège [ULiège] - Complex and Entangled Systems from Atoms to Materials [CESAM] Research Unit - Center for Education and Research on Macromolecules [CERM] - Belgium ; University of the Basque Country - POLYMAT - Department of Polymers and Advanced Materials: Physics Chemistry and Technology - Donostia/SanSebastian - Spain
Teotonico, Jacopo; University of the Basque Country - POLYMAT - Department of Polymers and Advanced Materials: Physics Chemistry and Technology - Donostia/SanSebastian - Spain
Irigoyen, Mikel; POLYMAT and Department of Polymers and Advanced Materials: Physics, Chemistry and Technology, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizábal, 3, 20018 Donostia-San Sebastián, Spain
Mujika, Anje; University of the Basque Country - POLYMAT - Department of Polymers and Advanced Materials: Physics Chemistry and Technology - Donostia/SanSebastian - Spain
Isolabella, Tommaso; University of Genoa & INFN - Physics Department - Italy
Mantione, Daniele; University of the Basque Country - POLYMAT - Department of Polymers and Advanced Materials: Physics Chemistry and Technology - Donostia/SanSebastian - Spain ; IKERBASQUE Basque Foundation for Science - Bilbao - Spain
Irusta, Lourdes ; University of the Basque Country - POLYMAT - Department of Polymers and Advanced Materials: Physics Chemistry and Technology - Donostia/SanSebastian - Spain
Grignard, Bruno ; University of Liège [ULiège] - Complex and Entangled Systems from Atoms to Materials [CESAM] Research Unit - Center for Education and Research on Macromolecules [CERM] - Belgium ; University of Liège [ULiège] - FRITCO2T Platform - Belgium
Vidal, Fernando ; University of the Basque Country - POLYMAT - Department of Polymers and Advanced Materials: Physics Chemistry and Technology - Donostia/SanSebastian - Spain
Detrembleur, Christophe ; University of Liège [ULiège] - Complex and Entangled Systems from Atoms to Materials [CESAM] Research Unit - Center for Education and Research on Macromolecules [CERM] - Belgium ; Walloon Excellence [ WEL] Research Institute - Wavre - Belgium
Sardon, Haritz ; University of the Basque Country - POLYMAT - Department of Polymers and Advanced Materials: Physics Chemistry and Technology - Donostia/SanSebastian - Spain
Language :
English
Title :
A material platform based on dissociative CO2-derived N,O- acetals for tunable degradation of 3D printable materials
Publication date :
20 August 2025
Journal title :
Journal of the American Chemical Society
ISSN :
0002-7863
eISSN :
1520-5126
Publisher :
American Chemical Society (ACS), United States
Volume :
147
Issue :
33
Pages :
30095–30106
Peer reviewed :
Peer Reviewed verified by ORBi
European Projects :
H2020 - 955700 - NIPU - SYNTHESIS, CHARACTERIZATION, STRUCTURE AND PROPERTIES OF NOVEL NONISOCYANATE POLYURETHANES
Funders :
F.R.S.-FNRS - Fund for Scientific Research EU - European Union
Funding text :
The authors thank for the financial support provided by the NIPU-EJD Project; this project has received funding from the European Union’s Horizon 2020 Research and Innovation Program under Marie Skłodowska−Curie Grant Agreement No. 955700. C.D. is FNRS Research Director and thanks FNRS for financial support in the frame of the CO2Switch Project under Grant T.0075.20. The authors acknowledge Grant TED2021-129852B-C22 funded by MCIU/AEI/ 10.13039/501100011033 and by the European Union NextGenerationEU/PRTR and Grant PID2022-138199NB- I00 funded by MCIU/AEI/10.13039/501100011033. D.M. thanks Ayuda RYC2021-031668-I funded by MCIN/AEI/ 10.13039/501100011033 and by EU NextGenerationEU/ PRTR.
World Economic Forum Ellen MacArthur Foundation and McKinsey & Company. The New Plastics Economy: Rethinking the Future of Plastics, Ellen MacArthur Foundation, 2016, No. January, 120.
Hahladakis, J. N.; Velis, C. A.; Weber, R.; Iacovidou, E.; Purnell, P. An Overview of Chemical Additives Present in Plastics: Migration, Release, Fate and Environmental Impact during Their Use, Disposal and Recycling. J. Hazard. Mater. 2018, 344, 179–199, 10.1016/j.jhazmat.2017.10.014
Geyer, R.; Jambeck, J. R.; Law, K. L. Production, Use, and Fate of All Plastics Ever Made. Sci. Adv. 2017, 3 (7), e1700782 10.1126/sciadv.1700782
Fernández-Dacosta, C.; Van Der Spek, M.; Hung, C. R.; Oregionni, G. D.; Skagestad, R.; Parihar, P.; Gokak, D. T.; Strømman, A. H.; Ramirez, A. Prospective Techno-Economic and Environmental Assessment of Carbon Capture at a Refinery and CO2 Utilisation in Polyol Synthesis. J. CO2 Util. 2017, 21, 405–422, 10.1016/j.jcou.2017.08.005
Spierling, S.; Knüpffer, E.; Behnsen, H.; Mudersbach, M.; Krieg, H.; Springer, S.; Albrecht, S.; Herrmann, C.; Endres, H. J. Bio-Based Plastics - A Review of Environmental, Social and Economic Impact Assessments. J. Cleaner Prod. 2018, 185, 476–491, 10.1016/j.jclepro.2018.03.014
Jiang, J.; Shi, K.; Zhang, X.; Yu, K.; Zhang, H.; He, J.; Ju, Y.; Liu, J. From Plastic Waste to Wealth Using Chemical Recycling: A Review. J. Environ. Chem. Eng. 2022, 10 (1), 106867 10.1016/j.jece.2021.106867
Nicholls, B. T.; Fors, B. P. Closing the Loop on Thermoset Plastic Recycling. Science 2024, 384 (6692), 156–157, 10.1126/science.ado8562
Jehanno, C.; Alty, J. W.; Roosen, M.; De Meester, S.; Dove, A. P.; Chen, E. Y. X.; Leibfarth, F. A.; Sardon, H. Critical Advances and Future Opportunities in Upcycling Commodity Polymers. Nature 2022, 603 (7903), 803–814, 10.1038/s41586-021-04350-0
Grignard, B.; Gennen, S.; Jérôme, C.; Kleij, A. W.; Detrembleur, C. Advances in the Use of CO2 as a Renewable Feedstock for the Synthesis of Polymers. Chem. Soc. Rev. 2019, 48 (16), 4466–4514, 10.1039/C9CS00047J
Vidal, F.; van der Marel, E. R.; Kerr, R. W. F.; McElroy, C.; Schroeder, N.; Mitchell, C.; Rosetto, G.; Chen, T. T. D.; Bailey, R. M.; Hepburn, C.; Redgwell, C.; Williams, C. K. Designing a Circular Carbon and Plastics Economy for a Sustainable Future. Nature 2024, 626 (7997), 45–57, 10.1038/s41586-023-06939-z
Song, B.; Qin, A.; Tang, B. Z. Syntheses, Properties, and Applications of CO2-Based Functional Polymers. Cell Rep. Phys. Sci. 2022, 3 (2), 100719 10.1016/j.xcrp.2021.100719
Narupai, B.; Nelson, A. 100th Anniversary of Macromolecular Science Viewpoint: Macromolecular Materials for Additive Manufacturing. ACS Macro Lett. 2020, 9 (5), 627–638, 10.1021/acsmacrolett.0c00200
Vidal, F.; van der Marel, E. R.; Kerr, R. W. F.; McElroy, C.; Schroeder, N.; Mitchell, C.; Rosetto, G.; Chen, T. T. D.; Bailey, R. M.; Hepburn, C.; Redgwell, C.; Williams, C. K. Designing a Circular Carbon and Plastics Economy for a Sustainable Future. Nature 2024, 626 (7997), 45–57, 10.1038/s41586-023-06939-z
Cao, H.; Liu, S.; Wang, X. Environmentally Benign Metal Catalyst for the Ring-Opening Copolymerization of Epoxide and CO2: State-of-the-Art, Opportunities, and Challenges. Green Chem. Eng. 2022, 3 (2), 111–124, 10.1016/j.gce.2021.11.005
Karulf, L.; Singh, B.; Singh, R.; Repo, T. Carbon Dioxide Utilization: CO2-Based Polyurethane Foam. J. CO2 Util. 2025, 91, 103000 10.1016/j.jcou.2024.103000
Hepburn, C.; Adlen, E.; Beddington, J.; Carter, E. A.; Fuss, S.; Mac Dowell, N.; Minx, J. C.; Smith, P.; Williams, C. K. The Technological and Economic Prospects for CO2 Utilization and Removal. Nature 2019, 87–97, 10.1038/s41586-019-1681-6
Williams, C. K.; Hillmyer, M. A. Polymers from Renewable Resources: A Perspective for a Special Issue of Polymer Reviews. Polym. Rev. 2008, 48 (1), 1–10, 10.1080/15583720701834133
Jehanno, C.; Alty, J. W.; Roosen, M.; De Meester, S.; Dove, A. P.; Chen, E. Y. X.; Leibfarth, F. A.; Sardon, H. Critical Advances and Future Opportunities in Upcycling Commodity Polymers. Nature 2022, 603 (7903), 803–814, 10.1038/s41586-021-04350-0
Yan, T.; Balzer, A. H.; Herbert, K. M.; Epps, T. H.; Korley, L. S. T. J. Circularity in Polymers: Addressing Performance and Sustainability Challenges Using Dynamic Covalent Chemistries. Chem. Sci. 2023, 14 (20), 5243–5265, 10.1039/D3SC00551H
Gerdroodbar, A. E.; Karimkhani, V.; Dashtimoghadam, E.; Salami-Kalajahi, M. Vitrimerization as a Bridge of Chemical and Mechanical Recycling. J. Environ. Chem. Eng. 2024, 12 (3), 112897 10.1016/j.jece.2024.112897
Zheng, J.; Png, Z. M.; Ng, S. H.; Tham, G. X.; Ye, E.; Goh, S. S.; Loh, X. J.; Li, Z. Vitrimers: Current Research Trends and Their Emerging Applications. Mater. Today 2021, 51, 586–625, 10.1016/j.mattod.2021.07.003
Lucherelli, M. A.; Duval, A.; Avérous, L. Biobased Vitrimers: Towards Sustainable and Adaptable Performing Polymer Materials. Prog. Polym. Sci. 2022, 127, 101515 10.1016/j.progpolymsci.2022.101515
Röttger, M.; Domenech, T.; Van Der Weegen, R.; Breuillac, A.; Nicolaÿ, R.; Leibler, L. High-Performance Vitrimers from Commodity Thermoplastics through Dioxaborolane Metathesis. Science 2017, 356 (6333), 62–65, 10.1126/science.aah5281
Habets, T.; Seychal, G.; Caliari, M.; Raquez, J. M.; Sardon, H.; Grignard, B.; Detrembleur, C. Covalent Adaptable Networks through Dynamic N,S-Acetal Chemistry: Toward Recyclable CO2-Based Thermosets. J. Am. Chem. Soc. 2023, 145 (46), 25450–25462, 10.1021/jacs.3c10080
Maes, S.; Habets, T.; Fischer, S. M.; Grignard, B.; Detrembleur, C.; Prez, F. E. Du. Unprecedented Associative Exchange in CO2-Sourced Cyclic S,O-Acetals Based Covalent Adaptable Networks. Polym. Chem. 2024, 8, 5255–5446, 10.1039/D4PY00359D
Bizet, B.; Grau, E.; Asua, J. M.; Cramail, H. Hybrid Nonisocyanate Polyurethanes (H-NIPUs): A Pathway towards a Broad Range of Novel Materials. Macromol. Chem. Phys. 2022, 223 (13), 2100437 10.1002/macp.202100437
Kathalewar, M. S.; Joshi, P. B.; Sabnis, A. S.; Malshe, V. C. Non-Isocyanate Polyurethanes: From Chemistry to Applications. RSC Adv. 2013, 3 (13), 4110–4129, 10.1039/c2ra21938g
Monie, F.; Vidil, T.; Grignard, B.; Cramail, H.; Detrembleur, C. Self-Foaming Polymers: Opportunities for the next Generation of Personal Protective Equipment. Mater. Sci. Eng., R 2021, 145, 100628 10.1016/j.mser.2021.100628
Monie, F.; Grignard, B.; Thomassin, J. M.; Mereau, R.; Tassaing, T.; Jerome, C.; Detrembleur, C. Chemo- and Regioselective Additions of Nucleophiles to Cyclic Carbonates for the Preparation of Self-Blowing Non-Isocyanate Polyurethane Foams. Angew. Chem., Int. Ed. 2020, 59 (39), 17033–17041, 10.1002/anie.202006267
Monie, F.; Grignard, B.; Detrembleur, C. Divergent Aminolysis Approach for Constructing Recyclable Self-Blown Nonisocyanate Polyurethane Foams. ACS Macro Lett. 2022, 11 (2), 236–242, 10.1021/acsmacrolett.1c00793
Sun, H.; Liang, Y.; Thompson, M. P.; Gianneschi, N. C. Degradable Polymers via Olefin Metathesis Polymerization. Prog. Polym. Sci. 2021, 120, 101427 10.1016/j.progpolymsci.2021.101427
Parkatzidis, K.; Wang, H. S.; Truong, N. P.; Anastasaki, A. Recent Developments and Future Challenges in Controlled Radical Polymerization: A 2020 Update. Chem. 2020, 6 (7), 1575–1588, 10.1016/j.chempr.2020.06.014
Laviéville, S.; Totée, C.; Guiffrey, P.; Caillol, S.; Bakkali-Hassani, C.; Ladmiral, V.; Leclerc, E. Trifluoromethylated N,S-Acetal as a Chemical Platform for Covalent Adaptable Networks: Fast Thiol Exchange and Strong Hydrostability for a Highly Transparent Material. Macromolecules 2024, 57, 10311–10323, 10.1021/acs.macromol.4c01359
Rosenboom, J. G.; Langer, R.; Traverso, G. Bioplastics for a Circular Economy. Nat. Rev. Mater. 2022, 7 (2), 117–137, 10.1038/s41578-021-00407-8
Burghardt, T. E. Developments in the Deprotection of Thioacetals. J. Sulfur Chem. 2005, 26 (4–5), 411–427, 10.1080/17415990500195198
Laviéville, S.; Totée, C.; Guiffrey, P.; Caillol, S.; Bakkali-Hassani, C.; Ladmiral, V.; Leclerc, E. Trifluoromethylated N,S-Acetal as a Chemical Platform for Covalent Adaptable Networks: Fast Thiol Exchange and Strong Hydrostability for a Highly Transparent Material. Macromolecules 2024, 57 (21), 10311–10323, 10.1021/acs.macromol.4c01359
Akar, E.; Tunca, U.; Durmaz, H. Polythioacetals: From Old Chemistry to New Perspectives. Eur. Polym. J. 2024, 221, 113532 10.1016/j.eurpolymj.2024.113532
Schelhaas, M.; Herbert, W. Protecting Group Strategies in Organic Synthesis. Angew. Chem., Int. Ed. 1996, 35, 2056–2083, 10.1002/9781119006435.ch2
Kongkatigumjorn, N.; Crespy, D. Strategies to Prepare Polymers with Cleavable Linkages Releasing Active Agents in Acidic Media. Polym. Chem. 2024, 15, 4491–4518, 10.1039/D4PY00854E
Zheng, J.; Png, Z. M.; Quek, X. C. N.; Loh, X. J.; Li, Z. Stimuli-Cleavable Moiety Enabled Vinyl Polymer Degradation and Emerging Applications. Green Chem. 2023, 25 (22), 8903–8934, 10.1039/D3GC03086E
Dreiling, R. J.; Huynh, K.; Fors, B. P. Degradable Thermosets via Orthogonal Polymerizations of a Single Monomer. Nature 2025, 638, 120–125, 10.1038/s41586-024-08386-w
Lefay, C.; Guillaneuf, Y. Recyclable/Degradable Materials via the Insertion of Labile/Cleavable Bonds Using a Comonomer Approach. Prog. Polym. Sci. 2023, 147, 101764 10.1016/j.progpolymsci.2023.101764
Rahimi, M.; Gałęziewska, M.; Jerczyński, K.; Wróbel, S.; Pietrasik, J. Non-Linear Functional Polymers Containing Selective/Cleavable Bonds: Synthesis and Their Biomedical Applications. Polym. Adv. Technol. 2024, 35 (4), e6387 10.1002/pat.6387
Laviéville, S.; Bakkali-Hassani, C.; Ladmiral, V.; Leclerc, E. From Formica to FormiCAN: One-Pot Synthesis of Melamine-Based Covalent Adaptable Network Endowed With High Transition Temperature and Fast Stress Relaxation. Macromol. Rapid Commun. 2025, 2500280 10.1002/marc.202500280
Siragusa, F.; Crane, L.; Stiernet, P.; Habets, T.; Grignard, B.; Monbaliu, J.-C. M.; Detrembleur, C. Continuous Flow Synthesis of Functional Isocyanate-Free Poly(Oxazolidone)s by Step-Growth Polymerization. ACS Macro Lett. 2024, 13, 644–650, 10.1021/acsmacrolett.4c00203
Razavi-Esfali, M.; Habets, T.; Siragusa, F.; Grignard, B.; Sardon, H.; Detrembleur, C.; Razavi-Esfali, M.; Grignard, B.; Detrembleur, C. Design of Functional Isocyanate-Free Poly(Oxazolidone)s under Mild Conditions. Polym. Chem. 2024, 15 (19), 1962–1974, 10.1039/D4PY00101J
Habets, T.; Siragusa, F.; Grignard, B.; Detrembleur, C. Advancing the Synthesis of Isocyanate-Free Poly(Oxazolidones)s: Scope and Limitations. Macromolecules 2020, 53 (15), 6396–6408, 10.1021/acs.macromol.0c01231
Caliari, M.; Vidal, F.; Mantione, D.; Seychal, G.; Campoy-Quiles, M.; Irusta, L.; Fernandez, M.; de Pariza, X. L.; Habets, T.; Aramburu, N.; Raquez, J. M.; Grignard, B.; Müller, A. J.; Detrembleur, C.; Sardon, H. Fully Recyclable Pluripotent Networks for 3D Printing Enabled by Dissociative Dynamic Bonds. Adv. Mater. 2025, 37, 2417355 10.1002/adma.202417355
Lee, S. Y.; Kim, H. U.; Chae, T. U.; Cho, J. S.; Kim, J. W.; Shin, J. H.; Kim, D. I.; Ko, Y. S.; Jang, W. D.; Jang, Y. S. A Comprehensive Metabolic Map for Production of Bio-Based Chemicals. Nat. Catal. 2019, 2, 18–33, 10.1038/s41929-018-0212-4
Pathania, S.; Petrova-Szczasiuk, K.; Pentikäinen, O.; Singh, P. K. Oxazolidinones: Are They Only Good for the Discovery of Antibiotics? A Worm’s Eye View. J. Mol. Struct. 2023, 1286, 135630 10.1016/j.molstruc.2023.135630
Barbachyn, M. R.; Ford, C. W. Oxazolidinone Structure-Activity Relationships Leading to Linezolid. Angew. Chem., Int. Ed. 2003, 42 (18), 2010–2023, 10.1002/anie.200200528
Pandit, N.; Singla, R. K.; Shrivastava, B. Current Updates on Oxazolidinone and Its Significance. Int. J. Med. Chem. 2012, 2012, 159285 10.1155/2012/159285
Sun, F.; Van der Eycken, E. V.; Feng, H. Recent Advances in the Synthesis and Ring-Opening Transformations of 2-Oxazolidinones. Adv. Synth. Catal. 2021, 363 (23), 5168–5195, 10.1002/adsc.202100746
Hohenberg, P.; Kohn, W. Inhomogeneous Electron Gas. Phys. Rev. 1964, 136 (3B), B864 10.1103/PhysRev.136.B864
Kohn, W.; Sham, L. J. Self-Consistent Equations Including Exchange and Correlation Effects. Phys. Rev. 1965, 140 (4A), A1133 10.1103/PhysRev.140.A1133
Chai, J.-D.; Head-Gordon, M. Long-Range Corrected Hybrid Density Functionals with Damped Atom–Atom Dispersion Corrections. Phys. Chem. Chem. Phys. 2008, 10 (44), 6615–6620, 10.1039/b810189b
Hehre, W. J.; Ditchfield, K.; Pople, J. A. Self─Consistent Molecular Orbital Methods. XII. Further Extensions of Gaussian─Type Basis Sets for Use in Molecular Orbital Studies of Organic Molecules. J. Chem. Phys. 1972, 56 (5), 2257–2261, 10.1063/1.1677527
Krishnan, R.; Binkley, J. S.; Seeger, R.; Pople, J. A. Self-consistent Molecular Orbital Methods. XX. A Basis Set for Correlated Wave Functions. J. Chem. Phys. 1980, 72 (1), 650–654, 10.1063/1.438955
Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Caricato, M.; Li, X.; Nakatsuji, H.; Petersson, G. A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A. V. Gaussian 16, Revision A.03.; Gaussian, Inc: Wallingford CT, 2016.
Chao, A.; Zhang, D. Investigation of Secondary Amine-Derived Aminal Bond Exchange toward the Development of Covalent Adaptable Networks. Macromolecules 2019, 52 (2), 495–503, 10.1021/acs.macromol.8b02654
Li, Q.; Ma, S.; Wang, S.; Liu, Y.; Taher, M. A.; Wang, B.; Huang, K.; Xu, X.; Han, Y.; Zhu, J. Green and Facile Preparation of Readily Dual-Recyclable Thermosetting Polymers with Superior Stability Based on Asymmetric Acetal. Macromolecules 2020, 53 (4), 1474–1485, 10.1021/acs.macromol.9b02386
Caliari, M.; Vidal, F.; Mantione, D.; Seychal, G.; Campoy-Quiles, M.; Irusta, L.; Fernandez, M.; Pariza, X. L. de.; Habets, T.; Aramburu, N.; Raquez, J.-M.; Grignard, B.; Müller, A. J.; Detrembleur, C.; Sardon, H. Fully Recyclable Pluripotent Networks for 3D Printing Enabled by Dissociative Dynamic Bonds. Adv. Mater. 2025, 37, 2417355 10.1002/ADMA.202417355
Ciechacka, A. Analysis and Characterisation of an Acylphosphine Oxide Photoinitiator. PhD Dissertation, Dublin City University, 2011,199.
Roper, T. M.; Guymon, C. A.; Jönsson, E. S.; Hoyle, C. E. Influence of the Alkene Structure on the Mechanism and Kinetics of Thiol-Alkene Photopolymerizations with Real-Time Infrared Spectroscopy. J. Polym. Sci. A Polym. Chem. 2004, 42 (24), 6283–6298, 10.1002/pola.20452
Sutherland, B. P.; Kabra, M.; Kloxin, C. J. Expanding the Thiol-X Toolbox: Photoinitiation and Materials Application of the Acid-Catalyzed Thiol-Ene (ACT) Reaction. Polym. Chem. 2021, 12 (10), 1562–1570, 10.1039/D0PY01593H
Zhou, J.; Zhang, Q. Y.; Chen, S. J.; Zhang, H. P.; Ma, A. J.; Ma, M. L.; Liu, Q.; Tan, J. J. Influence of Thiol and Ene Functionalities on Thiol-Ene Networks: Photopolymerization, Physical, Mechanical, and Optical Properties. Polym. Test 2013, 32 (3), 608–616, 10.1016/j.polymertesting.2013.01.013
Kolibaba, T. J.; Killgore, J. P.; Caplins, B. W.; Higgins, C. I.; Arp, U.; Miller, C. C.; Poster, D. L.; Zong, Y.; Broce, S.; Wang, T.; Talačka, V.; Andersson, J.; Davenport, A.; Panzer, M. A.; Tumbleston, J. R.; Gonzalez, J. M.; Huffstetler, J.; Lund, B. R.; Billerbeck, K.; Clay, A. M.; Fratarcangeli, M. R.; Qi, H. J.; Porcincula, D. H.; Bezek, L. B.; Kikuta, K.; Pearlson, M. N.; Walker, D. A.; Long, C. J.; Hasa, E.; Aguirre-Soto, A.; Celis-Guzman, A.; Backman, D. E.; Sridhar, R. L.; Cavicchi, K. A.; Viereckl, R. J.; Tong, E.; Hansen, C. J.; Shah, D. M.; Kinane, C.; Pena-Francesch, A.; Antonini, C.; Chaudhary, R.; Muraca, G.; Bensouda, Y.; Zhang, Y.; Zhao, X. Results of an Interlaboratory Study on the Working Curve in Vat Photopolymerization. Addit. Manuf. 2024, 84, 104082 10.1016/j.addma.2024.104082
Zhang, J.; Xiao, P. 3D Printing of Photopolymers. Polym. Chem. 2018, 9 (13), 1530–1540, 10.1039/C8PY00157J
Ayestaran, J.; de Pariza, X. L.; Vidal, F.; Vazquez-Martel, C.; Pascal, A.; Yu, S.; Aguirre, M.; Nelson, A.; Leiza, J. R.; Blasco, E.; Long, T. E.; Aguirresarobe, R.; Sardon, H. Vat Photopolymerization of High Molecular Weight Polymer Latexes with Pseudothermoplastic Properties for Recyclability. Adv. Funct Mater. 2025, 2503712 10.1002/adfm.202503712