Development of a semi-empirical approach correlating ion- and neutron-induced hardening in Eurofer97 using nanoindentation and crystal plasticity finite element method
Nanoindentation; Ion irradiation; Finite element method; Crystal plasticity; Irradiation hardening
Abstract :
[en] An experimentally-based computational methodology is developed to predict the irradiation hardening in materials for nuclear applications, aimed at avoiding neutron irradiation. The results are expected to accelerate the delivery of new research data in nuclear materials science by reducing the time, costs, and resources necessary for neutron irradiation. The effect of ion irradiation on nanohardness is measured with nanoindentation and computationally replicated on the basis of the tensile tests data from neutron-irradiated specimens. Thus, the established procedure aims to interconnect two important phenomena: the effect of ion vs. neutron irradiations on mechanical properties; and the nanocompressive vs. macrotensile deformation. The accuracy of the outcoming results is discussed. The tests performed are used to establish and validate a crystal plasticity finite element method model of irradiated Eurofer97 steel. The constitutive material law is modified with respect to the hardening caused by the neutron irradiation dose and is used to feed the crystal plasticity finite element method model of the nanoindentation process. This consequently allows one to accurately reproduce the experimental hardness–depth values obtained from the ion-irradiated specimen. Eventually, a basic proof of concept is provided, which can be further refined for the prediction of neutron-induced hardening, while working only with ion-irradiated material.
Research Center/Unit :
A&M - Aérospatiale et Mécanique - ULiège
Disciplines :
Materials science & engineering
Author, co-author :
Khvan, Tymofii ; Université de Liège - ULiège > Aérospatiale et Mécanique (A&M)
Noels, Ludovic ; Université de Liège - ULiège > Département d'aérospatiale et mécanique > Computational & Multiscale Mechanics of Materials (CM3)
Terentyev, Dmitry
Corniani, Enrico
Hähner, Peter
Chang, Chih-Cheng
Language :
English
Title :
Development of a semi-empirical approach correlating ion- and neutron-induced hardening in Eurofer97 using nanoindentation and crystal plasticity finite element method
HE - 101052200 - EUROfusion - Implementation of activities described in the Roadmap to Fusion during Horizon Europe through a joint programme of the members of the EUROfusion consortium H2020 - 945339 - POLONEZ BIS - Postdoctoral Fellowships in Poland to Boost International Mobility and Skills Training
Name of the research project :
EUROfusion
Funders :
European Union. Marie Skłodowska-Curie Actions EU - European Union
Funding number :
945339; 101052200
Funding text :
This work has been carried out within the framework of the EUROfusion Consortium, funded by the European Union via the Euratom Research and Training Programme (Grant Agreement No 101052200 — EUROfusion). Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or the European Commission. Neither the European Union nor the European Commission can be held responsible for them.
The experimental data used in this research were collected through access to the Micro-Characterisation Laboratory (MCL) under the framework of Open Access to the Joint Research Centre Physical Research Infrastructures of the European Commission (Project NIFEM, Research Infrastructure Access Agreement N°2020-1-RD-EMMA-MCL-36044-1).
This research is part of the project No. 2022/47/P/ST5/01169 co-funded by the National Science Centre and the European Union Framework Programme for Research and Innovation Horizon 2020 under the Marie Skłodowska-Curie grant agreement No. 945339. For the purpose of Open Access, the author has applied a CC-BY public copyright license to any Author Accepted Manuscript (AAM) version arising from this submission. The publication was created within the framework of the project of the Minister of Science and Higher Education ”Support for the activities of Centres of Excellence established in Poland under Horizon 2020” under contract no. MEiN/2023/DIR/3795. We also acknowledge support from the European Union Horizon 2020 research and innovation program under grant agreement no. 857470, the European Regional Development Fund via the Foundation for Polish Science International Research Agenda PLUS program grant No. MAB PLUS/2018/8.
F. Garner, M. Hamilton, N. Panayotou, G. Johnson, The microstructural origins of yield strength changes in aisi 316 during fission or fusion irradiation, Journal of Nuclear Materials 104 (1981) 803–807.
G. Odette, G. Lucas, Recent progress in understanding reactor pressure vessel steel embrittlement, Radiation Effects and Defects in Solids 144 (1–4) (1997) 189–231.
E. Gaganidze, J. Aktaa, Assessment of neutron irradiation effects on rafm steels, Fusion Engineering and Design 88 (3) (2013) 118–128.
V. Slugeň, S. Sojak, W. Egger, V. Krsjak, J. Veternikova, M. Petriska, Radiation damage of reactor pressure vessel steels studied by positron annihilation spectroscopy—a review, Metals 10 (2020).
E. Wakai, S. Takaya, Y. Matsui, Y. Nagae, S. Kato, T. Suzudo, M. Yamaguchi, K. Aoto, S. Nogami, A. Hasegawa, H. Abe, K. Sato, T. Ishida, S. Makimura, P. G. Hurh, K. Ammigan, D. J. Se, Irradiation damages of structural materials under different irradiation environments, Journal of Nuclear Materials 543 (2021).
S. Zinkle, P. Maziasz, R. Stoller, Dose dependence of the microstructural evolution in neutron-irradiated austenitic stainless steel, Journal of Nuclear Materials 206 (2–3) (1993) 266–286.
P. Hosemann, Small-scale mechanical testing on nuclear materials: bridging the experimental length-scale gap, Scripta Materialia 143 (2018) 161–168.
P. Zheng, R. Chen, H. Liu, J. Chen, Z. Zhang, X. Liu, Y. Shen, On the standards and practices for miniaturized tensile test—a review, Fusion Engineering and Design 161 (2020).
D. S. Gianola, N. M. della Ventura, G. H. Balbus, P. Ziemke, M. P. Echlin, M. R. Begley, Advances and opportunities in high-throughput small-scale mechanical testing, Current Opinion in Solid State and Materials Science 27 (4) (2023) 101090.
S. Zinkle, J. Busby, Structural materials for fission & fusion energy, Materials Today 12 (2009).
S. Ortner, A review of structural material requirements and choices for nuclear power plant, Frontiers in Nuclear Engineering 2 (2023).
G. Was, Challenges to the use of ion irradiation for emulating reactor irradiation, Journal of Materials Research 30 (2015) 1158–1182.
M. Worrall, N. Woolstenhulme, C. Downey, C. Jesse, C. Murdock, M. Tippet, Fast neutron irradiation capability in existing thermal test reactors, Annals of Nuclear Energy 207 (2024) 110731.
K. Nordlund, A. E. Sand, F. Granberg, S. J. Zinkle, R. Stoller, R. S. Averback, T. Suzudo, L. Malerba, F. Banhart, W. J. Weber, F. Willaime, S. Dudarev, D. Simeone, Primary radiation damage in materials. review of current understanding and proposed new standard displacement damage model to incorporate in cascade defect production efficiency and mixing effects, Tech. rep., IAEA, oECD/NEA (2015).
K. Nordlund, S. Zinkle, A. Sand, F. Granberg, R. Averback, R. Stoller, T. Suzudo, L. Malerba, F. Banhart, W. Weber, F. Willaime, S. Dudarev, D. Simeone, Primary radiation damage: A review of current understanding and models, Journal of Nuclear Materials 512 (2018) 450–479.
H. Ullmaier, Radiation damage in metallic materials, MRS Bulletin 22 (1997) 14–21. doi:10.1557/S088376940003298X.
M. Robinson, Basic physics of radiation damage production, Journal of Nuclear Materials 216 (1994) 1–28. doi:10.1016/0022-3115(94)90003-5.
A. Spitsyn, N. Bobyr, T. Kulevoy, P. Fedin, A. Semennikov, V. Stolbunov, Use of mev energy ion accelerators to simulate the neutron damage in fusion reactor materials, Fusion Engineering and Design 146 (2019) 1313–1316. doi:10.1016/j.fusengdes.2019.02.065.
ASTM International, Standard practice for investigating the effects of neutron radiation damage using charged-particle irradiation (2023).
J. Brinkman, On the nature of radiation damage in metals, Journal of Applied Physics 25 (1954) 961–970. doi:10.1063/1.1721810.
C. Heintze, C. Recknagel, F. Bergner, M. Hernández-Mayoral, A. Kolitsch, Ion-irradiation-induced damage of steels characterized by means of nanoindentation, Nuclear Instruments and Methods in Physics Research Section B 267 (8–9) (2009) 1505–1508. doi:10.1016/j.nimb.2009.01.122.
M. Gilbert, S. Dudarev, D. Nguyen-Manh, S. Zheng, L. Packer, J.-C. Sublet, Neutron-induced dpa, transmutations, gas production, and helium embrittlement of fusion materials, Journal of Nuclear Materials 442 (1–3) (2013) S755–S760. doi:10.1016/j.jnucmat.2013.03.085.
C. D. Hardie, C. A. Williams, S. Xu, S. G. Roberts, Effects of irradiation temperature and dose rate on the mechanical properties of self-ion implanted fe and fe–cr alloys, Journal of Nuclear Materials 439 (1–3) (2013) 33–40.
S. Taller, G. Vancoevering, B. Wirth, G. Was, Predicting structural materials degradation in advanced nuclear reactors with ion irradiation, Scientific Reports 11 (2021) 2949.
L. Malerba, M. Caturla, E. Gaganidze, C. Kaden, M. Konstantinović, P. Olsson, C. Robertson, D. Rodney, A. Ruiz-Moreno, M. Serrano, J. Aktaa, N. Anento, S. Austin, A. Bakaev, J. Balbuena, F. Bergner, F. Boioli, M. Boleininger, G. Bonny, N. Castin, J. Chapman, P. Chekhonin, M. Clozel, B. Devincre, L. Dupuy, G. Diego, D. S.L., C.-C. Fu, R. Gatti, L. Gélébart, B. Gómez-Ferrer, B. Gonçalves, C. Guerrero, P. Gueye, P. Hähner, S. Hannula, Q. Hayat, M. Hernández-Mayoral, J. Jagielski, N. Jennett, F. Jiménez, G. Kapoor, A. Kraych, T. Khvan, L. Kurpaska, A. Kuronen, N. Kvashin, O. Libera, P.-W. Ma, T. Manninen, M.-C. Marinica, S. Merino, E. Meslin, F. Mompiou, F. Mota, H. Namburi, C. Ortiz, C. Pareige, M. Prester, R. Rajakrishnan, M. Sauzay, A. Serra, I. Simonovski, F. Soisson, P. Spätig, D. Tanguy, D. Terentyev, M. Trebala, M. Trochet, A. Ulbricht, M. Vallet, K. Vogel, T. Yalchinkaya, J. Zhao, Multiscale modelling for fusion and fission materials: The m4f project, Nuclear Materials and Energy 29 (2021).
J. Ziegler, M. Ziegler, J. Biersack, Srim – the stopping and range of ions in matter, Nuclear Instruments and Methods in Physics Research Section B 268 (2010) 1818–1823.
D. Cozzarizza, E. Corniani, E. D’Agata, R. Ciolini, V. Giusti, Comparison of monte carlo tools for displacement calculations for protons and heavy ions irradiation on iron and eurofer97, Journal of Engineering Materials and Technology 146 (4) (2024). doi:10.1115/1.4066060.
P. Lin, J. Nie, M. Liu, Study on irradiation effect in stress–strain response with cpfem during nano-indentation, Nuclear Materials and Energy 22 (2020).
P. Lin, J. Nie, M. Liu, Nanoindentation experiment and crystal plasticity study on the mechanical behavior of fe-ion-irradiated a508-3 steel, Journal of Nuclear Materials 571 (December 2022).
P.-d. Lin, J.-f. Nie, W.-d. Cui, L. He, S.-g. Cui, L.-x. Xiang, Y.-p. Lu, G.-y. Xiao, Experimental and modeling study on irradiation effect of a508-iii steel, International Journal of Mechanical Sciences 277 (2024) 109371.
P.-d. Lin, J.-f. Nie, W.-d. Cui, L. He, S.-g. Cui, Y.-p. Lu, Comparative analysis of irradiation-stimulated hardening in the austenite and ferrite phases of f321 stainless steel, Acta Materialia 281 (2024) 120409.
X. Xiao, L. Chen, L. Yu, H. Duan, Modelling nano-indentation of ion-irradiated fcc single crystals by strain-gradient crystal plasticity theory, International Journal of Plasticity 116 (2019) 216–231.
X. Xiao, D. Terentyev, A. Ruiz, A. Zinovev, A. Bakaev, E. Zhurkin, High temperature nano-indentation of tungsten: modelling and experimental validation, Materials Science and Engineering: A 743 (2019) 106–113.
L. Xia, J. Mao, D. Chen, Y. Cao, X. Xiao, C. Jiang, Temperature-dependent hardening of zirconium alloys under heavy ion-irradiation: Experimental observation and theoretical analysis, Journal of Nuclear Materials 572 (2022) 153989.
L. Xia, Y. Chen, J. Huang, Y. Wang, C. Wang, J. Xue, X. Xiao, Revealing the temperature-dependent hardening mechanisms of non-uniformly distributed defects for ion-irradiated metals: Experiments and modeling, Materials Science and Engineering: A 899 (2024) 146408.
J. Nie, P. Lin, Y. Liu, H. Zhang, X. Wang, Simulation of the irradiation effect on hardness of chinese htgr a508-3 steels with cpfem, Nuclear Engineering and Technology 51 (8) (2019) 1970–1977.
J. Knapp, F. D.M., S. Myers, J. Barbour, T. Friedmann, Finite-element modeling of nanoindentation, Journal of Applied Physics 85 (1999) 1460–1474.
Y. Su, C. Zambaldi, D. Mercier, P. Eisenlohr, T. Bieler, M. Crimp, Quantifying deformation processes near grain boundaries in α titanium using nanoindentation and crystal plasticity modeling, International Journal of Plasticity 86 (2016) 170–186.
K. Song, H. Yu, P. Karamched, K. Mizohata, D. E. J. Armstrong, F. Hofmann, Deformation behaviour of ion-irradiated fecr: A nanoindentation study, Journal of Materials Research 37 (2022) 2045–2060. doi:10.1557/s43578-022-00511-7.
D. Zhou, P. Spätig, Q. Hayat, P. Song, N. Jennett, J.-C. Chen, P. Desgardin, Study of the irradiation hardening of a fe9cr ferritic model alloy by nanoindentations, Nuclear Materials and Energy 39 (2024) 101667.
P. Hosemann, C. Vieh, R. Greco, S. Kabra, J. Valdez, M. Cappiello, S. Maloy, Nanoindentation on ion irradiated steels, Journal of Nuclear Materials 389 (2009) 239–247.
L. Veleva, P. Hähner, A. Dubinko, T. Khvan, D. Terentyev, A. Ruiz-Moreno, Depth-sensing hardness measurements to probe hardening behaviour and dynamic strain ageing effects of iron during tensile pre-deformation, Nanomaterials 11 (2021).
H. Ma, P. Fan, Q. Qian, Q. Zhang, K. Li, S. Zhu, D. Yuan, Nanoindentation test of ion-irradiated materials: Issues, modeling and challenges, Materials 17 (13) (2024) 3286.
E. Gaganidze, F. Gillemot, I. Szenthe, M. Gorley, M. Rieth, E. Diegele, Development of eurofer97 database and material property handbook, Fusion Engineering and Design 135 (2018) 9–14.
G. Stornelli, A. Di Schino, R. Montanari, M. Sgambetterra, C. Testani, A. Varone, Ultra-fine grained eurofer97 steel for nuclear fusion applications, Journal of Materials Research and Technology 33 (2024) 5075–5087.
L. Giancarli, M. Abdou, D. Campbell, V. Chuyanov, M. Ahn, M. Enoeda, C. Pan, Y. Poitevin, E. R. Kumar, I. Ricapito, Y. Strebkov, S. Suzuki, P. Wong, M. Zmitko, Overview of the iter tbm program, Fusion Engineering and Design 87 (5–6) (2012) 395–402.
G. Federici, L. Boccaccini, F. Cismondi, M. Gasparotto, Y. Poitevin, I. Ricapito, An overview of the eu breeding blanket design strategy as an integral part of the demo design effort, Fusion Engineering and Design 141 (2019) 30–42.
J. You, E. Visca, C. Bachmann, T. Barrett, F. Crescenzi, M. Fursdon, H. Greuner, D. Guilhem, P. Languille, M. Li, S. McIntosh, A. Müller, J. Reiser, M. Richou, M. Rieth, European demo divertor target: Operational requirements and material-design interface, Nuclear Materials and Energy 9 (2016) 171–176.
D. Terentyev, A. Puype, O. Kachko, W. V. Renterghem, J. Henry, Development of rafm steel for nuclear applications with reduced manganese, silicon and carbon content, Nuclear Materials and Energy 29 (2021).
O. Kachko, A. Puype, D. Terentyev, G. Bonny, W. V. Renterghem, R. Petrov, Development of rafm steels for high temperature applications guided by thermodynamic modelling, Nuclear Materials and Energy 32 (2022).
O. Kachko, A. Puype, D. Terentyev, M. Duerrschnabel, M. Klimenkov, R. Petrov, Tem investigation of reduced activation ferritic/martensitic alloys developed by thermodynamic modeling, Journal of Nuclear Materials 582 (2023) 154480.
L. Tan, L. Snead, Y. Katoh, Development of new generation reduced activation ferritic-martensitic steels for advanced fusion reactors, Journal of Nuclear Materials 478 (2019) 42–49.
S. Ge, B. Niu, Z. Wang, Q. Wang, Q. Pan, C. Liu, C. Dong, P. K. Liaw, Developing novel high-si 12% cr reduced-activation ferritic/martensitic cladding alloys via the cluster-formula approach and calphad method, Materials & Design 251 (2025) 113722.
D. Tabor, The Hardness of Metals, Oxford University Press, 1951.
A. Atkins, D. Tabor, Plastic indentation in metals with cones, Journal of the Mechanics and Physics of Solids 13 (3) (1965) 149–164.
A. Leitner, V. Maier-Kiener, D. Kiener, Essential refinements of spherical nanoindentation protocols for the reliable determination of mechanical flow curves, Materials & Design 146 (2018) 69–80.
E. Lucon, R. Chaouadi, M. Decreton, Mechanical properties of the european reference rafm steel (eurofer97) before and after irradiation at 300% c, Journal of Nuclear Materials 329–333 (2004) 1078–1082.
C. Geuzaine, J. Remacle, Gmsh: A 3-d finite element mesh generator with built-in pre- and post-processing facilities, International Journal for Numerical Methods in Engineering 79 (2009) 1309–1331.
Noels L. Computational & multiscale mechanics of materials. Aerospace and Mechanical Engineering Department at the University of Liège, [Online]. Available: .
G. Lemoine, L. Delannay, H. Idrissi, M. Colla, T. Pardoen, Dislocation and back stress dominated viscoplasticity in freestanding sub-micron pd films, Acta Materialia 111 (2016) 10–21.
F. Lin, M. Marteleur, P. Jacques, L. Delannay, Transmission of 332 113 twins across grain boundaries in a metastable β-titanium alloy, International Journal of Plasticity 105 (2018) 195–210.
T. Khvan, L. Noels, D. Terentyev, F. Dencker, D. Stauffer, U. Hangen, W. V. Renterghem, C. Chang, A. Zinovev, High temperature nanoindentation of iron: Experimental and computational study, Journal of Nuclear Materials 567 (2022).
U. Kocks, A. Argon, M. Ashby, Thermodynamics and kinetics of slip, Pergamon Press, 1975.
H. Frost, M. Ashby, Deformation-mechanism maps: the plasticity and creep of metals and ceramics, Pergamon Press, 1982.
J. Amodeo, S. Dancette, L. Delannay, Atomistically-informed crystal plasticity in mgo polycrystals under pressure, International Journal of Plasticity 82 (2016) 177–191.
K. Ono, Temperature dependence of dispersed barrier hardening, Journal of Applied Physics 39 (1968) 1803–1806.
E. Hall, The deformation and ageing of mild steel: Iii discussion of results, Proceedings of the Physical Society B 64 (1951).
D. Terentyev, X. Xiao, A. Dubinko, A. Bakaeva, H. Duan, Dislocation-mediated strain hardening in tungsten: thermo-mechanical plasticity theory and experimental validation, Journal of the Mechanics and Physics of Solids 85 (2015) 1–15.
H. Mecking, U. Kocks, Kinetics of flow and strain-hardening, Acta Metallurgica 29 (1981) 1865–1875.
U. Kocks, Realistic constitutive relations for metal plasticity, Material Science and Engineering: A 317 (2001) 181–187.
G. Taylor, Plastic strain in metals, Journal of the Institute of Metals 62 (1938) 307–324.
M. Rieth, M. Schirra, A. Falkenstein, P. Graf, S. Heger, H. Kempe, R. Lindau, H. Zimmermann, Eurofer 97. tensile, charpy, creep and structural tests, Technical Report FZKA-6911, Forschungszentrum Karlsruhe (October 2003).
R. Stoller, M. Toloczko, G. Was, A. Certain, S. Dwaraknath, F. Garner, On the use of srim for computing radiation damage exposure, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 310 (2013) 75–80.
A. Jenet, B. Acosta, K. Boboridis, E. Colineau, P. Colpo, C. Fontana, J. Heyse, M. Hult, M. Peroni, T. Malkow, K.-F. Nilsson, S. Oberstedt, A. Pfrang, P. Schillebeeckx, G. Tsionis, K. Tuček, M. Perez-Medina, F. Molina, F. Taucer, Open access to JRC research infrastructures: The first five years, Publications Office of the European Union, 2024. doi:10.2760/69299.
W. C. Oliver, G. M. Pharr, An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments, Journal of Materials Research 7 (1992) 1564–1583.
A. Ruiz-Moreno, P. Hähner, L. Kurpaska, J. Jagielski, P. Spätig, M. Trebala, S.-P. Hannula, S. Merino, G. de Diego, H. Namburi, O. Libera, D. Terentyev, T. Khvan, C. Heintze, N. Jennett, Round robin into best practices for the determination of indentation size effects, Nanomaterials 10 (1) (2020) 130.
ASTM International, Standard test methods for tension testing of metallic materials (2022).
J. Adams, D. Agosta, R. Leisure, Elastic constants of monocrystal iron from 3 to 500k, Journal of Applied Physics 100 (2006) 113530.
W. P. Davey, Precision measurements of the lattice constants of twelve common metals, Physical Review 25 (1925) 753–761.
K. Okazaki, Solid-solution hardening and softening in binary iron alloys, Journal of Materials Science 31 (1996) 1087–1099.
H. Khater, G. Monnet, D. Terentyev, A. Serra, Dislocation glide in fe–carbon solid solution: from atomistic to continuum level description, International Journal of Plasticity 62 (2014) 34–49.
C. Dethloff, E. Gaganidze, J. Aktaa, Review and critical assessment of dislocation loop analyses on eurofer 97, Nuclear Materials and Energy 15 (2018) 23–26.
T. Byun, K. Farrel, Irradiation hardening behavior of polycrystalline metals after low temperature irradiation, Journal of Nuclear Materials 326 (2004) 86–96.
M. Grossbeck, 1.04 - effect of radiation and strength and ductility of metals and alloys, Materials Science and Materials Engineering 1 (2012) 99–122.
E. Lucon, W. Vanermeulen, Overview of the tensile properties of eurofer in the unirradiated and irradiated conditions, Journal of Nuclear Materials 386–388 (2009) 254–256.
A. Zinovev, C.-C. Chang, J. Van Eyken, E. Gaganidze, D. Terentyev, Effect of neutron irradiation to 0.7 dpa and 1.4 dpa on the tensile properties and fracture surface of eurofer97 steel, Journal of Nuclear Materials 587 (2023) 154742.
H. Lin, L. Shao, L. Lv, J. Bao, Investigation of the evolution of plastic anisotropy and pile-up of al single crystal in nanoindentation using different crystal plasticity models, Journal of Materials Science & Technology 65 (5) (2024) 494–501.
M. Duerrschnabel, U. Jäntsch, R. Gaisin, M. Rieth, Microstructural insights into eurofer97 batch 3 steels, Nuclear Materials and Energy 35 (2023) 101445.
P. Fernández, A. Lancha, J. Lapeña, M. Serrano, M. Hernández-Mayoral, Metallurgical properties of reduced activation martensitic steel eurofer’97 in the as-received condition and after thermal ageing, Journal of Nuclear Materials 307–311 (Part 1) (2002) 495–499.
J. Hargreaves, H. Tipping, S. Moore, D. Kumar, L. Harding, H. Dominguez Andrade, C. Bell, P. Hanna, H. Dawson, T. Martin, The transient thermal ageing of eurofer 97 by mitigated plasma disruptions, Materials & Design 244 (2024) 113207.
A. Das, E. Altstadt, C. Kaden, G. Kapoor, S. Akhmadaliev, F. Bergner, Nanoindentation response of ion-irradiated fe, fe-cr alloys and ferritic-martensitic steel eurofer 97: The effect of ion energy, Frontiers in Materials 8 (2022).
A. Kareer, A. Prasitthipayong, D. Krumwiede, D. Collins, P. Hosemann, S. Roberts, An analytical method to extract irradiation hardening from nanoindentation hardness-depth curves, Journal of Nuclear Materials 498 (2018) 274–281.
F. Bergner, C. Kaden, A. Das, S. Merino, G. Diego, P. Hähner, Nanoindentation applied to ion-irradiated and neutron-irradiated fe-9cr and fe-9cr-nisip model alloys, Journal of Applied Physics 132 (2022) 045101.
P. Hosemann, D. Kiener, Y. Wang, S. A. Maloy, Issues to consider using nano indentation on shallow ion beam irradiated materials, Journal of Nuclear Materials 425 (1–3) (2012) 136–139.
D. Kramer, H. Huang, M. Kriese, J. Robach, J. Nelson, A. Wright, D. Bahr, G. W.W., Yield strength predictions from the plastic zone around nanocontacts, Acta Materialia 47 (1) (1998) 333–343.
H. Mecking, Work hardening of single-phase polycrystals, in: Encyclopedia of Materials: Science and Technology, 2nd Edition, Elsevier, 2001, pp. 9785–9794.
A. Zinovev, L. Delannay, D. Terentyev, Plastic deformation of iter specification tungsten: Temperature and strain rate dependent constitutive law deduced by inverse finite element analysis, International Journal of Refractory Metals and Hard Materials 96 (2021) 105481.
L. Wu, K. Zulueta, Z. Major, A. Arriaga, L. Noels, Bayesian inference of non-linear multiscale model parameters accelerated by a deep neural network, Computer Methods in Applied Mechanics and Engineering 360 (2020) 112693.