[en] Paleovegetation reconstructions rely virtually exclusively on inferences from vascular plants, particularly pollen grains, ignoring other components of the land flora. Artificial intelligence (AI) opens the door to the identification of other microfossils, particularly bryophyte spores, which offer a new, higher magnification lens to characterize past climatic environments.
Mäder, Patrick; Technische Universität Ilmenau, Fakultät für Informatik und Automatisierung, Data-intensive Systems and Visualization, Ilmenau, Germany, German Centre for Integrative Biodiversity Research, Leipzig, Germany, Friedrich Schiller University Jena, Jena, Thuringia, Faculty of Biological Sciences, Germany
de Haan, Myriam; Botanic Garden Meise, Meise, Belgium
Van der Beeten, Iris; Botanic Garden Meise, Meise, Belgium
Goffinet, Bernard; University of Connecticut, Department of Ecology and Evolutionary Biology, Storrs, CT, USA
Vanderpoorten, Alain ; Université de Liège - ULiège > Département de Biologie, Ecologie et Evolution > Biologie de l'évolution et de la conservation - Unité aCREA-Ulg (Conseils et Recherches en Ecologie Appliquée)
Language :
English
Title :
Time to spice-up paleoecological records with bryophyte spores.
Gordon, J.D., et al. Floristic diversity and its relationships with human land use varied regionally during the Holocene. Nat. Ecol. Evol. 8 (2024), 1459–1471.
Nogué, S., et al. The human dimension of biodiversity changes on islands. Science 372 (2021), 488–489.
Birks, H.J.B., Quaternary palaeoecology meets deep-time palaeobiology. Proc. Natl. Acad. Sci. U. S. A., 120, 2023, e2316233120.
Gimenez, D., et al. A user-friendly method to get automated pollen analysis from environmental samples. New Phytol. 243 (2024), 797–810.
Punyasena, S.W., et al. Automated identification of diverse Neotropical pollen samples using convolutional neural networks. Methods Ecol. Evol. 13 (2022), 2049–2064.
Dunker, S., et al. Pollen analysis using multispectral imaging flow cytometry and deep learning. New Phytol. 229 (2021), 593–606.
Vitt, D.H., House, M., An 11,000 year record of plant community stability and paludification in a patterned rich fen in northeastern Alberta, Canada. Holocene 33 (2023), 986–997.
Hutsemékers, V., et al. Disentangling climate change from air pollution effects on epiphytic bryophytes. Glob. Chang. Biol. 29 (2023), 3990–4000.
Kiebacher, T., et al. Thermophilisation of communities differs between land plant lineages, land use types and elevation. Sci. Rep., 13, 2023, 11395.
Van Zuijlen, K., et al. Bryophytes of Europe Traits (BET) data set: a fundamental tool for ecological studies. J. Veg. Sci., 34, 2023, e13179.
Milis, A. et al. Towards the automatized identification of moss species from their spore morphology. Ann. Bot. (in press).
Davis, C.C., The herbarium of the future. Trends Ecol. Evol. 38 (2023), 412–423.
Durand, M., et al. Pollen identification through convolutional neural networks: first application on a full fossil pollen sequence. PLoS One, 19, 2024, e0302424.
Laenen, B., et al. Extant diversity of bryophytes emerged from successive post-Mesozoic diversification bursts. Nat. Commun., 5, 2014, 5134.
Ščevková, J., et al. Moss spores: overlooked airborne bioparticles in an urban environment. Environ. Sci. Pollut. Res. 31 (2024), 58010–58020.