Human-related landscape; Quality indicator; Soil quality; South Kivu; Wetland degradation; Degradation indicators; Environmental stress; Quality indicators; Soil degradation; Soils qualities; South kivu; Water drainage; Wetland soils; Wetlands degradation; Decision Sciences (all); Ecology, Evolution, Behavior and Systematics; Ecology
Abstract :
[en] Due to environmental stress and anthropogenic pressures, wetlands are declining and being degraded in areas with increased settlement and road construction. Although various indicators have been developed to assess ecosystem degradation, few studies have specifically addressed wetland soil degradation and its underlying drivers. In this study, we attempted to create a Wetland Soil Degradation indicator (WSDI) and identify its driving factors in a contrasting landscape characterized by significant anthropogenic changes. We selected the eastern Democratic Republic of Congo (DRC), a region where severe wetland degradation primarily caused by agriculture and brickmaking activities has been reported. We combined Geographic Information System (GIS), remote sensing approaches and soil profile analysis. For landscape change, four concentric circles from the two wetland centers were made. A WSDI was developed and refined using the minimum data set (MDS) coupled with multivariate statistical techniques to assess the level of wetland degradation. For the case study, an overall WSDI score averaged 0.52 across the two sites. Higher degradation was observed in brickmaking (0.62) compared to agriculture zones (0.52), while intact zones had a lower score (0.28). Degradation was also more severe in completely drained areas (0.72) than in partially (0.48) and intact, non-drained areas (0.28). Significant correlations were found between the level of degradation and human-related landscapes, notably the proximity to villages, rural settlements, and roads. Wetland degradation was strongly linked to road accessibility and the distance to human-related landscapes. The indicator confirmed a gradual degradation pattern, starting from the wetland edges and moving toward the center. Overall, the WSDI is essential for diagnostic purposes before developing a restoration plan to ensure sustainability and to question these critical ecosystems’ future.
Research Center/Unit :
Laplec SPHERES - ULiège Lepur : Centre de Recherche sur la Ville, le Territoire et le Milieu rural - ULiège
Chuma Basimine, Géant ; Université de Liège - ULiège > Sphères ; Université de Liège - ULiège > Département de géographie > Service de géographie rurale (Laboratoire pour l'analyse des lieux, des paysages et des campagnes européennes LAPLEC)
Gustave, Mushagalusa N.; Faculty of Agriculture and Environmental Sciences, Université Evangélique en Afrique, Bukavu, Democratic Republic Congo
Schmitz, Serge ; Université de Liège - ULiège > Département de géographie > Service de géographie rurale (Laboratoire pour l'analyse des lieux, des paysages et des campagnes européennes LAPLEC)
Language :
English
Title :
Developing an indicator for assessing wetland degradation based on soil quality, water drainage, and human-related landscape factors
Publication date :
October 2025
Journal title :
Ecological Indicators
ISSN :
1470-160X
eISSN :
1872-7034
Publisher :
Elsevier
Volume :
179
Pages :
113987
Peer reviewed :
Peer Reviewed verified by ORBi
Development Goals :
6. Clean water and sanitation 1. No poverty 11. Sustainable cities and communities 14. Life below water
An Ansoms et Wim Marivoet. (2010). Profil socioéconomique du Sud-Kivu et future piste de recherche. In S. Marysse et al, L'Afrique des Grands Lacs Annuaire 2009-2010, L'Harmattan Paris 2010, p. 259-272.2. http://hdl.handle.net/2078/117981.
Asefi-Najafabady, S., Vandecar, K.L., Seimon, A., Lawrence, P., Lawrence, D., Climate change, population, and poverty : Vulnerability and exposure to heat stress in countries bordering the Great Lakes of Africa. Clim. Change 148:4 (2018), 561–573, 10.1007/s10584-018-2211-5.
Arshad, M.A., Martin, S., Identifying critical limits for soil quality indicators in agro-ecosystems. Agr Ecosyst Environ 88:2 (2002), 153–160, 10.1016/S0167-8809(01)00252-3.
Awoonor, J.K., Amoako, E.E., Dogbey, B.F., Wiredu, I., Quantitative analysis of soil degradation in response to land use change in the Guinea savanna zone of Ghana. Geoderma Reg., 37, 2024, e00779, 10.1016/j.geodrs.2024.e00779.
Bernard, T., Lambert, S., Macours, K., Vinez, M., Impact of small farmers’ access to improved seeds and deforestation in DR Congo. Nat. Commun., 14(1), 2023, 1603, 10.1038/s41467-023-37278-2.
Blann, K.L., Anderson, J.L., Sands, G.R., Vondracek, B., Effects of Agricultural Drainage on Aquatic Ecosystems : a Review. Crit. Rev. Environ. Sci. Technol. 39:11 (2009), 909–1001, 10.1080/10643380801977966.
Bouyoucos, G.J., Directions for making mechanical analyses of soils by the hydrometer method. Soil Sci. 42:3 (1936), 225–230.
Brouwer, R., Georgiou, S., Turner, R.K., Integrated Assessment and Sustainable Water and Wetland Management. a Review of Concepts and Methods. Integr. Assess. 4:3 (2003), 172–184, 10.1076/iaij.4.3.172.23770.
Chapman, H. (1965). Cation exchange capacity. Methods of soil analysis Part 2 Chemical and microbiological properties.
Charvet, F., Matos, A., Figueiredo Da Silva, J., Tarelho, L., Leite, M., Neves, D., Charcoal Production in Portugal : Operating Conditions and Performance of a Traditional Brick Kiln. Energies, 15(13), 2022, 4775, 10.3390/en15134775.
Cheng, A., Zuo, Y., Gao, C., Li, H., Wei, H., Wu, X., Wen, J., Potentially toxic elements of lake and wetland in Northeastern Qinghai-Tibet Plateau : distribution, potential sources and risk assessment. Ecol. Ind., 166, 2024, 112427, 10.1016/j.ecolind.2024.112427.
Chen, K., Cong, P., Qu, L., Liang, S., Sun, Z., Wetland degradation diagnosis and zoning based on the integrated degradation index method. Ocean & Coastal Management, 222, 2022, 106135, 10.1016/j.ocecoaman.2022.106135.
Chuma, G.B., Mondo, J.M., Karume, K., Mushagalusa, G.N., Schmitz, S., Factors driving utilization patterns of marshlands in the vicinity of South-Kivu urban agglomerations based on Rapid Assessment of Wetland Ecosystem Services (RAWES). Environ. Challenges, 5, 2021, 100297, 10.1016/j.envc.2021.100297.
Chuma, G.B., Mondo, J.M., Sonwa, D.J., Karume, K., Mushagalusa, G.N., Schmitz, S., Socio-economic determinants of land use and land cover change in South-Kivu wetlands, eastern D.R. Congo : Case study of Hogola and Chisheke wetlands. Environmental Development, 43, 2022, 100711, 10.1016/j.envdev.2022.100711.
Chuma, G.B., Nachigera, G.M.N., Schmitz, S., Mapping small inland wetlands in the South-Kivu province by integrating optical and SAR data with statistical models for accurate distribution assessment. Sci. Rep., 13(1), 2023, 17626, 10.1038/s41598-023-43292-7.
Cvetkovic, M., Chow-Fraser, P., Use of ecological indicators to assess the quality of Great Lakes coastal wetlands. Ecol. Ind. 11:6 (2011), 1609–1622, 10.1016/j.ecolind.2011.04.005.
Darrah, S.E., Shennan-Farpón, Y., Loh, J., Davidson, N.C., Finlayson, C.M., Gardner, R.C., Walpole, M.J., Improvements to the Wetland Extent Trends (WET) index as a tool for monitoring natural and human-made wetlands. Ecol. Ind. 99 (2019), 294–298, 10.1016/j.ecolind.2018.12.032.
Drobnik, T., Greiner, L., Keller, A., Grêt-Regamey, A., Soil quality indicators–from soil functions to ecosystem services. Ecol. Ind. 94 (2018), 151–169, 10.1016/j.ecolind.2018.06.052.
Feng, Y., Yang, Q., Tong, X., Chen, L., Evaluating land ecological security and examining its relationships with driving factors using GIS and generalized additive model. Sci. Total Environ. 633 (2018), 1469–1479, 10.1016/j.scitotenv.2018.03.272.
Fluet-Chouinard, E., Stocker, B.D., Zhang, Z., Malhotra, A., Melton, J.R., Poulter, B., Kaplan, J.O., Goldewijk, K.K., Siebert, S., Minayeva, T., Hugelius, G., Joosten, H., Barthelmes, A., Prigent, C., Aires, F., Hoyt, A.M., Davidson, N., Finlayson, C.M., Lehner, B., McIntyre, P.B., Extensive global wetland loss over the past three centuries. Nature 614:7947 (2023), 281–286, 10.1038/s41586-022-05572-6.
Getahun, Z., Abewaa, M., Mengistu, A., Adino, E., Kontu, K., Angassa, K., Tiruneh, A., Abdu, J., Towards sustainable charcoal production : Designing an economical brick kiln with enhanced emission control technology. Heliyon, 10(6), 2024, e27797, 10.1016/j.heliyon.2024.e27797.
Goslee, S.C., Brooks, R.P., Cole, C.A., Plants as indicators of wetland water source. Plant Ecol. 131:2 (1997), 199–206, 10.1023/A:1009731904915.
Guttikunda, S.K., Begum, B.A., Wadud, Z., Particulate pollution from brick kiln clusters in the Greater Dhaka region, Bangladesh. Air Quality, Atmosphere & Health 6:2 (2013), 357–365, 10.1007/s11869-012-0187-2.
Hambäck, P.A., Dawson, L., Geranmayeh, P., Jarsjö, J., Kačergytė, I., Peacock, M., Blicharska, M., Tradeoffs and synergies in wetland multifunctionality: a scaling issue. Sci. Total Environ., 862, 2023, 160746, 10.1016/j.scitotenv.2022.160746.
Herlihy, A.T., Sifneos, J.C., Lomnicky, G.A., Nahlik, A.M., Kentula, M.E., Magee, T.K., Weber, M.H., Trebitz, A.S., The response of wetland quality indicators to human disturbance indicators across the United States. Environ. Monit. Assess., 191(S1), 2019, 296, 10.1007/s10661-019-7323-5.
Hong, M.G., Nam, B.E., Kim, J.G., Effects of soil fertility on early development of wetland vegetation from soil seed bank : focusing on biomass production and plant species diversity. Journal of Plant Biology 60:3 (2017), 241–248, 10.1007/s12374-016-0572-8.
Howe, R.W., Niemi, G.J., Bracey, A.M., Brady, V., Elliott, L., Fiorino, G.E., Gaul, W., Gehring, T.M., Gnass Giese, E.E., Lawrence, G., Norment, C.J., Panci, H., Tozer, D.C., Uzarski, D., Walton, N.G., Wheelock, B., An Index of biotic condition (IBC) using birds as indicators of coastal wetland quality in North America's Laurentian Great Lakes. Ecol. Ind., 156, 2023, 111174, 10.1016/j.ecolind.2023.111174.
Hu, S., Niu, Z., Chen, Y., Li, L., Zhang, H., Global wetlands : potential distribution, wetland loss, and status. Sci. Total Environ. 586 (2017), 319–327, 10.1016/j.scitotenv.2017.02.001.
Huu Nguyen, H., Dargusch, P., Moss, P., Tran, D.B., A review of the drivers of 200 years of wetland degradation in the Mekong Delta of Vietnam. Reg. Environ. Chang. 16:8 (2016), 2303–2315, 10.1007/s10113-016-0941-3.
Jiang, S., Kong, F., Zhang, M., Liu, Y., He, F., Cross-taxon correlation and effectiveness of indicator taxa in nature reserves of China. Ecol. Ind., 159, 2024, 111587, 10.1016/j.ecolind.2024.111587.
Kantrud, H.A., Newton, W.E., A test of vegetation-related indicators of wetland quality in the prairie pothole region. J. Aquat. Ecosyst. Health 5:3 (1996), 177–191, 10.1007/BF00124105.
Kundu, S., Kundu, B., Rana, N.K., Mahato, S., Wetland degradation and its impacts on livelihoods and sustainable development goals : an overview. Sustainable Prod. Consumption 48 (2024), 419–434, 10.1016/j.spc.2024.05.024.
Lal, R., Soil degradation by erosion. Land Degrad. Dev. 12:6 (2001), 519–539, 10.1002/ldr.472.
Lal, R., Carbon Management in Agricultural Soils. Mitig. Adapt. Strat. Glob. Chang. 12:2 (2007), 303–322, 10.1007/s11027-006-9036-7.
Laribi, A., Thelaidjia, R., Dehnoun, Z., Mapping nutrient and soil fertility indexes for Durum Wheat in the La Mina region of Algeria. J. Saudi Soc. Agric. Sci. 23:8 (2024), 563–568, 10.1016/j.jssas.2024.06.005.
Leibowitz, S.G., Isolated wetlands and their functions : an ecological perspective. Wetlands 23:3 (2003), 517–531, 10.1672/0277-5212(2003)023[0517:IWATFA]2.0.CO;2.
Leibowitz, S.G., Wigington, P.J., Schofield, K.A., Alexander, L.C., Vanderhoof, M.K., Golden, H.E., Connectivity of Streams and Wetlands to Downstream Waters : an Integrated Systems Framework. J. Am. Water Resour. Assoc. 54:2 (2018), 298–322, 10.1111/1752-1688.12631.
Mack, J.J., Landscape as a predictor of wetland condition : an evaluation of the Landscape Development Index (LDI) with a large reference wetland dataset from Ohio. Environ. Monit. Assess. 120:1–3 (2006), 221–241, 10.1007/s10661-005-9058-8.
Matthews, J.W., Peralta, A.L., Flanagan, D.N., Baldwin, P.M., Soni, A., Kent, A.D., Endress, A.G., Relative influence of landscape vs. local factors on plant community assembly in restored wetlands. Ecol. Appl. 19:8 (2009), 2108–2123, 10.1890/08-1836.1.
Mirenge, Z.Z., Chuma, G.B., Zamukulu, P.M., Mukungilwa, M., Muvundja, F.A., Karume, K., Land use and cover change and water quality of tropical wetlands under anthropogenic pressure : a case study of marshlands in the Kaziba chiefdom in South-Kivu province, Eastern DR Congo. Reg. Stud. Mar. Sci., 64, 2023, 103050, 10.1016/j.rsma.2023.103050.
Mitchell, M.E., Newcomer-Johnson, T., Christensen, J., Crumpton, W., Richmond, S., Dyson, B., Canfield, T.J., Helmers, M., Lemke, D., Lechtenberg, M., Green, D., Forshay, K.J., Potential of water quality wetlands to mitigate habitat losses from agricultural drainage modernization. Sci. Total Environ., 838, 2022, 156358, 10.1016/j.scitotenv.2022.156358.
Molinario, G., Hansen, M., Potapov, P., Tyukavina, A., Stehman, S., Contextualizing Landscape-Scale Forest Cover loss in the Democratic Republic of Congo (DRC) between 2000 and 2015. Land, 9(1), 2020, 23, 10.3390/land9010023.
Mujiyo, Nariyanti, S., Suntoro, Herawati, A., Herdiansyah, G., Irianto, H., Riptanti, E. W., & Qonita, A. (2022). Soil fertility index based on altitude : A comprehensive assessment for the cassava development area in Indonesia. Annals of Agricultural Sciences, 67(2), 158‑165. https://doi.org/10.1016/j.aoas.2022.10.001.
Muro, J., Strauch, A., Heinemann, S., Steinbach, S., Thonfeld, F., Waske, B., Diekkrüger, B., Land surface temperature trends as indicator of land use changes in wetlands. Int. J. Appl. Earth Obs. Geoinf. 70 (2018), 62–71, 10.1016/j.jag.2018.02.002.
Nacishali, N.J., Kiplagat, A., Ucakuwun, E.K., Nzabandora, C.K., Modelling the impact of past and future land-use changes on land cover degradation at territorial level in Eastern DR Congo. Environ. Syst. Res., 13(1), 2024, 55, 10.1186/s40068-024-00388-x.
Nath, A.J., Lal, R., Managing tropical wetlands for advancing global rice production : Implications for land-use management. Land Use Policy 68 (2017), 681–685, 10.1016/j.landusepol.2017.08.026.
Okakebo, R.J., Gathua, W.K., Woomer, L.P., Laboratory methods of soil and plant analysis : a working manual. 2002, The Sustainable Agriculture Centre for Research Extension and Development in Africa, Bungoma and Nairobi, Kenya, The Second Edition(TSBF-CIAT and SACRED Africa), 131.
Pandey, B., Ghosh, A., Urban ecosystem services and climate change : a dynamic interplay. Front. Sustainable Cities, 5, 2023, 1281430, 10.3389/frsc.2023.1281430.
Pollet, I., Bendell-Young, L.I., Amphibians as indicators of wetland quality in wetlands formed from oil sands effluent. Environ. Toxicol. Chem. 19:10 (2000), 2589–2597, 10.1002/etc.5620191027.
Ripl, W., Losing fertile matter to the sea : how landscape entropy affects climate. Int. J. Water, 5(4), 2010, 353, 10.1504/IJW.2010.038728.
Rokosch, A.E., Bouchard, V., Fennessy, S., Dick, R., The use of soil parameters as indicators of quality in forested depressional wetlands. Wetlands 29:2 (2009), 666–677, 10.1672/08-150.1.
Shen, G., Yang, X., Jin, Y., Xu, B., Zhou, Q., Remote sensing and evaluation of the wetland ecological degradation process of the Zoige Plateau Wetland in China. Ecol. Ind. 104 (2019), 48–58, 10.1016/j.ecolind.2019.04.063.
Sietchiping, R., Ngomsi, C., Kinyanjui, M., Omwamba, J., & Velasquez, E. (2018). The Sustainability of Urbanization in Africa's Great Lakes Region : Trends and Policies Options. In C. Rozenblat, D. Pumain, & E. Velasquez (Éds.), International and Transnational Perspectives on Urban Systems (p. 341‑358). Springer Singapore. https://doi.org/10.1007/978-981-10-7799-9_15.
Sims, A., Zhang, Y., Gajaraj, S., Brown, P.B., Hu, Z., Toward the development of microbial indicators for wetland assessment. Water Res. 47:5 (2013), 1711–1725, 10.1016/j.watres.2013.01.023.
Turner, R.K., Georgiou, S., Brouwer, R., Bateman, I.J., Langford, I., Towards an integrated environmental assessment for wetland and catchment management. Geogr. J. 169:2 (2003), 99–116.
Tyukavina, A., Hansen, M.C., Potapov, P., Parker, D., Okpa, C., Stehman, S.V., Kommareddy, I., Turubanova, S., Congo Basin forest loss dominated by increasing smallholder clearing. Sci. Adv., 4(11), 2018, eaat2993, 10.1126/sciadv.aat2993.
Walkley, A., Black, I.A., An examination of the degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Sci., 37(1), 1934 https://journals.lww.com/soilsci/fulltext/1934/01000/an_examination_of_the_degtjareff_method_for.3.aspx.
Walters, D., Shrubsole, D., Agricultural drainage and wetland management in Ontario. J. Environ. Manage. 69:4 (2003), 369–379, 10.1016/j.jenvman.2003.09.013.
Wang, D., Bai, J., Wang, W., Zhang, G., Cui, B., Liu, X., Li, X., Comprehensive assessment of soil quality for different wetlands in a chinese delta. Land Degrad. Dev. 29:10 (2018), 3783–3794, 10.1002/ldr.3086.
Wood, A., Dixon, A., McCartney, M., People-centred wetland management. Wetland Management and Sustainable Livelihoods in Africa, 2013, Routledge, 1–42.
Zahedifar, M., Assessing alteration of soil quality, degradation, and resistance indices under different land uses through network and factor analysis. Catena, 222, 2023, 106807, 10.1016/j.catena.2022.106807.
Zhang, Y., Wang, L., Jiang, J., Zhang, J., Zhang, Z., Zhang, M., Application of soil quality index to determine the effects of different vegetation types on soil quality in the Yellow River Delta wetland. Ecol. Ind., 141, 2022, 109116, 10.1016/j.ecolind.2022.109116.
Zhu, L., Ke, Y., Hong, J., Zhang, Y., Pan, Y., Assessing degradation of lake wetlands in Bashang Plateau, China based on long-term time series Landsat images using wetland degradation index. Ecol. Ind., 139, 2022, 108903, 10.1016/j.ecolind.2022.108903.